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Part IV: Spatial coupling - A General Phenomenon
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Outline

 Spatial Coupling - A General Phenomenon
• General one-dimensional systems
• General BMS channels - Threshold Saturation and Universality
• Multi-user communications and ISI channels

- Multi-access channels
- Noisy Slepian-Wolf 
- Finite state channels
- Many more...

• Problems beyond Communications 
- Compressive sensing
- K-SAT

 Practical Aspects and Open Questions
• Universality
• Windowed decoding
• Rate loss
• Scaling
• Decoding Speed
• Complexity and choice of parameters 
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In this part we will look at some of the applications where spatial coupling has been successfully applied. 
The purpose of this part is not to discuss each application in detail. Rather, by giving a broad but quick 
overview we hope to convey that spatial coupling is a fairly general method that can be used in a variety of 
areas and applications.



General one-dimensional systems
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General Coupled One-Dimensional Analysis 

Balance of areas in the EXIT chart of uncoupled 
ensembles gives the BP threshold of coupled systems
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NOTE: In the following we will use EXIT charts. But we could have equally well used the potential function 
approach to derive these results. The two are entirely equivalent and it is purely a matter of taste which to 
use.

The analysis presented in the previous part can be extended to general one-dimensional systems, i.e., 
systems where the “state” is a scalar and where the “action” can be described by two functions just like 
for the BEC. It can also be used as an approximation to higher (or infinite)-dimensional systems (like for 
BMS channels) in the spirit of the Gaussian approximation which is typically used for EXIT charts.

We present three examples of general one-dimensional systems. In the first example we consider 
transmission of an irregular ensemble over the BEC. From standard DE analysis, the BP threshold of the 
uncoupled ensemble is ≈ 0.3531. Applying the previous results on balance of areas in the EXIT chart 
method, we conclude that the BP threshold of the coupled system is given by ≈ 0.4032. From the 
Maxwell construction, this is also the MAP threshold of the uncoupled ensemble. The second example we 
consider is the transmission over the BAWGN channel. DE in this case consists of the evolution of general 
densities which, in general, cannot be represented by finite parameters. As a consequence, the analysis is 
hard. However, one classical approach towards analysis of such infinite dimension systems is to consider 
the Gaussian approximation (GA) of densities. Consequently, the DE is again a one-dimensional system. 
Although GA is not rigorous it gives an idea about the behavior of the system. Shown in the slides is the 
transmission of (3,6) regular ensemble over BAWGN. Applying GA and utilizing the EXIT chart method we 
see that the BP threshold is close to 0.42915. In fact, if we perform real density evolution we can 
determine tht the BP threshold is ≈ 0.4293, which is quite close. Applying the balance of areas result we 
get that the coupled ensemble has a threshold close to ≈ 0.4758. Again, density evolution on the coupled 
ensemble shows that the actual BP threshold of the coupled  ensemble is close to ≈ 0.4794. 
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Irregular 
Ensembles

Balance of areas in the EXIT chart of uncoupled 
ensembles gives the BP threshold of coupled systems

�(x) =
3x + 3x2 + 14x50

20
�(x) = x15

6Saturday, July 13, 13

NOTE: In the following we will use EXIT charts. But we could have equally well used the potential function 
approach to derive these results. The two are entirely equivalent and it is purely a matter of taste which to 
use.

The analysis presented in the previous part can be extended to general one-dimensional systems, i.e., 
systems where the “state” is a scalar and where the “action” can be described by two functions just like 
for the BEC. It can also be used as an approximation to higher (or infinite)-dimensional systems (like for 
BMS channels) in the spirit of the Gaussian approximation which is typically used for EXIT charts.

We present three examples of general one-dimensional systems. In the first example we consider 
transmission of an irregular ensemble over the BEC. From standard DE analysis, the BP threshold of the 
uncoupled ensemble is ≈ 0.3531. Applying the previous results on balance of areas in the EXIT chart 
method, we conclude that the BP threshold of the coupled system is given by ≈ 0.4032. From the 
Maxwell construction, this is also the MAP threshold of the uncoupled ensemble. The second example we 
consider is the transmission over the BAWGN channel. DE in this case consists of the evolution of general 
densities which, in general, cannot be represented by finite parameters. As a consequence, the analysis is 
hard. However, one classical approach towards analysis of such infinite dimension systems is to consider 
the Gaussian approximation (GA) of densities. Consequently, the DE is again a one-dimensional system. 
Although GA is not rigorous it gives an idea about the behavior of the system. Shown in the slides is the 
transmission of (3,6) regular ensemble over BAWGN. Applying GA and utilizing the EXIT chart method we 
see that the BP threshold is close to 0.42915. In fact, if we perform real density evolution we can 
determine tht the BP threshold is ≈ 0.4293, which is quite close. Applying the balance of areas result we 
get that the coupled ensemble has a threshold close to ≈ 0.4758. Again, density evolution on the coupled 
ensemble shows that the actual BP threshold of the coupled  ensemble is close to ≈ 0.4794. 

General Coupled One-Dimensional Analysis 

Irregular 
Ensembles

Balance of areas in the EXIT chart of uncoupled 
ensembles gives the BP threshold of coupled systems

�(x) =
3x + 3x2 + 14x50

20
�(x) = x15

�BP
uncoupled = 0.3531

6Saturday, July 13, 13

NOTE: In the following we will use EXIT charts. But we could have equally well used the potential function 
approach to derive these results. The two are entirely equivalent and it is purely a matter of taste which to 
use.

The analysis presented in the previous part can be extended to general one-dimensional systems, i.e., 
systems where the “state” is a scalar and where the “action” can be described by two functions just like 
for the BEC. It can also be used as an approximation to higher (or infinite)-dimensional systems (like for 
BMS channels) in the spirit of the Gaussian approximation which is typically used for EXIT charts.

We present three examples of general one-dimensional systems. In the first example we consider 
transmission of an irregular ensemble over the BEC. From standard DE analysis, the BP threshold of the 
uncoupled ensemble is ≈ 0.3531. Applying the previous results on balance of areas in the EXIT chart 
method, we conclude that the BP threshold of the coupled system is given by ≈ 0.4032. From the 
Maxwell construction, this is also the MAP threshold of the uncoupled ensemble. The second example we 
consider is the transmission over the BAWGN channel. DE in this case consists of the evolution of general 
densities which, in general, cannot be represented by finite parameters. As a consequence, the analysis is 
hard. However, one classical approach towards analysis of such infinite dimension systems is to consider 
the Gaussian approximation (GA) of densities. Consequently, the DE is again a one-dimensional system. 
Although GA is not rigorous it gives an idea about the behavior of the system. Shown in the slides is the 
transmission of (3,6) regular ensemble over BAWGN. Applying GA and utilizing the EXIT chart method we 
see that the BP threshold is close to 0.42915. In fact, if we perform real density evolution we can 
determine tht the BP threshold is ≈ 0.4293, which is quite close. Applying the balance of areas result we 
get that the coupled ensemble has a threshold close to ≈ 0.4758. Again, density evolution on the coupled 
ensemble shows that the actual BP threshold of the coupled  ensemble is close to ≈ 0.4794. 



General Coupled One-Dimensional Analysis 

Irregular 
Ensembles

Balance of areas in the EXIT chart of uncoupled 
ensembles gives the BP threshold of coupled systems

�(x) =
3x + 3x2 + 14x50

20
�(x) = x15

� = 0.4032

Balance of areas

�BP
uncoupled = 0.3531

6Saturday, July 13, 13

NOTE: In the following we will use EXIT charts. But we could have equally well used the potential function 
approach to derive these results. The two are entirely equivalent and it is purely a matter of taste which to 
use.

The analysis presented in the previous part can be extended to general one-dimensional systems, i.e., 
systems where the “state” is a scalar and where the “action” can be described by two functions just like 
for the BEC. It can also be used as an approximation to higher (or infinite)-dimensional systems (like for 
BMS channels) in the spirit of the Gaussian approximation which is typically used for EXIT charts.

