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Part II: Three ways of characterizing ✏Area
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Before we discuss how the threshold saturation phenomenon can be proved(,) let us discuss three 
alternative ways of how the area threshold can be characterized. For coding and transmission over the 
BEC these three characterizations are equivalent, but each adds some important facet. Further, depending 
on your background, some methods might seem more natural to you than others.

The Maxwell Characterization

4Saturday, July 13, 13

One way to characterize the area threshold is by means of the Maxwell construction. This is the historically 
oldest approach and indeed the reason why the threshold is called the area threshold (since it is 
characterized by an area). This construction was introduced several years ago in the context of uncoupled 
ensembles with the aim of finding the MAP threshold of uncoupled codes. As it turns out, this threshold is 
also the BP threshold of coupled ensembles. Interestingly, originally when the Maxwell construction was 
introduced the the area threshold was defined, it was only possible to show that this threshold was an 
upper bound on the MAP threshold of uncoupled ensembles. But now, using the idea of coupling, it has 
recently been made possible to prove that the area threshold is equal to the MAP threshold. We start by 
explaining the construction and how it defines the area threshold. Only later on will we get back and 
explain how this construction relates to the MAP threshold.
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Recall the BP EXIT curve from Part I and how it characterizes the BP threshold of the uncoupled 
ensemble: The BP threshold is the largest channel value for which the EXIT curve is equal to zero. For the 
(3,6) regular LDPC ensemble shown above, the BP threshold is ≈ 0.4299. 

The Maxwell Construction and the Area Threshold
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We define the area threshold, and denote it by ɛArea, as that channel value for which the area under the BP 
EXIT curve is equal to the design rate. For our running example of the (3,6) regular ensemble, the area 
threshold is equal to 0.48818, so it is considerably larger than the BP threshold. Also note that by 
construction the area threshold is always lower than the Shannon threshold since the EXIT curve is upper 
bounded by 1 and so the area threshold is by construction always below 1-rate.
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We define the area threshold, and denote it by ɛArea, as that channel value for which the area under the BP 
EXIT curve is equal to the design rate. For our running example of the (3,6) regular ensemble, the area 
threshold is equal to 0.48818, so it is considerably larger than the BP threshold. Also note that by 
construction the area threshold is always lower than the Shannon threshold since the EXIT curve is upper 
bounded by 1 and so the area threshold is by construction always below 1-rate.

Why is this called the Maxwell construction?
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At this point it is probably not clear why the Maxwell construction is called that. So let us explain the origin 
of the name in the next few slides.



A Simple Area Calculation 
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Let us provide another way of computing the area threshold from the BP EXIT curve. This method actually 
turns out to be useful in providing an operational interpretation of the area threshold (see “Maxwell 
Construction: The Hidden Bridge between Iterative and Maximum a Posterior Decoding”, Measson, 
Montanari, Urbanke, 2005). We start with a simple calculation. Look at the EXIT curve. This curve looks 
like the ‘C’ shaped curve shown in slides. Let us integrate the area under this curve. A simple calculation 
shows that this area is equal to the rate of the code. 
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Combining this observation with the original definition of the area threshold it is not hard to see that at the 
area threshold the two areas shown in dark gray are equal. This means, an equivalent definition of the area 
threshold is to say that it is that point where a vertical line makes the two areas in dark gray to be of equal 
size. How does this interpretation explain the name? The reason for this name is that this construction is 
very similar in nature to the original Maxwell construction which was introduced by Maxwell to “correct” the 
equation of state of a gas proposed by van der Waals. This is also essentially what happens for coding. 
The EXIT curve is our equation of state and equivalent to the van der Waals equation. After we correct it we 
get the “actual equation of state” which for our case is the curve which characterizes the MAP decoder. 
For a more detailed explanation, please have a look at Chapter 15 in http://ipg.epfl.ch/lib/exe/fetch.php?
media=en:courses:doctoral_courses_2012-2013:statphys.pdf

