
Spatial Coupling and the Threshold Saturation
Phenomenon

Shrinivas Kudekar
Qualcomm Research

Ruediger Urbanke
EPFL

July 7th, 2013

1Saturday, July 13, 13

https://dl.dropbox.com/u/2826733/ISIT%202013%20Tutorial.m4v

The latest version of these slides (Keynote and PDF)
can be found at

https://ipg.epfl.ch/doku.php?id=en:publications:scc_tutorial

2Saturday, July 13, 13

Part I: All we know about iterative coding we learnt
by looking at the BEC

3Saturday, July 13, 13

In part I and II we will talk exclusively about the binary erasure channel (BEC). This will avoid having to deal
with technicalities. But we will present things in a way that all statements stay valid for the general case
(general binary-input memoryless output-symmetric (BMS) channels).

Uncoupled Codes

4Saturday, July 13, 13

Let us start by looking at the simplest case, namely regular LDPC codes, and how to analyze them.

Introduction - Graphical Codes

x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
x15
x16
x17
x18
x19
x20

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

x6 + x7 + x10 + x20 = 0

x4 + x9 + x13 + x14 + x20 = 0

rate� rdesign =
#variables�#checks

#variables
=

20� 10

20
=

1

2

rate⇠ rdesign

Low-density Parity-Check (LDPC) Codes

variable
nodes

check
nodes

dr(= 6)dl(= 3)

5Saturday, July 13, 13

It was shown by Miller and Cohen (The rate of regular LDPC Codes, IEEE Trans. IT, 49, 2003, pp.
2989--2992), that with high probability the rate of a randomly chosen regular code is very close to this
lower bound. See also page 81 in MCT (Modern Coding Theory). By regular code here we mean a code
where all variables have degree lets say dl and all check nodes have degree, lets say dr.

Ensemble of Codes - Configuration Construction

1
2
3

4
5
6

7
8
9

10
11
12

7
8
9

1
2
3

10
11
12

4
5
6

each configuration
has uniform
probability

code is sampled u.a.r.
from the ensemble

and used for transmission

(3, 6) ensemble

6Saturday, July 13, 13

The configuration model is a very convenient way of defining the ensemble since it is trivial to sample from
this ensemble. All we need is to create a sample uniformly at random from the set of permutations on E
letters, where E is the number of edges. But note that in this definition two distinct permutations can
create the “same graph” once we delete the labels of the sockets. In other words, the probability
distribution when we delete socket labels is no longer uniform. A further advantage of using the
configuration model is that it leads to a simple analysis.

Ensemble of Codes - Configuration Construction

1
2
3

4
5
6

7
8
9

10
11
12

7
8
9

1
2
3

10
11
12

4
5
6

each configuration
has uniform
probability

code is sampled u.a.r.
from the ensemble

and used for transmission

(3, 6) ensemble

6Saturday, July 13, 13

The configuration model is a very convenient way of defining the ensemble since it is trivial to sample from
this ensemble. All we need is to create a sample uniformly at random from the set of permutations on E
letters, where E is the number of edges. But note that in this definition two distinct permutations can
create the “same graph” once we delete the labels of the sockets. In other words, the probability
distribution when we delete socket labels is no longer uniform. A further advantage of using the
configuration model is that it leads to a simple analysis.

Ensemble of Codes - Protograph Construction

7Saturday, July 13, 13

Protographs have two advantages. First, they are a convenient and compact way of specifying graphical
codes. Second, the additional structure can be useful if we want to implement codes in practice.

Ensemble of Codes - Protograph Construction

8Saturday, July 13, 13

In order to create a “real” graph from a protograph we “lift” it. This means that we make M copies, where
M is typically in the order of hundreds or thousands. In the example above we chose M=5. We then
connect these copies by permuting the edges in each “edge bundle” by means of a permutation chosen
uniformly at random.

Ensemble of Codes - Protograph Construction

8Saturday, July 13, 13

In order to create a “real” graph from a protograph we “lift” it. This means that we make M copies, where
M is typically in the order of hundreds or thousands. In the example above we chose M=5. We then
connect these copies by permuting the edges in each “edge bundle” by means of a permutation chosen
uniformly at random.

Ensemble of Codes - Protograph Construction

8Saturday, July 13, 13

In order to create a “real” graph from a protograph we “lift” it. This means that we make M copies, where
M is typically in the order of hundreds or thousands. In the example above we chose M=5. We then
connect these copies by permuting the edges in each “edge bundle” by means of a permutation chosen
uniformly at random.