We present three examples of general one-dimensional systems. In the first example we consider 
transmission of an irregular ensemble over the BEC. From standard DE analysis, the BP threshold of the 
uncoupled ensemble is ≈ 0.3531. Applying the previous results on balance of areas in the EXIT chart 
method, we conclude that the BP threshold of the coupled system is given by ≈ 0.4032. From the 
Maxwell construction, this is also the MAP threshold of the uncoupled ensemble. The second example we 
consider is the transmission over the BAWGN channel. DE in this case consists of the evolution of general 
densities which, in general, cannot be represented by finite parameters. As a consequence, the analysis is 
hard. However, one classical approach towards analysis of such infinite dimension systems is to consider 
the Gaussian approximation (GA) of densities. Consequently, the DE is again a one-dimensional system. 
Although GA is not rigorous it gives an idea about the behavior of the system. Shown in the slides is the 
transmission of (3,6) regular ensemble over BAWGN. Applying GA and utilizing the EXIT chart method we 
see that the BP threshold is close to 0.42915. In fact, if we perform real density evolution we can 
determine tht the BP threshold is ≈ 0.4293, which is quite close. Applying the balance of areas result we 
get that the coupled ensemble has a threshold close to ≈ 0.4758. Again, density evolution on the coupled 
ensemble shows that the actual BP threshold of the coupled  ensemble is close to ≈ 0.4794. 

General Coupled One-Dimensional Analysis 

Irregular 
Ensembles

Balance of areas in the EXIT chart of uncoupled 
ensembles gives the BP threshold of coupled systems

�(x) =
3x + 3x2 + 14x50

20
�(x) = x15

� = 0.4032

Balance of areas

�BP
uncoupled = 0.3531

�BP
coupled = 0.4032

6Saturday, July 13, 13

NOTE: In the following we will use EXIT charts. But we could have equally well used the potential function 
approach to derive these results. The two are entirely equivalent and it is purely a matter of taste which to 
use.

The analysis presented in the previous part can be extended to general one-dimensional systems, i.e., 
systems where the “state” is a scalar and where the “action” can be described by two functions just like 
for the BEC. It can also be used as an approximation to higher (or infinite)-dimensional systems (like for 
BMS channels) in the spirit of the Gaussian approximation which is typically used for EXIT charts.

We present three examples of general one-dimensional systems. In the first example we consider 
transmission of an irregular ensemble over the BEC. From standard DE analysis, the BP threshold of the 
uncoupled ensemble is ≈ 0.3531. Applying the previous results on balance of areas in the EXIT chart 
method, we conclude that the BP threshold of the coupled system is given by ≈ 0.4032. From the 
Maxwell construction, this is also the MAP threshold of the uncoupled ensemble. The second example we 
consider is the transmission over the BAWGN channel. DE in this case consists of the evolution of general 
densities which, in general, cannot be represented by finite parameters. As a consequence, the analysis is 
hard. However, one classical approach towards analysis of such infinite dimension systems is to consider 
the Gaussian approximation (GA) of densities. Consequently, the DE is again a one-dimensional system. 
Although GA is not rigorous it gives an idea about the behavior of the system. Shown in the slides is the 
transmission of (3,6) regular ensemble over BAWGN. Applying GA and utilizing the EXIT chart method we 
see that the BP threshold is close to 0.42915. In fact, if we perform real density evolution we can 
determine tht the BP threshold is ≈ 0.4293, which is quite close. Applying the balance of areas result we 
get that the coupled ensemble has a threshold close to ≈ 0.4758. Again, density evolution on the coupled 
ensemble shows that the actual BP threshold of the coupled  ensemble is close to ≈ 0.4794. 

General Coupled One-Dimensional Analysis 

Balance of areas in the EXIT chart of uncoupled 
ensembles gives the BP threshold of coupled systems

6Saturday, July 13, 13

NOTE: In the following we will use EXIT charts. But we could have equally well used the potential function 
approach to derive these results. The two are entirely equivalent and it is purely a matter of taste which to 
use.

The analysis presented in the previous part can be extended to general one-dimensional systems, i.e., 
systems where the “state” is a scalar and where the “action” can be described by two functions just like 
for the BEC. It can also be used as an approximation to higher (or infinite)-dimensional systems (like for 
BMS channels) in the spirit of the Gaussian approximation which is typically used for EXIT charts.

We present three examples of general one-dimensional systems. In the first example we consider 
transmission of an irregular ensemble over the BEC. From standard DE analysis, the BP threshold of the 
uncoupled ensemble is ≈ 0.3531. Applying the previous results on balance of areas in the EXIT chart 
method, we conclude that the BP threshold of the coupled system is given by ≈ 0.4032. From the 
Maxwell construction, this is also the MAP threshold of the uncoupled ensemble. The second example we 
consider is the transmission over the BAWGN channel. DE in this case consists of the evolution of general 
densities which, in general, cannot be represented by finite parameters. As a consequence, the analysis is 
hard. However, one classical approach towards analysis of such infinite dimension systems is to consider 
the Gaussian approximation (GA) of densities. Consequently, the DE is again a one-dimensional system. 
Although GA is not rigorous it gives an idea about the behavior of the system. Shown in the slides is the 
transmission of (3,6) regular ensemble over BAWGN. Applying GA and utilizing the EXIT chart method we 
see that the BP threshold is close to 0.42915. In fact, if we perform real density evolution we can 
determine tht the BP threshold is ≈ 0.4293, which is quite close. Applying the balance of areas result we 
get that the coupled ensemble has a threshold close to ≈ 0.4758. Again, density evolution on the coupled 
ensemble shows that the actual BP threshold of the coupled  ensemble is close to ≈ 0.4794. 

General Coupled One-Dimensional Analysis 

Gaussian 
Approximation

Balance of areas in the EXIT chart of uncoupled 
ensembles gives the BP threshold of coupled systems

�(x) = x2

�(x) = x5

6Saturday, July 13, 13

NOTE: In the following we will use EXIT charts. But we could have equally well used the potential function 
approach to derive these results. The two are entirely equivalent and it is purely a matter of taste which to 
use.

The analysis presented in the previous part can be extended to general one-dimensional systems, i.e., 
systems where the “state” is a scalar and where the “action” can be described by two functions just like 
for the BEC. It can also be used as an approximation to higher (or infinite)-dimensional systems (like for 
BMS channels) in the spirit of the Gaussian approximation which is typically used for EXIT charts.

We present three examples of general one-dimensional systems. In the first example we consider 
transmission of an irregular ensemble over the BEC. From standard DE analysis, the BP threshold of the 
uncoupled ensemble is ≈ 0.3531. Applying the previous results on balance of areas in the EXIT chart 
method, we conclude that the BP threshold of the coupled system is given by ≈ 0.4032. From the 
Maxwell construction, this is also the MAP threshold of the uncoupled ensemble. The second example we 
consider is the transmission over the BAWGN channel. DE in this case consists of the evolution of general 
densities which, in general, cannot be represented by finite parameters. As a consequence, the analysis is 
hard. However, one classical approach towards analysis of such infinite dimension systems is to consider 
the Gaussian approximation (GA) of densities. Consequently, the DE is again a one-dimensional system. 
Although GA is not rigorous it gives an idea about the behavior of the system. Shown in the slides is the 
transmission of (3,6) regular ensemble over BAWGN. Applying GA and utilizing the EXIT chart method we 
see that the BP threshold is close to 0.42915. In fact, if we perform real density evolution we can 
determine tht the BP threshold is ≈ 0.4293, which is quite close. Applying the balance of areas result we 
get that the coupled ensemble has a threshold close to ≈ 0.4758. Again, density evolution on the coupled 
ensemble shows that the actual BP threshold of the coupled  ensemble is close to ≈ 0.4794. 



General Coupled One-Dimensional Analysis 

Gaussian 
Approximation

Balance of areas in the EXIT chart of uncoupled 
ensembles gives the BP threshold of coupled systems

�(x) = x2

�(x) = x5

BAWGN

6Saturday, July 13, 13

NOTE: In the following we will use EXIT charts. But we could have equally well used the potential function 
approach to derive these results. The two are entirely equivalent and it is purely a matter of taste which to 
use.

The analysis presented in the previous part can be extended to general one-dimensional systems, i.e., 
systems where the “state” is a scalar and where the “action” can be described by two functions just like 
for the BEC. It can also be used as an approximation to higher (or infinite)-dimensional systems (like for 
BMS channels) in the spirit of the Gaussian approximation which is typically used for EXIT charts.