As we will see, this curve also characterizes the BP behavior of the coupled system.
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area threshold the two areas shown in dark gray are equal. This means, an equivalent definition of the area 
threshold is to say that it is that point where a vertical line makes the two areas in dark gray to be of equal 
size. How does this interpretation explain the name? The reason for this name is that this construction is 
very similar in nature to the original Maxwell construction which was introduced by Maxwell to “correct” the 
equation of state of a gas proposed by van der Waals. This is also essentially what happens for coding. 
The EXIT curve is our equation of state and equivalent to the van der Waals equation. After we correct it we 
get the “actual equation of state” which for our case is the curve which characterizes the MAP decoder. 
For a more detailed explanation, please have a look at Chapter 15 in http://ipg.epfl.ch/lib/exe/fetch.php?
media=en:courses:doctoral_courses_2012-2013:statphys.pdf

As we will see, this curve also characterizes the BP behavior of the coupled system.

EXIT Curves for Coupled Ensembles
and the Threshold Saturation Phenomenon
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The sequence of plots above shows the EXIT curves for increasing chain lengths L. For very small L, the 
rate loss, is substantial and the effective rate is very small. Hence the EXIT curve is much further to the 
“right.” But for larger and large L, the rate converges to the rate of the underlying ensemble (which in this 
case is the (3, 6) ensemble). Nevertheless we see that the EXIT curves do not converge to the EXIT curve 
of the underlying ensemble but follow the Maxwell construction.

EXIT Curves for Coupled Ensembles
and the Threshold Saturation Phenomenon

EXIT curves
for increasing
chain lengths L

1
2L + 1

L�

i=�L

(
1
w

w�1�

j=0

yi+j)dl

10Saturday, July 13, 13

The sequence of plots above shows the EXIT curves for increasing chain lengths L. For very small L, the 
rate loss, is substantial and the effective rate is very small. Hence the EXIT curve is much further to the 
“right.” But for larger and large L, the rate converges to the rate of the underlying ensemble (which in this 
case is the (3, 6) ensemble). Nevertheless we see that the EXIT curves do not converge to the EXIT curve 
of the underlying ensemble but follow the Maxwell construction.

EXIT Curves for Coupled Ensembles
and the Threshold Saturation Phenomenon

EXIT curves
for increasing
chain lengths L

1
2L + 1

L�

i=�L

(
1
w

w�1�

j=0

yi+j)dl

10Saturday, July 13, 13

The sequence of plots above shows the EXIT curves for increasing chain lengths L. For very small L, the 
rate loss, is substantial and the effective rate is very small. Hence the EXIT curve is much further to the 
“right.” But for larger and large L, the rate converges to the rate of the underlying ensemble (which in this 
case is the (3, 6) ensemble). Nevertheless we see that the EXIT curves do not converge to the EXIT curve 
of the underlying ensemble but follow the Maxwell construction.



The EXIT Chart Characterization
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The second characterization is in terms of EXIT charts. EXIT charts were introduced by S. ten Brink as a 
convenient way of visualizing DE. For transmission over the BEC the EXIT chart method is equivalent to 
DE and so it is exact. For general channels it is no longer exact but still gives a nice and important 
engineering insight into the problem and typically the predicted thresholds are good approximations. A 
small word of warning: EXIT charts and EXIT curves which we introduced previously are quite different 
objects despite their similar name. So it is important not to confuse the two. For the EXIT charts visualize 
the actions of the two operations of the iterative decoder, whereas the EXIT curve represents the behavior 
of the overall code. The reason both objects have the word “EXIT” in there is that in both cases we 
measure the same thing, but once we make local measurements (EXIT charts), whereas in the other case 
we measure the global behavior (EXIT curve).