Ensemble of Codes - Protograph Construction

8Saturday, July 13, 13

In order to create a “real” graph from a protograph we “lift” it. This means that we make M copies, where
M is typically in the order of hundreds or thousands. In the example above we chose M=5. We then
connect these copies by permuting the edges in each “edge bundle” by means of a permutation chosen
uniformly at random.

Ensemble of Codes - Protograph Construction

M-cover
where M=5

8Saturday, July 13, 13

In order to create a “real” graph from a protograph we “lift” it. This means that we make M copies, where
M is typically in the order of hundreds or thousands. In the example above we chose M=5. We then
connect these copies by permuting the edges in each “edge bundle” by means of a permutation chosen
uniformly at random.

Ensemble of Codes - Protograph Construction

edge bundle

9Saturday, July 13, 13

By “edge bundle” we mean here a set of “like” edges. I.e., edges which connect the same variable node
and the same check node in each protograph. In the slide above a particular edge bundle is indicated in
red.

Ensemble of Codes - Protograph Construction

random
permutation

10Saturday, July 13, 13

We now permute the edges in this edge bundle. We do the same thing for each edge bundle. Note that
strictly speaking the ensemble created in this way is different from the ensemble created by the
configuration model. But for the asymptotic analysis (density evolution -- see subsequent slides) the two
models are equivalent.

Ensemble of Codes - Protograph Construction

random
permutation

10Saturday, July 13, 13

We now permute the edges in this edge bundle. We do the same thing for each edge bundle. Note that
strictly speaking the ensemble created in this way is different from the ensemble created by the
configuration model. But for the asymptotic analysis (density evolution -- see subsequent slides) the two
models are equivalent.

Ensemble of Codes - Protograph Construction

random
permutation

10Saturday, July 13, 13

We now permute the edges in this edge bundle. We do the same thing for each edge bundle. Note that
strictly speaking the ensemble created in this way is different from the ensemble created by the
configuration model. But for the asymptotic analysis (density evolution -- see subsequent slides) the two
models are equivalent.

Ensemble of Codes - Protograph Construction

random
permutation

10Saturday, July 13, 13

We now permute the edges in this edge bundle. We do the same thing for each edge bundle. Note that
strictly speaking the ensemble created in this way is different from the ensemble created by the
configuration model. But for the asymptotic analysis (density evolution -- see subsequent slides) the two
models are equivalent.

Ensemble of Codes - Protograph Construction

random
permutation

10Saturday, July 13, 13

We now permute the edges in this edge bundle. We do the same thing for each edge bundle. Note that
strictly speaking the ensemble created in this way is different from the ensemble created by the
configuration model. But for the asymptotic analysis (density evolution -- see subsequent slides) the two
models are equivalent.

Ensemble of Codes - Protograph Construction

random
permutation

10Saturday, July 13, 13

We now permute the edges in this edge bundle. We do the same thing for each edge bundle. Note that
strictly speaking the ensemble created in this way is different from the ensemble created by the
configuration model. But for the asymptotic analysis (density evolution -- see subsequent slides) the two
models are equivalent.

Ensemble of Codes - Protograph Construction

random
permutation

same for other
edge bundels

10Saturday, July 13, 13

We now permute the edges in this edge bundle. We do the same thing for each edge bundle. Note that
strictly speaking the ensemble created in this way is different from the ensemble created by the
configuration model. But for the asymptotic analysis (density evolution -- see subsequent slides) the two
models are equivalent.

 Bit MAP Decoder to Belief Propagation Decoder

x̂

MAP
i

= argmax

xi2{±1}p(Xi

= x

i

| y)

= argmax

xi2{±1}
X

xi

⇣Y

j

p(y

j

| x
j

)

⌘
1{x2C}

11Saturday, July 13, 13

For the BEC, bit MAP decoding could be done by solving a system of linear equations, i.e., in complexity
n3.But we are interested in an algorithm that is applicable for general BMS channels (where MAP decoding
is typically intractable). We therefore only consider a message-passing algorithm which is applicable also in
the general case. More precisely, we consider the sum-product (also called belief-propagation (BP))
algorithm. This algorithm performs bit MAP decoding on codes on graphs whose factor graph is a tree.