We present three examples of general one-dimensional systems. In the first example we consider 
transmission of an irregular ensemble over the BEC. From standard DE analysis, the BP threshold of the 
uncoupled ensemble is ≈ 0.3531. Applying the previous results on balance of areas in the EXIT chart 
method, we conclude that the BP threshold of the coupled system is given by ≈ 0.4032. From the 
Maxwell construction, this is also the MAP threshold of the uncoupled ensemble. The second example we 
consider is the transmission over the BAWGN channel. DE in this case consists of the evolution of general 
densities which, in general, cannot be represented by finite parameters. As a consequence, the analysis is 
hard. However, one classical approach towards analysis of such infinite dimension systems is to consider 
the Gaussian approximation (GA) of densities. Consequently, the DE is again a one-dimensional system. 
Although GA is not rigorous it gives an idea about the behavior of the system. Shown in the slides is the 
transmission of (3,6) regular ensemble over BAWGN. Applying GA and utilizing the EXIT chart method we 
see that the BP threshold is close to 0.42915. In fact, if we perform real density evolution we can 
determine tht the BP threshold is ≈ 0.4293, which is quite close. Applying the balance of areas result we 
get that the coupled ensemble has a threshold close to ≈ 0.4758. Again, density evolution on the coupled 
ensemble shows that the actual BP threshold of the coupled  ensemble is close to ≈ 0.4794. 

General Coupled One-Dimensional Analysis 

Gaussian 
Approximation

Balance of areas in the EXIT chart of uncoupled 
ensembles gives the BP threshold of coupled systems

hBP
uncoupled = 0.4293

�(x) = x2

�(x) = x5

BAWGN

6Saturday, July 13, 13

NOTE: In the following we will use EXIT charts. But we could have equally well used the potential function 
approach to derive these results. The two are entirely equivalent and it is purely a matter of taste which to 
use.

The analysis presented in the previous part can be extended to general one-dimensional systems, i.e., 
systems where the “state” is a scalar and where the “action” can be described by two functions just like 
for the BEC. It can also be used as an approximation to higher (or infinite)-dimensional systems (like for 
BMS channels) in the spirit of the Gaussian approximation which is typically used for EXIT charts.

We present three examples of general one-dimensional systems. In the first example we consider 
transmission of an irregular ensemble over the BEC. From standard DE analysis, the BP threshold of the 
uncoupled ensemble is ≈ 0.3531. Applying the previous results on balance of areas in the EXIT chart 
method, we conclude that the BP threshold of the coupled system is given by ≈ 0.4032. From the 
Maxwell construction, this is also the MAP threshold of the uncoupled ensemble. The second example we 
consider is the transmission over the BAWGN channel. DE in this case consists of the evolution of general 
densities which, in general, cannot be represented by finite parameters. As a consequence, the analysis is 
hard. However, one classical approach towards analysis of such infinite dimension systems is to consider 
the Gaussian approximation (GA) of densities. Consequently, the DE is again a one-dimensional system. 
Although GA is not rigorous it gives an idea about the behavior of the system. Shown in the slides is the 
transmission of (3,6) regular ensemble over BAWGN. Applying GA and utilizing the EXIT chart method we 
see that the BP threshold is close to 0.42915. In fact, if we perform real density evolution we can 
determine tht the BP threshold is ≈ 0.4293, which is quite close. Applying the balance of areas result we 
get that the coupled ensemble has a threshold close to ≈ 0.4758. Again, density evolution on the coupled 
ensemble shows that the actual BP threshold of the coupled  ensemble is close to ≈ 0.4794. 

General Coupled One-Dimensional Analysis 

Gaussian 
Approximation

Balance of areas in the EXIT chart of uncoupled 
ensembles gives the BP threshold of coupled systems

hBP
uncoupled = 0.4293

�(x) = x2

�(x) = x5

v

f(u)
g(v)

u

h = 0.42915

BAWGN

6Saturday, July 13, 13

NOTE: In the following we will use EXIT charts. But we could have equally well used the potential function 
approach to derive these results. The two are entirely equivalent and it is purely a matter of taste which to 
use.

The analysis presented in the previous part can be extended to general one-dimensional systems, i.e., 
systems where the “state” is a scalar and where the “action” can be described by two functions just like 
for the BEC. It can also be used as an approximation to higher (or infinite)-dimensional systems (like for 
BMS channels) in the spirit of the Gaussian approximation which is typically used for EXIT charts.

We present three examples of general one-dimensional systems. In the first example we consider 
transmission of an irregular ensemble over the BEC. From standard DE analysis, the BP threshold of the 
uncoupled ensemble is ≈ 0.3531. Applying the previous results on balance of areas in the EXIT chart 
method, we conclude that the BP threshold of the coupled system is given by ≈ 0.4032. From the 
Maxwell construction, this is also the MAP threshold of the uncoupled ensemble. The second example we 
consider is the transmission over the BAWGN channel. DE in this case consists of the evolution of general 
densities which, in general, cannot be represented by finite parameters. As a consequence, the analysis is 
hard. However, one classical approach towards analysis of such infinite dimension systems is to consider 
the Gaussian approximation (GA) of densities. Consequently, the DE is again a one-dimensional system. 
Although GA is not rigorous it gives an idea about the behavior of the system. Shown in the slides is the 
transmission of (3,6) regular ensemble over BAWGN. Applying GA and utilizing the EXIT chart method we 
see that the BP threshold is close to 0.42915. In fact, if we perform real density evolution we can 
determine tht the BP threshold is ≈ 0.4293, which is quite close. Applying the balance of areas result we 
get that the coupled ensemble has a threshold close to ≈ 0.4758. Again, density evolution on the coupled 
ensemble shows that the actual BP threshold of the coupled  ensemble is close to ≈ 0.4794. 

General Coupled One-Dimensional Analysis 

Gaussian 
Approximation

Balance of areas in the EXIT chart of uncoupled 
ensembles gives the BP threshold of coupled systems

hBP
uncoupled = 0.4293

�(x) = x2

�(x) = x5

v

f(u)
g(v)

u u

v

g(v)
f(u)

h = 0.42915 h = 0.4758

Balance of areasBAWGN

6Saturday, July 13, 13

NOTE: In the following we will use EXIT charts. But we could have equally well used the potential function 
approach to derive these results. The two are entirely equivalent and it is purely a matter of taste which to 
use.

The analysis presented in the previous part can be extended to general one-dimensional systems, i.e., 
systems where the “state” is a scalar and where the “action” can be described by two functions just like 
for the BEC. It can also be used as an approximation to higher (or infinite)-dimensional systems (like for 
BMS channels) in the spirit of the Gaussian approximation which is typically used for EXIT charts.

We present three examples of general one-dimensional systems. In the first example we consider 
transmission of an irregular ensemble over the BEC. From standard DE analysis, the BP threshold of the 
uncoupled ensemble is ≈ 0.3531. Applying the previous results on balance of areas in the EXIT chart 
method, we conclude that the BP threshold of the coupled system is given by ≈ 0.4032. From the 
Maxwell construction, this is also the MAP threshold of the uncoupled ensemble. The second example we 
consider is the transmission over the BAWGN channel. DE in this case consists of the evolution of general 
densities which, in general, cannot be represented by finite parameters. As a consequence, the analysis is 
hard. However, one classical approach towards analysis of such infinite dimension systems is to consider 
the Gaussian approximation (GA) of densities. Consequently, the DE is again a one-dimensional system. 
Although GA is not rigorous it gives an idea about the behavior of the system. Shown in the slides is the 
transmission of (3,6) regular ensemble over BAWGN. Applying GA and utilizing the EXIT chart method we 
see that the BP threshold is close to 0.42915. In fact, if we perform real density evolution we can 
determine tht the BP threshold is ≈ 0.4293, which is quite close. Applying the balance of areas result we 
get that the coupled ensemble has a threshold close to ≈ 0.4758. Again, density evolution on the coupled 
ensemble shows that the actual BP threshold of the coupled  ensemble is close to ≈ 0.4794. 



General Coupled One-Dimensional Analysis 

Gaussian 
Approximation

Balance of areas in the EXIT chart of uncoupled 
ensembles gives the BP threshold of coupled systems

hBP
coupled = 0.4794

hBP
uncoupled = 0.4293

�(x) = x2

�(x) = x5

v

f(u)
g(v)

u u

v

g(v)
f(u)

h = 0.42915 h = 0.4758

Balance of areasBAWGN

6Saturday, July 13, 13

NOTE: In the following we will use EXIT charts. But we could have equally well used the potential function 
approach to derive these results. The two are entirely equivalent and it is purely a matter of taste which to 
use.