DE and EXIT Charts
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The idea of EXIT functions is that we plot the two component functions in a square in such a way that the 
points of DE appear like a “staircase” bound by these two component functions. In this way we 
immediately see the following. The DE points converge to zero if and only if the two curve do not cross. 
Further, it is not hard to see that we have a “good” system if they two curves are as closely matched as 
possible. Indeed, if we could match them over the whole range we would have designed a capacity-
achieving code. This is called the “matching” condition.
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points of DE appear like a “staircase” bound by these two component functions. In this way we 
immediately see the following. The DE points converge to zero if and only if the two curve do not cross. 
Further, it is not hard to see that we have a “good” system if they two curves are as closely matched as 
possible. Indeed, if we could match them over the whole range we would have designed a capacity-
achieving code. This is called the “matching” condition.
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The idea of EXIT functions is that we plot the two component functions in a square in such a way that the 
points of DE appear like a “staircase” bound by these two component functions. In this way we 
immediately see the following. The DE points converge to zero if and only if the two curve do not cross. 
Further, it is not hard to see that we have a “good” system if they two curves are as closely matched as 
possible. Indeed, if we could match them over the whole range we would have designed a capacity-
achieving code. This is called the “matching” condition.
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The idea of EXIT functions is that we plot the two component functions in a square in such a way that the 
points of DE appear like a “staircase” bound by these two component functions. In this way we 
immediately see the following. The DE points converge to zero if and only if the two curve do not cross. 
Further, it is not hard to see that we have a “good” system if they two curves are as closely matched as 
possible. Indeed, if we could match them over the whole range we would have designed a capacity-
achieving code. This is called the “matching” condition.
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The idea of EXIT functions is that we plot the two component functions in a square in such a way that the 
points of DE appear like a “staircase” bound by these two component functions. In this way we 
immediately see the following. The DE points converge to zero if and only if the two curve do not cross. 
Further, it is not hard to see that we have a “good” system if they two curves are as closely matched as 
possible. Indeed, if we could match them over the whole range we would have designed a capacity-
achieving code. This is called the “matching” condition.
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The idea of EXIT functions is that we plot the two component functions in a square in such a way that the 
points of DE appear like a “staircase” bound by these two component functions. In this way we 
immediately see the following. The DE points converge to zero if and only if the two curve do not cross. 
Further, it is not hard to see that we have a “good” system if they two curves are as closely matched as 
possible. Indeed, if we could match them over the whole range we would have designed a capacity-
achieving code. This is called the “matching” condition.
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The idea of EXIT functions is that we plot the two component functions in a square in such a way that the 
points of DE appear like a “staircase” bound by these two component functions. In this way we 
immediately see the following. The DE points converge to zero if and only if the two curve do not cross. 
Further, it is not hard to see that we have a “good” system if they two curves are as closely matched as 
possible. Indeed, if we could match them over the whole range we would have designed a capacity-
achieving code. This is called the “matching” condition.
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The idea of EXIT functions is that we plot the two component functions in a square in such a way that the 
points of DE appear like a “staircase” bound by these two component functions. In this way we 
immediately see the following. The DE points converge to zero if and only if the two curve do not cross. 
Further, it is not hard to see that we have a “good” system if they two curves are as closely matched as 
possible. Indeed, if we could match them over the whole range we would have designed a capacity-
achieving code. This is called the “matching” condition.

Thresholds -- Uncoupled versus Coupled
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If you like EXIT functions then the following is probably the nicest pictorial description of how to determine 
the threshold under spatial coupling. If we look at the uncoupled case then we know that the threshold is 
given by that channel parameter so that the two EXIT curves describing the action at the check and 
variable nodes just touch but do not cross. If we go to coupled systems this criterion is relaxed. The two 
EXIT curves are now allowed to cross but not by too much. Indeed, the threshold is given a balance of 
areas. Note that one can show that this condition for the threshold is EXACTLY the same as the 
matching of areas condition which we had for the Maxwell construction. So this is not a new 
condition. It is the same condition but represented graphically in a different way.
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If you like EXIT functions then the following is probably the nicest pictorial description of how to determine 
the threshold under spatial coupling. If we look at the uncoupled case then we know that the threshold is 
given by that channel parameter so that the two EXIT curves describing the action at the check and 
variable nodes just touch but do not cross. If we go to coupled systems this criterion is relaxed. The two 
EXIT curves are now allowed to cross but not by too much. Indeed, the threshold is given a balance of 
areas. Note that one can show that this condition for the threshold is EXACTLY the same as the 
matching of areas condition which we had for the Maxwell construction. So this is not a new 
condition. It is the same condition but represented graphically in a different way.