 Bit MAP Decoder to Belief Propagation Decoder

Complexity for the BEC O(n3)

x̂

MAP
i

= argmax

xi2{±1}p(Xi

= x

i

| y)

= argmax

xi2{±1}
X

xi

⇣Y

j

p(y

j

| x
j

)

⌘
1{x2C}

11Saturday, July 13, 13

For the BEC, bit MAP decoding could be done by solving a system of linear equations, i.e., in complexity
n3.But we are interested in an algorithm that is applicable for general BMS channels (where MAP decoding
is typically intractable). We therefore only consider a message-passing algorithm which is applicable also in
the general case. More precisely, we consider the sum-product (also called belief-propagation (BP))
algorithm. This algorithm performs bit MAP decoding on codes on graphs whose factor graph is a tree.

 Bit MAP Decoder to Belief Propagation Decoder

Complexity for the BEC O(n3)

HxT = 0T

x̂

MAP
i

= argmax

xi2{±1}p(Xi

= x

i

| y)

= argmax

xi2{±1}
X

xi

⇣Y

j

p(y

j

| x
j

)

⌘
1{x2C}

= 0H

11Saturday, July 13, 13

For the BEC, bit MAP decoding could be done by solving a system of linear equations, i.e., in complexity
n3.But we are interested in an algorithm that is applicable for general BMS channels (where MAP decoding
is typically intractable). We therefore only consider a message-passing algorithm which is applicable also in
the general case. More precisely, we consider the sum-product (also called belief-propagation (BP))
algorithm. This algorithm performs bit MAP decoding on codes on graphs whose factor graph is a tree.

 Bit MAP Decoder to Belief Propagation Decoder

Complexity for the BEC O(n3)

HxT = 0T

x̂

MAP
i

= argmax

xi2{±1}p(Xi

= x

i

| y)

= argmax

xi2{±1}
X

xi

⇣Y

j

p(y

j

| x
j

)

⌘
1{x2C}

= 0

E Ē

11Saturday, July 13, 13

For the BEC, bit MAP decoding could be done by solving a system of linear equations, i.e., in complexity
n3.But we are interested in an algorithm that is applicable for general BMS channels (where MAP decoding
is typically intractable). We therefore only consider a message-passing algorithm which is applicable also in
the general case. More precisely, we consider the sum-product (also called belief-propagation (BP))
algorithm. This algorithm performs bit MAP decoding on codes on graphs whose factor graph is a tree.

 Bit MAP Decoder to Belief Propagation Decoder

Complexity for the BEC O(n3)

HEx
T
E = HĒx

T
Ē

HxT = 0T

x̂

MAP
i

= argmax

xi2{±1}p(Xi

= x

i

| y)

= argmax

xi2{±1}
X

xi

⇣Y

j

p(y

j

| x
j

)

⌘
1{x2C}

= HĒHE

11Saturday, July 13, 13

For the BEC, bit MAP decoding could be done by solving a system of linear equations, i.e., in complexity
n3.But we are interested in an algorithm that is applicable for general BMS channels (where MAP decoding
is typically intractable). We therefore only consider a message-passing algorithm which is applicable also in
the general case. More precisely, we consider the sum-product (also called belief-propagation (BP))
algorithm. This algorithm performs bit MAP decoding on codes on graphs whose factor graph is a tree.

 Bit MAP Decoder to Belief Propagation Decoder

Complexity for the BEC O(n3)

HEx
T
E = HĒx

T
Ē

HEx
T
E = sT

HxT = 0T

x̂

MAP
i

= argmax

xi2{±1}p(Xi

= x

i

| y)

= argmax

xi2{±1}
X

xi

⇣Y

j

p(y

j

| x
j

)

⌘
1{x2C}

= HE

11Saturday, July 13, 13

For the BEC, bit MAP decoding could be done by solving a system of linear equations, i.e., in complexity
n3.But we are interested in an algorithm that is applicable for general BMS channels (where MAP decoding
is typically intractable). We therefore only consider a message-passing algorithm which is applicable also in
the general case. More precisely, we consider the sum-product (also called belief-propagation (BP))
algorithm. This algorithm performs bit MAP decoding on codes on graphs whose factor graph is a tree.

 Bit MAP Decoder to Belief Propagation Decoder

x̂

MAP
i

= argmax

xi2{±1}p(Xi

= x

i

| y)

= argmax

xi2{±1}
X

xi

⇣Y

j

p(y

j

| x
j

)

⌘
1{x2C}

11Saturday, July 13, 13

For the BEC, bit MAP decoding could be done by solving a system of linear equations, i.e., in complexity
n3.But we are interested in an algorithm that is applicable for general BMS channels (where MAP decoding
is typically intractable). We therefore only consider a message-passing algorithm which is applicable also in
the general case. More precisely, we consider the sum-product (also called belief-propagation (BP))
algorithm. This algorithm performs bit MAP decoding on codes on graphs whose factor graph is a tree.