The analysis presented in the previous part can be extended to general one-dimensional systems, i.e., 
systems where the “state” is a scalar and where the “action” can be described by two functions just like 
for the BEC. It can also be used as an approximation to higher (or infinite)-dimensional systems (like for 
BMS channels) in the spirit of the Gaussian approximation which is typically used for EXIT charts.

We present three examples of general one-dimensional systems. In the first example we consider 
transmission of an irregular ensemble over the BEC. From standard DE analysis, the BP threshold of the 
uncoupled ensemble is ≈ 0.3531. Applying the previous results on balance of areas in the EXIT chart 
method, we conclude that the BP threshold of the coupled system is given by ≈ 0.4032. From the 
Maxwell construction, this is also the MAP threshold of the uncoupled ensemble. The second example we 
consider is the transmission over the BAWGN channel. DE in this case consists of the evolution of general 
densities which, in general, cannot be represented by finite parameters. As a consequence, the analysis is 
hard. However, one classical approach towards analysis of such infinite dimension systems is to consider 
the Gaussian approximation (GA) of densities. Consequently, the DE is again a one-dimensional system. 
Although GA is not rigorous it gives an idea about the behavior of the system. Shown in the slides is the 
transmission of (3,6) regular ensemble over BAWGN. Applying GA and utilizing the EXIT chart method we 
see that the BP threshold is close to 0.42915. In fact, if we perform real density evolution we can 
determine tht the BP threshold is ≈ 0.4293, which is quite close. Applying the balance of areas result we 
get that the coupled ensemble has a threshold close to ≈ 0.4758. Again, density evolution on the coupled 
ensemble shows that the actual BP threshold of the coupled  ensemble is close to ≈ 0.4794. 

General BMS channels

Coupled Codes are Provably Capacity-Achieving under BP Decoding
and they are universal with respect to all BMS channels

7Saturday, July 13, 13

In the previous slide we saw that even general BMS channels can be analyzed using the EXIT chart 
method and the Gaussian approximation. Of course, this analysis is not exact, but it gives a quick and 
insightful idea about the performance. Let us now quickly discuss, how to exactly analyze spatially coupled 
ensembles for transmission over BMS channels.

General BMS Channels - Threshold Saturation

BAWGN 
Channel

(3,6,L) coupled code ensemble with increasing L
≈ 0.4789 ⇡ hArea(l, r)
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What happens if we use spatial coupling for general binary-input memoryless output-symmetric channels? 
Let us check this by looking at the AWGN channel. As we have done this for the BEC, let us plot the EXIT 
curves for this case as a function of the chain length. As mentioned in the Part II of this tutorial, the EXIT 
curve is given by the normalized derivative of the conditional entropy. It measures the change in the 
conditional entropy H(X | Y) when we change the entropy of the channel, i.e., for the case above, when we 
change the noise variance of the AWGN channel. Let hBP be the threshold of the BP decoder for this case. 
What the above sequence of curves shows is that hBP of the coupled code ensemble converges to the hA 
of the uncoupled code ensemble as the length of chain becomes large and in addition one can prove that 
hArea is also in the general case equal to hMAP. In other words, we again can observe the threshold 
saturation phenomenon. Note that this phenomenon happens not only for the AWGN channel but for any 
BMS channel. Further, the threshold hMAP, i.e., the threshold under MAP decoding universally (over the set 
of BMS channels) converges to the Shannon threshold if we keep the rate fixed but increase the degrees.
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where the  bounds are independent of the channel.
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In other words, we can construct codes which are universally capacity-achieving under BP decoding. The 
above statement provides the details. Here, hArea denotes the area threshold of the uncoupled code 
ensemble, which in the case of general channels can be defined precisely to be equal to the channel 
entropy for which the area under the GEXIT curve is equal to the design rate. The theorem has been 
proven for the randomized ensemble. It states that the BP threshold and the MAP threshold of the 
coupled code ensemble are within O(1/sqrt(w)) of the area threshold of the underlying uncoupled 
ensemble. Furthermore, the area threshold can be shown to approach the Shannon threshold by 
increasing the constituent degrees. The O(1/sqrt(w))  is a very weak bound. The “true” behavior is 
conjectured to be exponentially small in w.
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Good means that we can transmit using belief 
propagation decoding with (block/bit) error probability 
at most e.�

Let C(c) denote the set of all BMS channels with capacity
c and let e > 0. Then there exists a fixed spatially coupled 
code ensemble of rate at least c- e  such that almost every 
code in the ensemble is good for all channels in C(c). 

C(c)
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Most Codes are Universal
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This statement proves the universality of the coupled code ensemble. In other words, one coupled code 
ensemble can be used to transmit with rates arbitrarily close to the capacity of any channel with a given 
capacity, and achieve an arbitrarily small (block/bit) error rate while using low-complexity BP decoder. 
Furthermore, almost every code in the ensemble has this property. To prove this we use the fact the set of 
channel distributions with capacity at least R, is a compact set when we consider the Wasserstein metric. 
We then produce a finite cover of this set, such that every channel density lies within a distance δ of an 
element of the cover and furthermore the cover “dominates” (is degraded wrt) every channel density. To 
prove that the block error rate also goes to zero one can show that the spatially coupled codes, with 
variable node degrees at least 5, is an expander with sufficient expansion. Then one can use the BP 
decoder to bring down the bit error rate to a small value and show that by switching to the flipping 
decoder, one can correct any residual errors, thanks to the expansion. 



General BMS Channels - Proofs of Threshold 
Saturation

Potential Function Analysis:

Generalized EXIT Analysis:

http://arxiv.org/pdf/1201.2999.pdf

http://arxiv.org/pdf/1301.6111.pdf
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The original proof for the threshold saturation phenomena was furnished in “Spatially Coupled Ensembles 
Universally Achieve Capacity under Belief Propagation”, Kudekar, Richardson and Urbanke ’12. In this 
article, it is also shown that the spatially coupled ensembles universally achieve capacity under BP 
decoding. The proof technique involved demonstrating the existence of a special FP of DE of the coupled 
ensembles. This special FP, as seen in the proof for the case of BEC, has a long tail of densities which are 
almost perfectly decoder (i.e., one can imagine that the associated probability of error is very close to 
zero), a quick transition and then a large flat part where densities are equal to the forward FP of DE for the 
underlying uncoupled code ensemble. It is then shown that this special FP, if it exists, can only do so at 
the a channel entropy close to the area threshold of the underlying uncoupled ensemble. More precisely, 
the channel entropy must be within O(1/sqrt(w)) of the area threshold. This is shown using the generalized 
EXIT function.Then, it is shown that for a channel with entropy strictly less than the area threshold minus 
the wiggle O(1/sqrt(w)), the forward FP of DE (i.e., the density under BP decoding)  must converge to a 
trivial FP, i.e., perfect decoding. Because, if it did not, then DE must be stuck in an FP which is “special” as 
mentioned above. But then any such special FP can not have a channel entropy value more than O(1/
sqrt(w)) away from the area threshold. More recently, Kumar, Young, Macris, Pfister have furnished another 
proof of the threshold saturation phenomena using the potential function approach mentioned previously. 
The proof again involves constructing an appropriate potential function, which closely resembles the 
replica symmetric free energy of the system.  
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Recently, it was also shown that spatially coupled codes are capacity-achieving and universal in host of 
other communication scenarios. The list is not exhaustive and we will mention only a few examples. 
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Consider transmission over a two user multi-access channel with AWGN noise. Considers a fading 
channel, with different fades, for the two users. More precisely, consider slow fading channels, i.e., the 
channel gains are unknown but fixed. Consider the subset of the region of fading coefficients for which 
reliable transmission is possible under a fixed rate pair. Above, the pentagon in red is the achievable region 
under MAP decoding. It is observed that when both the users use a standard (3,6) LDPC code ensemble 
to transmit, the achievable region is much smaller than the optimal one. In fact, even if one uses an 
ensemble optimized for equal received power case (i.e, h1 = h2), it does not cover the entire achievable 
region. However, it is shown that if both users use coupled code ensemble of increasing degrees, then the 
achievable region, under BP decoding, approaches the optimal region. Thus the threshold saturation 
phenomena is also manifested in this case.   
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In this case it is shown that the threshold saturation phenomena also occurs when transmitting two 
correlated sources over noisy channels. Consider two sources correlated via a virtual BSC(p) channel. I.e., 
imagine a source U1 which is Bern(1/2) and consider another source U2 which is obtained from U1 by 
transmitting it over BSC(p). The two sources are then independently coded and then transmitted on two 
AWGN channels with noise variances equal to  1/SNR1 and 1/SNR2. It is assumed that both the sources 
use the same code ensemble, and thus the same rate, to communicate over the noisy channel. The 
receiver has the knowledge of both the source correlation and the channel parameters. Shown in the 
figure is the Slepian-Wolf (capacity) achievable region for this problem. It is desirable to construct a code 
such that one is able to transmit at all possible channel value pairs (for a given rate pair) in the achievable 
region. This would ensure that the scheme is universal, i.e., attains near-capacity performance without 
channel knowledge at the transmitter. As shown in the figure, if one uses a standard (4,6) code to transmit 
at (rate1, rate2) = (1/3, 1/3) using BP decoding, then the achievable region is considerably smaller than the 
Slepian-Wolf region. Note that here the virtual correlation channel is BSC(p=0.11). Hence, the minimum 
rate at which each source can transmit is equal to h_2(p) = 1/2. However, using randomized coupled code 
ensemble (4,6,64,10) we observe that near-capacity performance is achievable. Note that using the 
coupled code results in a slight rate-loss. This is reflected in the figure by the Slepian-Wolf region for rate 
0.4934. 
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In this case one considers transmission over a channel with memory. We consider the simplest case of a 
memory 2 channel with erasure. More precisely, we have the output of a linear filter Y_i = X_{i} - X_{i-1} 
which is then transmitted over an erasure channel. It is observed, by plotting the corresponding EXIT 
curves, that the symmetric information capacity is achieved by considering spatially coupled codes. This 
phenomena also extends to the dicode AWGN channel, where in we transmit the output of the linear filter 
over an AWGN channel. 
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which is then transmitted over an erasure channel. It is observed, by plotting the corresponding EXIT 
curves, that the symmetric information capacity is achieved by considering spatially coupled codes. This 
phenomena also extends to the dicode AWGN channel, where in we transmit the output of the linear filter 
over an AWGN channel. 
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The spatial coupling principle has been applied to many other fundamental problems. We list here only a 
handful of them which show the manifestation of the threshold saturation phenomena in different 
problems. We apologize for any papers we have left out.
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The spatial coupling principle has been applied to many other fundamental problems. We list here only a 
handful of them which show the manifestation of the threshold saturation phenomena in different 
problems. We apologize for not able to list all of them due to space constraints. 
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Compressive Sensing
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In this case we consider the problem of compressive sensing. This is a classical problem in signal 
processing and deals with the situation when there is a system of noisy linear measurements where the 
number of measurements is less than the ambient dimension of the signal which is measured. Of course it 
is not possible to recover the original signal in general in such a case, but if we impose some suitable 
structure on the signal it becomes feasible. The most common constraint on the signal is that it is sparse 
in some basis. Above, A denotes the measurement matrix, x the ambient signal which is sparse, with 
sparsity k < n, and y is the measurement vector of length m. Further, w is the AWG noise. Clearly, for a 
recovery of any sort, m >= k. We consider the regime where m, n, k go to infinity with m/n = delta and k/n 
= epsilon both constant. In this case, one is interested to known the phase transition or the tradeoff 
between delta (undersampling ratio) and the sparsity (epsilon). It is clear that the larger the sparsity, the 
larger is the required number of measurements for robust recovery. Here, robust means that the noise 
which is present in the observation enters the estimate only in a bounded fashion.
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Traditionally compressive sensing deals with the design and analysis when one wants to recover all 
signals with a given sparsity. This is a strong recovery condition and one can consider a slightly weaker 
condition where one considers a prior distribution on the signal with sparsity constraint of epsilon. It was 
shown recently by Wu and Verdu, that the minimum number of measurements, under optimal decoding, 
required to robustly recover a signal with distribution f_X(x) is equal to n*d(f_X(x)), where d(f_X(x)) is the 
information dimension associated to the distribution d(f_X(x)). For the case of sparse signals with sparsity 
eps, d(f_X(x)) <= eps. Thus the optimal sparsity-undersampling tradeoff is given by a 45º line. However, 
this is achieved under optimal decoding and a priori this is computationally expensive. 
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Recently, it was shown that in fact spatial coupling can be used to design measurement matrices which 
can achieve the optimal undersampling-sparsity tradeoff using a low-complexity message-passing 
decoder. The basic idea is very similar to the coding case. In coding, we have at the boundary of the code 
additional knowledge. This knowledge makes it easier to decode bits close to the boundary. This effect 
then propagates  along the chain of the code through the coupled structure. In the papers by Krzakala et 
al. and Donoho et al., the authors construct a measurement matrix ensemble which is “lifted” from a base 
matrix as shown in the slides. This base matrix has the property that at the boundary there are more 
measurements. I.e., one can have an undersampling ratio which is much larger than the target one. 
However, these are small compared to the total measurements and thus asymptotically the undersampling 
ratio is not affected. Now the large number of measurements at the boundary help “kickstart” the 
decoding process even when we are very close to the optimal delta-eps tradeoff curve. Then the coupling 
structure again helps to decode the rest of the signal. 
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ratio is not affected. Now the large number of measurements at the boundary help “kickstart” the 
decoding process even when we are very close to the optimal delta-eps tradeoff curve. Then the coupling 
structure again helps to decode the rest of the signal. 

Compressive Sensing and Coupling
[Kudekar, Pfister, ‘10] [Krzakala, Mezard, Sausset, Sun, Zdeborova, ‘12] [Donoho, Javanmard, Montanari, ‘12]

coupling 
structure will 

then take over{
�

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌅

1
...
1

1
...
1

0

0

0...

0

0

21Saturday, July 13, 13

Recently, it was shown that in fact spatial coupling can be used to design measurement matrices which 
can achieve the optimal undersampling-sparsity tradeoff using a low-complexity message-passing 
decoder. The basic idea is very similar to the coding case. In coding, we have at the boundary of the code 
additional knowledge. This knowledge makes it easier to decode bits close to the boundary. This effect 
then propagates  along the chain of the code through the coupled structure. In the papers by Krzakala et 
al. and Donoho et al., the authors construct a measurement matrix ensemble which is “lifted” from a base 
matrix as shown in the slides. This base matrix has the property that at the boundary there are more 
measurements. I.e., one can have an undersampling ratio which is much larger than the target one. 
However, these are small compared to the total measurements and thus asymptotically the undersampling 
ratio is not affected. Now the large number of measurements at the boundary help “kickstart” the 
decoding process even when we are very close to the optimal delta-eps tradeoff curve. Then the coupling 
structure again helps to decode the rest of the signal. 

Compressive Sensing and Coupling
[Kudekar, Pfister, ‘10] [Krzakala, Mezard, Sausset, Sun, Zdeborova, ‘12] [Donoho, Javanmard, Montanari, ‘12]

�

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌅

1
...
1

1
...
1

0

0

0...

0

0

21Saturday, July 13, 13

Recently, it was shown that in fact spatial coupling can be used to design measurement matrices which 
can achieve the optimal undersampling-sparsity tradeoff using a low-complexity message-passing 
decoder. The basic idea is very similar to the coding case. In coding, we have at the boundary of the code 
additional knowledge. This knowledge makes it easier to decode bits close to the boundary. This effect 
then propagates  along the chain of the code through the coupled structure. In the papers by Krzakala et 
al. and Donoho et al., the authors construct a measurement matrix ensemble which is “lifted” from a base 
matrix as shown in the slides. This base matrix has the property that at the boundary there are more 
measurements. I.e., one can have an undersampling ratio which is much larger than the target one. 
However, these are small compared to the total measurements and thus asymptotically the undersampling 
ratio is not affected. Now the large number of measurements at the boundary help “kickstart” the 
decoding process even when we are very close to the optimal delta-eps tradeoff curve. Then the coupling 
structure again helps to decode the rest of the signal. 



Compressive Sensing and Coupling
[Kudekar, Pfister, ‘10] [Krzakala, Mezard, Sausset, Sun, Zdeborova, ‘12] [Donoho, Javanmard, Montanari, ‘12]

�

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌅

1
...
1

1
...
1

0

0

0...