The Potential Function Characterization
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Let us now discuss the third way of characterizing the threshold for spatially coupled systems. Again, it 
gives exactly the same condition, even though this might not be completely obvious at first sight. Several 
groups of authors have suggested a potential function approach to the problem. Our notation will follow 
the lead of Yedla, Jian, Nguyen, and Pfister. 
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U(x, ✏) =

Z
x

0
(z � ✏�(1� ⇢(1� z)))⇢0(1� z)dz
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Asking that the potential function is increasing for all x>=0 (and the chosen value of eps) is equivalent to 
asking that the DE recursions will converge to 0. So the characterization of the BP threshold in terms of 
the potential function is quite straightforward.
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Asking that the potential function is increasing for all x>=0 (and the chosen value of eps) is equivalent to 
asking that the DE recursions will converge to 0. So the characterization of the BP threshold in terms of 
the potential function is quite straightforward.
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Asking that the potential function is increasing for all x>=0 (and the chosen value of eps) is equivalent to 
asking that the DE recursions will converge to 0. So the characterization of the BP threshold in terms of 
the potential function is quite straightforward.
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Asking that the potential function is increasing for all x>=0 (and the chosen value of eps) is equivalent to 
asking that the DE recursions will converge to 0. So the characterization of the BP threshold in terms of 
the potential function is quite straightforward.
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Asking that the potential function is increasing for all x>=0 (and the chosen value of eps) is equivalent to 
asking that the DE recursions will converge to 0. So the characterization of the BP threshold in terms of 
the potential function is quite straightforward.
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Asking that the potential function is increasing for all x>=0 (and the chosen value of eps) is equivalent to 
asking that the DE recursions will converge to 0. So the characterization of the BP threshold in terms of 
the potential function is quite straightforward.
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Asking that the potential function is increasing for all x>=0 (and the chosen value of eps) is equivalent to 
asking that the DE recursions will converge to 0. So the characterization of the BP threshold in terms of 
the potential function is quite straightforward.
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For the area threshold we are picking the largest eps value so that the potential function is positive for all 
x>=0. The picture above explains why this is exactly the same as the balance of area condition which we 
previously saw for the EXIT functions. Let us go over the argument in detail. We want U(x, eps) to be non-
negative. Clearly we only have to check this condition at all extreme points of U(x, eps), i.e., at all those 
points x so that U’(x, eps) is equal to zero. But at these points we see from the definition of the potential 
function that x and eps are related by the DE equation, i.e., x is a FP of DE for parameter eps. This means 
that in the EXIT picture below the gray box indicates exactly the FP of DE and for this corner point of this 
gray box x and y are related by the DE equations. We can now interpret the three terms of the explicit 
evaluation of U above as areas in this figure and the condition that U is non-negative implies that the left-
most of the two enclosed areas must be no smaller than the right-most one. This is exactly the condition 
we saw previously.
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For the area threshold we are picking the largest eps value so that the potential function is positive for all 
x>=0. The picture above explains why this is exactly the same as the balance of area condition which we 
previously saw for the EXIT functions. Let us go over the argument in detail. We want U(x, eps) to be non-
negative. Clearly we only have to check this condition at all extreme points of U(x, eps), i.e., at all those 
points x so that U’(x, eps) is equal to zero. But at these points we see from the definition of the potential 
function that x and eps are related by the DE equation, i.e., x is a FP of DE for parameter eps. This means 
that in the EXIT picture below the gray box indicates exactly the FP of DE and for this corner point of this 
gray box x and y are related by the DE equations. We can now interpret the three terms of the explicit 
evaluation of U above as areas in this figure and the condition that U is non-negative implies that the left-
most of the two enclosed areas must be no smaller than the right-most one. This is exactly the condition 
we saw previously.
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For the area threshold we are picking the largest eps value so that the potential function is positive for all 
x>=0. The picture above explains why this is exactly the same as the balance of area condition which we 
previously saw for the EXIT functions. Let us go over the argument in detail. We want U(x, eps) to be non-
negative. Clearly we only have to check this condition at all extreme points of U(x, eps), i.e., at all those 
points x so that U’(x, eps) is equal to zero. But at these points we see from the definition of the potential 
function that x and eps are related by the DE equation, i.e., x is a FP of DE for parameter eps. This means 
that in the EXIT picture below the gray box indicates exactly the FP of DE and for this corner point of this 
gray box x and y are related by the DE equations. We can now interpret the three terms of the explicit 
evaluation of U above as areas in this figure and the condition that U is non-negative implies that the left-
most of the two enclosed areas must be no smaller than the right-most one. This is exactly the condition 
we saw previously.
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For the area threshold we are picking the largest eps value so that the potential function is positive for all 
x>=0. The picture above explains why this is exactly the same as the balance of area condition which we 
previously saw for the EXIT functions. Let us go over the argument in detail. We want U(x, eps) to be non-
negative. Clearly we only have to check this condition at all extreme points of U(x, eps), i.e., at all those 
points x so that U’(x, eps) is equal to zero. But at these points we see from the definition of the potential 
function that x and eps are related by the DE equation, i.e., x is a FP of DE for parameter eps. This means 
that in the EXIT picture below the gray box indicates exactly the FP of DE and for this corner point of this 
gray box x and y are related by the DE equations. We can now interpret the three terms of the explicit 
evaluation of U above as areas in this figure and the condition that U is non-negative implies that the left-
most of the two enclosed areas must be no smaller than the right-most one. This is exactly the condition 
we saw previously.
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Claim: this is exactly the same condition as 
requiring that the two areas are in balance as we 