0

0

21Saturday, July 13, 13

Recently, it was shown that in fact spatial coupling can be used to design measurement matrices which 
can achieve the optimal undersampling-sparsity tradeoff using a low-complexity message-passing 
decoder. The basic idea is very similar to the coding case. In coding, we have at the boundary of the code 
additional knowledge. This knowledge makes it easier to decode bits close to the boundary. This effect 
then propagates  along the chain of the code through the coupled structure. In the papers by Krzakala et 
al. and Donoho et al., the authors construct a measurement matrix ensemble which is “lifted” from a base 
matrix as shown in the slides. This base matrix has the property that at the boundary there are more 
measurements. I.e., one can have an undersampling ratio which is much larger than the target one. 
However, these are small compared to the total measurements and thus asymptotically the undersampling 
ratio is not affected. Now the large number of measurements at the boundary help “kickstart” the 
decoding process even when we are very close to the optimal delta-eps tradeoff curve. Then the coupling 
structure again helps to decode the rest of the signal. 

Compressive Sensing and Coupling
[Kudekar, Pfister, ‘10] [Krzakala, Mezard, Sausset, Sun, Zdeborova, ‘12] [Donoho, Javanmard, Montanari, ‘12]

�

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌅

1
...
1

1
...
1

0

0

0...

0

0
+

21Saturday, July 13, 13

Recently, it was shown that in fact spatial coupling can be used to design measurement matrices which 
can achieve the optimal undersampling-sparsity tradeoff using a low-complexity message-passing 
decoder. The basic idea is very similar to the coding case. In coding, we have at the boundary of the code 
additional knowledge. This knowledge makes it easier to decode bits close to the boundary. This effect 
then propagates  along the chain of the code through the coupled structure. In the papers by Krzakala et 
al. and Donoho et al., the authors construct a measurement matrix ensemble which is “lifted” from a base 
matrix as shown in the slides. This base matrix has the property that at the boundary there are more 
measurements. I.e., one can have an undersampling ratio which is much larger than the target one. 
However, these are small compared to the total measurements and thus asymptotically the undersampling 
ratio is not affected. Now the large number of measurements at the boundary help “kickstart” the 
decoding process even when we are very close to the optimal delta-eps tradeoff curve. Then the coupling 
structure again helps to decode the rest of the signal. 

Compressive Sensing and Coupling
[Kudekar, Pfister, ‘10] [Krzakala, Mezard, Sausset, Sun, Zdeborova, ‘12] [Donoho, Javanmard, Montanari, ‘12]

Approximate Message 
Passing (AMP) decoder

�

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌅

1
...
1

1
...
1

0

0

0...

0

0
+

21Saturday, July 13, 13

Recently, it was shown that in fact spatial coupling can be used to design measurement matrices which 
can achieve the optimal undersampling-sparsity tradeoff using a low-complexity message-passing 
decoder. The basic idea is very similar to the coding case. In coding, we have at the boundary of the code 
additional knowledge. This knowledge makes it easier to decode bits close to the boundary. This effect 
then propagates  along the chain of the code through the coupled structure. In the papers by Krzakala et 
al. and Donoho et al., the authors construct a measurement matrix ensemble which is “lifted” from a base 
matrix as shown in the slides. This base matrix has the property that at the boundary there are more 
measurements. I.e., one can have an undersampling ratio which is much larger than the target one. 
However, these are small compared to the total measurements and thus asymptotically the undersampling 
ratio is not affected. Now the large number of measurements at the boundary help “kickstart” the 
decoding process even when we are very close to the optimal delta-eps tradeoff curve. Then the coupling 
structure again helps to decode the rest of the signal. 

Compressive Sensing and Coupling
[Kudekar, Pfister, ‘10] [Krzakala, Mezard, Sausset, Sun, Zdeborova, ‘12] [Donoho, Javanmard, Montanari, ‘12]

21Saturday, July 13, 13

Recently, it was shown that in fact spatial coupling can be used to design measurement matrices which 
can achieve the optimal undersampling-sparsity tradeoff using a low-complexity message-passing 
decoder. The basic idea is very similar to the coding case. In coding, we have at the boundary of the code 
additional knowledge. This knowledge makes it easier to decode bits close to the boundary. This effect 
then propagates  along the chain of the code through the coupled structure. In the papers by Krzakala et 
al. and Donoho et al., the authors construct a measurement matrix ensemble which is “lifted” from a base 
matrix as shown in the slides. This base matrix has the property that at the boundary there are more 
measurements. I.e., one can have an undersampling ratio which is much larger than the target one. 
However, these are small compared to the total measurements and thus asymptotically the undersampling 
ratio is not affected. Now the large number of measurements at the boundary help “kickstart” the 
decoding process even when we are very close to the optimal delta-eps tradeoff curve. Then the coupling 
structure again helps to decode the rest of the signal. 



Compressive Sensing and Coupling
[Kudekar, Pfister, ‘10] [Krzakala, Mezard, Sausset, Sun, Zdeborova, ‘12] [Donoho, Javanmard, Montanari, ‘12]

[Figure from 
Javanmard et al ]

21Saturday, July 13, 13

Recently, it was shown that in fact spatial coupling can be used to design measurement matrices which 
can achieve the optimal undersampling-sparsity tradeoff using a low-complexity message-passing 
decoder. The basic idea is very similar to the coding case. In coding, we have at the boundary of the code 
additional knowledge. This knowledge makes it easier to decode bits close to the boundary. This effect 
then propagates  along the chain of the code through the coupled structure. In the papers by Krzakala et 
al. and Donoho et al., the authors construct a measurement matrix ensemble which is “lifted” from a base 
matrix as shown in the slides. This base matrix has the property that at the boundary there are more 
measurements. I.e., one can have an undersampling ratio which is much larger than the target one. 
However, these are small compared to the total measurements and thus asymptotically the undersampling 
ratio is not affected. Now the large number of measurements at the boundary help “kickstart” the 
decoding process even when we are very close to the optimal delta-eps tradeoff curve. Then the coupling 
structure again helps to decode the rest of the signal. 

Compressive Sensing and Coupling
[Kudekar, Pfister, ‘10] [Krzakala, Mezard, Sausset, Sun, Zdeborova, ‘12] [Donoho, Javanmard, Montanari, ‘12]

References

[Figure from 
Javanmard et al ]

21Saturday, July 13, 13

Recently, it was shown that in fact spatial coupling can be used to design measurement matrices which 
can achieve the optimal undersampling-sparsity tradeoff using a low-complexity message-passing 
decoder. The basic idea is very similar to the coding case. In coding, we have at the boundary of the code 
additional knowledge. This knowledge makes it easier to decode bits close to the boundary. This effect 
then propagates  along the chain of the code through the coupled structure. In the papers by Krzakala et 
al. and Donoho et al., the authors construct a measurement matrix ensemble which is “lifted” from a base 
matrix as shown in the slides. This base matrix has the property that at the boundary there are more 
measurements. I.e., one can have an undersampling ratio which is much larger than the target one. 
However, these are small compared to the total measurements and thus asymptotically the undersampling 
ratio is not affected. Now the large number of measurements at the boundary help “kickstart” the 
decoding process even when we are very close to the optimal delta-eps tradeoff curve. Then the coupling 
structure again helps to decode the rest of the signal. 

Compressive Sensing and Coupling
[Kudekar, Pfister, ‘10] [Krzakala, Mezard, Sausset, Sun, Zdeborova, ‘12] [Donoho, Javanmard, Montanari, ‘12]

References

[Figure from 
Javanmard et al ]

21Saturday, July 13, 13

Recently, it was shown that in fact spatial coupling can be used to design measurement matrices which 
can achieve the optimal undersampling-sparsity tradeoff using a low-complexity message-passing 
decoder. The basic idea is very similar to the coding case. In coding, we have at the boundary of the code 
additional knowledge. This knowledge makes it easier to decode bits close to the boundary. This effect 
then propagates  along the chain of the code through the coupled structure. In the papers by Krzakala et 
al. and Donoho et al., the authors construct a measurement matrix ensemble which is “lifted” from a base 
matrix as shown in the slides. This base matrix has the property that at the boundary there are more 
measurements. I.e., one can have an undersampling ratio which is much larger than the target one. 
However, these are small compared to the total measurements and thus asymptotically the undersampling 
ratio is not affected. Now the large number of measurements at the boundary help “kickstart” the 
decoding process even when we are very close to the optimal delta-eps tradeoff curve. Then the coupling 
structure again helps to decode the rest of the signal. 

Compressive Sensing and Coupling
[Kudekar, Pfister, ‘10] [Krzakala, Mezard, Sausset, Sun, Zdeborova, ‘12] [Donoho, Javanmard, Montanari, ‘12]

References

[Figure from 
Javanmard et al ]

21Saturday, July 13, 13

Recently, it was shown that in fact spatial coupling can be used to design measurement matrices which 
can achieve the optimal undersampling-sparsity tradeoff using a low-complexity message-passing 
decoder. The basic idea is very similar to the coding case. In coding, we have at the boundary of the code 
additional knowledge. This knowledge makes it easier to decode bits close to the boundary. This effect 
then propagates  along the chain of the code through the coupled structure. In the papers by Krzakala et 
al. and Donoho et al., the authors construct a measurement matrix ensemble which is “lifted” from a base 
matrix as shown in the slides. This base matrix has the property that at the boundary there are more 
measurements. I.e., one can have an undersampling ratio which is much larger than the target one. 
However, these are small compared to the total measurements and thus asymptotically the undersampling 
ratio is not affected. Now the large number of measurements at the boundary help “kickstart” the 
decoding process even when we are very close to the optimal delta-eps tradeoff curve. Then the coupling 
structure again helps to decode the rest of the signal. 



Compressive Sensing and Coupling
[Kudekar, Pfister, ‘10] [Krzakala, Mezard, Sausset, Sun, Zdeborova, ‘12] [Donoho, Javanmard, Montanari, ‘12]

References

[Figure from 
Javanmard et al ]

21Saturday, July 13, 13

Recently, it was shown that in fact spatial coupling can be used to design measurement matrices which 
can achieve the optimal undersampling-sparsity tradeoff using a low-complexity message-passing 
decoder. The basic idea is very similar to the coding case. In coding, we have at the boundary of the code 
additional knowledge. This knowledge makes it easier to decode bits close to the boundary. This effect 
then propagates  along the chain of the code through the coupled structure. In the papers by Krzakala et 
al. and Donoho et al., the authors construct a measurement matrix ensemble which is “lifted” from a base 
matrix as shown in the slides. This base matrix has the property that at the boundary there are more 
measurements. I.e., one can have an undersampling ratio which is much larger than the target one. 
However, these are small compared to the total measurements and thus asymptotically the undersampling 
ratio is not affected. Now the large number of measurements at the boundary help “kickstart” the 
decoding process even when we are very close to the optimal delta-eps tradeoff curve. Then the coupling 
structure again helps to decode the rest of the signal. 

Compressive Sensing and Coupling
[Kudekar, Pfister, ‘10] [Krzakala, Mezard, Sausset, Sun, Zdeborova, ‘12] [Donoho, Javanmard, Montanari, ‘12]

References

[Figure from 
Javanmard et al ]

21Saturday, July 13, 13

Recently, it was shown that in fact spatial coupling can be used to design measurement matrices which 
can achieve the optimal undersampling-sparsity tradeoff using a low-complexity message-passing 
decoder. The basic idea is very similar to the coding case. In coding, we have at the boundary of the code 
additional knowledge. This knowledge makes it easier to decode bits close to the boundary. This effect 
then propagates  along the chain of the code through the coupled structure. In the papers by Krzakala et 
al. and Donoho et al., the authors construct a measurement matrix ensemble which is “lifted” from a base 
matrix as shown in the slides. This base matrix has the property that at the boundary there are more 
measurements. I.e., one can have an undersampling ratio which is much larger than the target one. 
However, these are small compared to the total measurements and thus asymptotically the undersampling 
ratio is not affected. Now the large number of measurements at the boundary help “kickstart” the 
decoding process even when we are very close to the optimal delta-eps tradeoff curve. Then the coupling 
structure again helps to decode the rest of the signal. 

Compressive Sensing and Coupling
[Kudekar, Pfister, ‘10] [Krzakala, Mezard, Sausset, Sun, Zdeborova, ‘12] [Donoho, Javanmard, Montanari, ‘12]

References

[Figure from 
Javanmard et al ]

21Saturday, July 13, 13

Recently, it was shown that in fact spatial coupling can be used to design measurement matrices which 
can achieve the optimal undersampling-sparsity tradeoff using a low-complexity message-passing 
decoder. The basic idea is very similar to the coding case. In coding, we have at the boundary of the code 
additional knowledge. This knowledge makes it easier to decode bits close to the boundary. This effect 
then propagates  along the chain of the code through the coupled structure. In the papers by Krzakala et 
al. and Donoho et al., the authors construct a measurement matrix ensemble which is “lifted” from a base 
matrix as shown in the slides. This base matrix has the property that at the boundary there are more 
measurements. I.e., one can have an undersampling ratio which is much larger than the target one. 
However, these are small compared to the total measurements and thus asymptotically the undersampling 
ratio is not affected. Now the large number of measurements at the boundary help “kickstart” the 
decoding process even when we are very close to the optimal delta-eps tradeoff curve. Then the coupling 
structure again helps to decode the rest of the signal. 

Compressive Sensing - Proof of Threshold 
Saturation 

Proof based on:

State evolution (evolution of the MSE under AMP) 
+ Continuum analysis + Potential function analysis
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A proof of the threshold saturation phenomena was provided recently. This proof independently developed 
the continuum and the potential function analysis to prove the threshold saturation phenomena for the 
compressive sensing problem. 



K-Satisfiability -- Setup
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Suppose that we are given a set of n Boolean variables {x1, . . . , xn}. Each variable xi can take on the values 0 and 1, where 0 
means “false” and 1 means “true”. We define a literal to be either a variable xi or its negation x ̄i. A clause is a disjunction of literals, 
e.g., C = x1 ∨ x2 ∨ x 3̄ where the operator “∨” denotes the Boolean “or” operator. An assignment is an assignment of values to the 
Boolean variables, e.g., x1 = 0, x2 = 1, and x3 = 0. Such an assignment will either make a clause satisfy or not satisfy. For 
example the clause x1 ∨ x2 ∨ x 3̄ with assignment x1 = 0, x2 = 1, and x3 = 0 evaluates to 1 which is satisfied. A SAT formula is a 
conjunction of a set of clauses. For example, F which is defined as F=(x1∨x2∨x ̄3)∧(x2∨x ̄4)∧x3 is a SAT formula. Given a SAT 
formula F, we associate to it a bipartite graph G. The vertices of the graph are V ∪ C, where V = {x1,...,xn} are the Boolean 
variables and C = {c1,...,cM} are the M clauses. There is an edge between xi and cj if and only if xi or x ̄i is contained in the clause 
cj. Further we draw a “solid line” if cj contains xi and a “dashed line” if cj contains x ̄i. In the slide above such a factor graph is 
shown. We talk about a K-SAT formula if each clause contains exactly K Boolean variables and we talk about random K-SAT 
formulas if we pick formulas from an ensemble. We define the ensembles of formulas, call it F(n,K,M), by showing how to sample 

from it. To this end, pick M clauses independently, where each clause is chosen uniformly at random from the n choose k times 2k 
possible clauses. Then form F as the conjunction of these M clauses. Now let us consider the following experiment. Fix K ≥ 3 (e.g., 
K = 3) and sample from the F(n,K,M) ensemble. Is such a formula satisfiable with high probability? It turns out that the most 
important parameter that effects the answer is α = M/n .

 

K-Satisfiability -- Effect of Spatial Coupling

As for coding we can construct spatially coupled 
K-SAT formulas and we can show that for many 
algorithms the threshold of M/n up to which one 
can find satisfiable assignments is improved. 