have seen this for the EXIT curves

Note: Asking that U(x, eps)>=0 (where eps is fixed) 
is the same as asking that the minimum of U(x, eps) 

is above 0. But at the minimum we have U’(x, 
eps)=0 and so eps and x form FP of DE.

IF x and eps form a FP of DE: gray area
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For the area threshold we are picking the largest eps value so that the potential function is positive for all 
x>=0. The picture above explains why this is exactly the same as the balance of area condition which we 
previously saw for the EXIT functions. Let us go over the argument in detail. We want U(x, eps) to be non-
negative. Clearly we only have to check this condition at all extreme points of U(x, eps), i.e., at all those 
points x so that U’(x, eps) is equal to zero. But at these points we see from the definition of the potential 
function that x and eps are related by the DE equation, i.e., x is a FP of DE for parameter eps. This means 
that in the EXIT picture below the gray box indicates exactly the FP of DE and for this corner point of this 
gray box x and y are related by the DE equations. We can now interpret the three terms of the explicit 
evaluation of U above as areas in this figure and the condition that U is non-negative implies that the left-
most of the two enclosed areas must be no smaller than the right-most one. This is exactly the condition 
we saw previously.
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For the area threshold we are picking the largest eps value so that the potential function is positive for all 
x>=0. The picture above explains why this is exactly the same as the balance of area condition which we 
previously saw for the EXIT functions. Let us go over the argument in detail. We want U(x, eps) to be non-
negative. Clearly we only have to check this condition at all extreme points of U(x, eps), i.e., at all those 
points x so that U’(x, eps) is equal to zero. But at these points we see from the definition of the potential 
function that x and eps are related by the DE equation, i.e., x is a FP of DE for parameter eps. This means 
that in the EXIT picture below the gray box indicates exactly the FP of DE and for this corner point of this 
gray box x and y are related by the DE equations. We can now interpret the three terms of the explicit 
evaluation of U above as areas in this figure and the condition that U is non-negative implies that the left-
most of the two enclosed areas must be no smaller than the right-most one. This is exactly the condition 
we saw previously.
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Claim: this is exactly the same condition as 
requiring that the two areas are in balance as we 

have seen this for the EXIT curves

Note: Asking that U(x, eps)>=0 (where eps is fixed) 
is the same as asking that the minimum of U(x, eps) 