Combining this with the interpolation technique 
this can be used to prove better lower bounds on 
the SAT/UNSAT thresholds of uncoupled formulas.
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Some more ...
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Part III: Practical Aspects and Open Questions 
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As shown previously, to achieve the capacity, coupled codes must have longer and longer chains. This 
implies large blocklengths which in turn implies large latency and decoding complexity. In order to retain 
the attractive performance of spatially coupled codes and have low latency and decoding complexity at 
the same time, it was proposed in “Windowed Decoding of Spatially Coupled Codes”, Iyengar, Siegel, 
Urbanke, Wolf, to use a windowed decoder. In this scheme, decoding is only carried out within a window 
that covers a portion of the chain smaller than the total length. Once the probability of error in that window 
has been brought down to the desired level, the window is shifted one section of the coupled code to the 
right and the decoding is performed again. It is also shown that the threshold of the windowed decoder, 
now defined as the channel value below which one can attain a target error rate, approaches exponentially 
fast in the window size to the threshold of the traditional BP decoder. In the waterfall region, the traditional 
BP complexity scales as O(ML2), where recall that M is the size of the “lift”. For windowed decoder of size 
W, the complexity is O(MW2L). Thus for W < sqrt(L), the complexity is lower for the windowed decoder. 
Also, once the error rate in a window is brought down to the desired level, the decoder could output the 
target symbols. Thus the latency is reduced to W/L fraction of the BP decoder latency. We remark that 
sliding windowed decoder was essentially introduced in the original paper by Felstrom and Zigangirov, ‘99. 
It was called there as “pipe-lined” decoding. This was further analyzed in the paper by Lentmaier et al.
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One of the main reasons for the remarkable performance of the spatially coupled ensemble is the 
boundary effect. At the boundary, one has better error protection via smaller degree check nodes. This, 
however, also introduces a rate-loss. If one desires to construct a code for a particular target rate, the 
boundary causes the overall rate of the code to be slightly smaller. This is quantified in the slide above. We 
have also seen that if there is no termination, then the threshold does not saturate. It is thus desirable to 
saturate the threshold and at the same time reduce the rate-loss. Notice that as the length of the chain 
increases, the rate-loss can be made arbitrarily small.  
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In this slide we see an example of rate-loss from coupling (dl, dr) regular LDPC code ensemble. The rate is 
dl(dr-1)/(L dr) less than the design rate. It is clear that the rate-loss goes to zero as L becomes large. 
However, increasing L causes the blocklength to increase. Hence, in practical systems it would be 
desirable to reduce this rate-loss.
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There are several ways to reduce the rate-loss. It is also an interesting open question as to what the 
fundamental limits are for the rate-loss. We will present few techniques to reduce the rate-loss. Several 
such rate-loss mitigation techniques are presented in the article, “Threshold Saturation on BMS Channels 
via Spatial Coupling”, Kudekar, Richardson, Urbanke, 2010. One technique which we will not mention here 
is to think of the circular ensemble, wherein instead of the chain we have coupled codes arranged in a 
circle. It is not hard to see that the original coupled code along a chain is obtained by setting the 
appropriate consecutive bits in the circular ensemble to be known. This is equivalent to transmitting these 
bits over a BEC(0). Instead, we consider a scheme in which the “boundary” bits are not transmitted over 
BEC(0), but over some BEC(e) where e is close to zero. As a result we reduce the rate-loss. It is shown 
that even if we do not set the boundary bits to be perfectly known, the “wave” is still generated, and the 
threshold still saturates. Of course, this can be done only for e < e*, above which there is degradation in 
the threshold. 
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It is observed that termination is not needed on both the sides of the coupled code. Termination or the 
boundary is only required at one side. As a consequence, the check nodes at the, say, right boundary can 
be combined to reduce the number of check nodes. Note that in this process, the degrees of the resultant 
check nodes increases. It is not hard to see that this leads to an immediate reduction of the rate-loss by 
half as is seen in the example above. 
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It is observed that termination is not needed on both the sides of the coupled code. Termination or the 
boundary is only required at one side. As a consequence, the check nodes at the, say, right boundary can 
be combined to reduce the number of check nodes. Note that in this process, the degrees of the resultant 
check nodes increases. It is not hard to see that this leads to an immediate reduction of the rate-loss by 
half as is seen in the example above. 

Mitigation of rate-loss: Deletion 
[Kasai et. al. ITW 2012]
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Rather than merging the check nodes at the right boundary, one can delete the check nodes. This 
reduces the number of check nodes and again reduces the rate-loss. Note that with the deletion of the 
check nodes we introduce variable nodes of lesser degrees. However, it is still observed, (see “Efficient 
Termination of Spatially-Coupled Codes”, Tazoe, Kasai and Sakaniwa, 2012) that the “wave” which begins 
at the left boundary travels all the way through to the right. A nice consequence of this technique is that 
the rate-loss is independent of the degrees. As shown in the slide, the rate loss just depends on the ratio 
dl/dr and not on the constituent degrees as the previous method did. 
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If we want to design good spatially coupled codes for a given blocklength and given requirements on their 
error probability and decoding complexity, we need to understand how the error probability depends on 
the various parameters. The finite-length scaling approach which was originally introduced in the coding 
literature in the realm of LDPC codes by Montanari is a very useful tool in this approach. Although there is 
currently no rigorous proof, simulations as well as reasonable “calculations” suggest a scaling law of the 
form as written above, where delta is the gap to capacity and where the parameters like alpha, beta, or 
kappa can be determined analytically. Note that, roughly speaking, this scaling law says that spatially 
coupled codes scale like the underlying codes of the same blocklength as the size of each component 
code and that in addition we pay a moderate multiplicative penality which grows linearly in the length of 
the chain.

Finite-Length Scaling (BEC)
[Olmos, Urbanke, 2012]
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If we want to design good spatially coupled codes for a given blocklength and given requirements on their 
error probability and decoding complexity, we need to understand how the error probability depends on 
the various parameters. The finite-length scaling approach which was originally introduced in the coding 
literature in the realm of LDPC codes by Montanari is a very useful tool in this approach. Although there is 
currently no rigorous proof, simulations as well as reasonable “calculations” suggest a scaling law of the 
form as written above, where delta is the gap to capacity and where the parameters like alpha, beta, or 
kappa can be determined analytically. Note that, roughly speaking, this scaling law says that spatially 
coupled codes scale like the underlying codes of the same blocklength as the size of each component 
code and that in addition we pay a moderate multiplicative penality which grows linearly in the length of 
the chain.

Many more...
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Further reducing the rate-loss and complexity of decoding is an important research area currently and 
there are several papers on this subject. The list is in no way exhaustive. We apologize for all omissions.



Open Questions

1. Simplify, simplify, simplify, ..., 
2. Spatial coupling as a proof technique (Maxwell 
conjecture, better bounds on K-SAT threshold, etc.)
3. Rate loss mitigation, other ways of introducing 
“boundary effect”? Derive fundamental lower bounds on 
the rate-loss.
4. Find systematic ways of designing codes (finite-length 
scaling, determine wave speed, ...).
5. Further applications.
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Coupling and Nucleation of Crystals

38
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One particularly insightful description why spatial coupling works was given by Krzakala, Mezard, Sausset, Sun, and Zdeborova. 
The threshold saturation phenomenon is equivalent to the nucleation phenomenon in physics. Nucleation explains amongst other 
things how crystals grow, starting with a seed or nucleus. In the video above this phenomenon is explained by looking at 
supercooled water. We thank Luis Salamanca for pointing out this particular YouTube video. Let us quickly explain what it shows. 
Assume we take a very clean container and very clean water. We can then put it into a freezer for several hours and cool it below 0 
degree Celsius. If we leave it in the freezer for too long it will simply freeze, but if we keep it there only for a few hours there is a 
good chance that it will still be liquid despite the fact that it has a temperature below 0. The reason for this is that this supercooled 
water is in a metastable state. In this metastable state the supercooled water is not in the lowest energy state but in order to get 
to this state it needs a small seed or nucleus in order to start the crystalization process. If left alone for a long period, there is a 
high chance that a suitable crystal seed forms at some spot just by pure chance and if this seed is large enough the crystalization 
process will sweep throughout the container. But the expected time it takes for a crystal seed to form without external influence is 
sufficiently large that we can observe water in this supercooled form. Why does the crystal have to be large enough. In order for a 
small seed to grow there are two energy terms at work. First, since the crystal represents a lower form of energy, we gain by 
expanding an initial seed in size. This effect scales like the volume. On the other hand, we have to enlarge the boundary region 
between the crystal seed and the not yet crystalized water outside. This costs energy. This effect grows like the surface area. If the 
crystal is large enough the volume wins out and the crystal grows. But there is a critical volume below which the seed would 
simply collapse again.

The above phenomenon is exactly what happens for spatially coupled ensembles. Think of coding. The extra information provided 
at the boundary is the seed. If this is sufficiently large then the decoding wave sweeps through the structure and the decoder 
reaches the lower energy state, which corresponds to MAP decoding.

Main Message
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Main Message

Coupled ensembles under BP decoding behave 
like uncoupled ensembles under MAP decoding. 

Since coupled ensemble achieve the highest threshold they can 
achieve (namely the MAP threshold) under BP we speak of the 
threshold saturation phenomenon. 

By using spatial coupling we can construct codes which are 
capacity-achieving universally across the whole set of BMS 
channels. 

The basic principle is applicable to a wide range of graphical models.

The phenomenon of threshold saturation is closely connected to the 
way of how crystals grow.
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