is above 0. But at the minimum we have U’(x, 
eps)=0 and so eps and x form FP of DE.
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For the area threshold we are picking the largest eps value so that the potential function is positive for all 
x>=0. The picture above explains why this is exactly the same as the balance of area condition which we 
previously saw for the EXIT functions. Let us go over the argument in detail. We want U(x, eps) to be non-
negative. Clearly we only have to check this condition at all extreme points of U(x, eps), i.e., at all those 
points x so that U’(x, eps) is equal to zero. But at these points we see from the definition of the potential 
function that x and eps are related by the DE equation, i.e., x is a FP of DE for parameter eps. This means 
that in the EXIT picture below the gray box indicates exactly the FP of DE and for this corner point of this 
gray box x and y are related by the DE equations. We can now interpret the three terms of the explicit 
evaluation of U above as areas in this figure and the condition that U is non-negative implies that the left-
most of the two enclosed areas must be no smaller than the right-most one. This is exactly the condition 
we saw previously.
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have seen this for the EXIT curves

Note: Asking that U(x, eps)>=0 (where eps is fixed) 
is the same as asking that the minimum of U(x, eps) 

is above 0. But at the minimum we have U’(x, 
eps)=0 and so eps and x form FP of DE.

IF x and eps form a FP of DE:
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For the area threshold we are picking the largest eps value so that the potential function is positive for all 
x>=0. The picture above explains why this is exactly the same as the balance of area condition which we 
previously saw for the EXIT functions. Let us go over the argument in detail. We want U(x, eps) to be non-
negative. Clearly we only have to check this condition at all extreme points of U(x, eps), i.e., at all those 
points x so that U’(x, eps) is equal to zero. But at these points we see from the definition of the potential 
function that x and eps are related by the DE equation, i.e., x is a FP of DE for parameter eps. This means 
that in the EXIT picture below the gray box indicates exactly the FP of DE and for this corner point of this 
gray box x and y are related by the DE equations. We can now interpret the three terms of the explicit 
evaluation of U above as areas in this figure and the condition that U is non-negative implies that the left-
most of the two enclosed areas must be no smaller than the right-most one. This is exactly the condition 
we saw previously.

Potential Function
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Think of the height of the curve as an ``energy.’’
The BP solution is at the first local minimum from the right.

The globally best solution is at the global minimum. 
The correct solution is at zero.
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We can think of the height of the potential function as an “energy” which the system can take on. The 
system starts on the right and tries to minimize its energy. It gets stuck in the first local minimum counted 
from the right. So if the curve is not increasing then we get stuck in the wrong point. This determines the 
BP threshold. If the curve ever dips below zero then the global minimum is no longer the one at 0. This 
determines the area threshold.

Why three approaches?
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Historically, it is the first criterion. Also, it 
looks exactly the same when we extend to 
general BMS channels. Nice connections
to the original Maxwell construction and 
the starting point to determine the MAP 
threshold of a code.

EXIT charts are widely used in the 
coding and  communications literature 
already. Exact for the BEC and often 
good approximation for general cases.

Leads to the currently simplest known proof 
of the threshold saturation phenomenon for 
1D coupled systems. Can be extended to 
general systems, but of course no longer 
has this nice and simple graphical 
interpretation.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.005

0.010

0.015

0.020

0.025

0.030

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.005

0.010

0.015

0.020

0.025

0.030

✏Area = 0.48818

✏BP = 0.42944

0.0 0.2 0.4 0.6 0.8 1.0
eps

0.2

0.4

0.6

0.8

1.0
x

�A
re

a

19Saturday, July 13, 13

Why do we show three different criteria here? For the case we consider, namely coding and transmission 
over the BEC, the three criteria are all equivalent and one would suffice. The reason for nevertheless 
showing all three is that they each have their advantage. The Maxwell construction has nice 
connections to problems in statistical physics (where the original Maxwell construction comes from) and 
the picture is exactly the same (although the proofs are more complicated) if we consider transmission 
over general BMS channels. Further, it strongly suggests that the area threshold is also the MAP threshold 
of the underlying ensemble. Indeed, that this is true has recently been shown by Giurgiu, Macris and 
Urbanke, http://arxiv.org/pdf/1301.5676.pdf. The EXIT chart approach might be the most familiar. In 
particular, EXIT charts and the matching condition are frequently used to analyze systems exactly which 
have a one-dimensional state or to approximately model more general systems (e.g., Gaussian 
approximation). So for any such system, if we replace the matching condition with the area balance 
condition then we get the equivalent criterion for coupled systems. If the original state is one dimensional 
then this criterion is exact, otherwise it is an approximation in the same way as the matching condition for 
EXIT charts is an approximation for uncoupled systems. Finally, the potential function approach leads 
to the currently simplest known proof for one dimensional systems. It can be extended to systems whose 
state is no longer a scalar but a vector and even to infinite-dimensional systems. E.g., if we want to deal 
with general BMS channels then the state of the system is no longer a scalar 



The connection between the area and the MAP threshold.
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Originally the area threshold was not introduced to study spatially coupled codes but to determine the 
MAP threshold of uncoupled codes. Let us quickly explain this connection in some more detail.

Maxwell Construction and MAP Threshold

For the BEC it was shown that

�MAP = �Area

and the area threshold is an upper bound on the MAP threshold 
for all BMS channels.
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It was also shown in “Maxwell Construction: The Hidden Bridge between Iterative and Maximum a 
Posterior Decoding”, Measson, Montanari, Urbanke, 2005, that ɛMAP is equal to ɛArea  for the BEC and that 
the area threshold is always an upper bound on the MAP threshold for the general case. One can find a 
proof (for the BEC case) also in the book Modern Coding Theory, Theorem 3.121 on page 126. Thus  one 
can obtain the ɛMAP from the balancing of areas as shown in the slides. This gives a very simple tool for 
computing a seemingly difficult quantity, the MAP threshold.  It was conjectured that this is also true for 
general BMS channels. In a recent work “Spatial Coupling as a Proof Technique”, Giurgiu, Macris, 
Urbanke,  http://arxiv.org/pdf/1301.5676.pdf, it was shown that this is indeed true and the proof technique 
involved using spatially coupled codes!

Proof Outline 

�
ɛArea

n ! 1

r � 1

n
H(X | Y (✏Area))

=
1

n
H(X | Y (1))� 1

n
H(X | Y (✏Area))

=

Z 1

✏Area

dH(X | Y (✏))

nd✏
d✏

=

Z 1

✏Area

nX

i=1

@H(X | Y (✏))

n@✏i
d✏

=

Z 1

✏Area

nX

i=1

@[H(Xi | Y (✏)) +H(X⇠i | Xi, Y⇠i)]

@✏i
d✏

=

Z 1

✏Area

nX

i=1

@H(Xi | Y (✏))

n@✏i
d✏

=

Z 1

✏Area

nX

i=1

@H(Xi | Yi(✏i), Y⇠i(✏))

n@✏i
d✏

=

Z 1

✏Area

1

n

nX

i=1

H(Xi | Y⇠i(✏))d✏


Z 1

✏Area

EXIT(✏)d✏

=r

22Saturday, July 13, 13

Let us quickly show how to prove that the area threshold is an upper bound on the MAP threshold. We 
focus on the BEC to keep things simple. 
As the sequence of inequalities shows, when n tends to infinity, then the integral under the EXIT curve is 
an upper bound on the 1-r-1/n H(X | Y(ɛArea)). If we cancel r from both sides we see that 1/n H(X | Y(ɛArea)) is 
strictly positive above the area threshold. So if the conditional entropy is positive for this channel 
parameter, then no decoder can hope to find the transmitted codeword reliably, not even then MAP 
decoder. In other words, ɛArea is  an upper bound on ɛMAP.
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Why do we show three different criteria here? For the case we consider, namely coding and transmission 
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of the underlying ensemble. Indeed, that this is true has recently been shown by Giurgiu, Macris and 
Urbanke, http://arxiv.org/pdf/1301.5676.pdf. The EXIT chart approach might be the most familiar. In 
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then this criterion is exact, otherwise it is an approximation in the same way as the matching condition for 
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