BP Decoder - BEC

0

?

? ?

12Saturday, July 13, 13

Here we see the BP algorithm in action. For the BEC the BP algorithm is particularly simple and performs
a very natural operation. Every time we have a check node so that all but one of its inputs are known, the
BP algorithm uses the relationship implied by this check node to determine the unknown input.

BP Decoder - BEC

0

0

?

?

?

0

?

? ?

12Saturday, July 13, 13

Here we see the BP algorithm in action. For the BEC the BP algorithm is particularly simple and performs
a very natural operation. Every time we have a check node so that all but one of its inputs are known, the
BP algorithm uses the relationship implied by this check node to determine the unknown input.

BP Decoder - BEC

0

0
?

?

?

0

?

? ?

12Saturday, July 13, 13

Here we see the BP algorithm in action. For the BEC the BP algorithm is particularly simple and performs
a very natural operation. Every time we have a check node so that all but one of its inputs are known, the
BP algorithm uses the relationship implied by this check node to determine the unknown input.

BP Decoder - BEC

0

0?

?

?

0

?

? ?

0+?=

12Saturday, July 13, 13

Here we see the BP algorithm in action. For the BEC the BP algorithm is particularly simple and performs
a very natural operation. Every time we have a check node so that all but one of its inputs are known, the
BP algorithm uses the relationship implied by this check node to determine the unknown input.

BP Decoder - BEC

0

0?

?

?

0

?

? ?

0+?=?

12Saturday, July 13, 13

Here we see the BP algorithm in action. For the BEC the BP algorithm is particularly simple and performs
a very natural operation. Every time we have a check node so that all but one of its inputs are known, the
BP algorithm uses the relationship implied by this check node to determine the unknown input.

BP Decoder - BEC

0

0?

?

0

?

? ?

0+?=?
?

12Saturday, July 13, 13

Here we see the BP algorithm in action. For the BEC the BP algorithm is particularly simple and performs
a very natural operation. Every time we have a check node so that all but one of its inputs are known, the
BP algorithm uses the relationship implied by this check node to determine the unknown input.

BP Decoder - BEC

0

0?

?

0

?

? ?

0+?=?
?

0=

12Saturday, July 13, 13

Here we see the BP algorithm in action. For the BEC the BP algorithm is particularly simple and performs
a very natural operation. Every time we have a check node so that all but one of its inputs are known, the
BP algorithm uses the relationship implied by this check node to determine the unknown input.

BP Decoder - BEC

0

0?

?

0

?

? ?

0+?=?
?

0=0

12Saturday, July 13, 13

Here we see the BP algorithm in action. For the BEC the BP algorithm is particularly simple and performs
a very natural operation. Every time we have a check node so that all but one of its inputs are known, the
BP algorithm uses the relationship implied by this check node to determine the unknown input.

BP Decoder - BEC

0

0?

0

?

? ?

0+?=?
?

0 0=0

12Saturday, July 13, 13

Here we see the BP algorithm in action. For the BEC the BP algorithm is particularly simple and performs
a very natural operation. Every time we have a check node so that all but one of its inputs are known, the
BP algorithm uses the relationship implied by this check node to determine the unknown input.

BP Decoder - BEC

0

?

? ?

?

?

?

0

?

12Saturday, July 13, 13

Here we see the BP algorithm in action. For the BEC the BP algorithm is particularly simple and performs
a very natural operation. Every time we have a check node so that all but one of its inputs are known, the
BP algorithm uses the relationship implied by this check node to determine the unknown input.

BP Decoder - BEC

0

?

? ? ?

?

?

0

?

12Saturday, July 13, 13

Here we see the BP algorithm in action. For the BEC the BP algorithm is particularly simple and performs
a very natural operation. Every time we have a check node so that all but one of its inputs are known, the
BP algorithm uses the relationship implied by this check node to determine the unknown input.

BP Decoder - BEC

0

? ?

decoded

?

?

?

0

?
0

12Saturday, July 13, 13

Here we see the BP algorithm in action. For the BEC the BP algorithm is particularly simple and performs
a very natural operation. Every time we have a check node so that all but one of its inputs are known, the
BP algorithm uses the relationship implied by this check node to determine the unknown input.

How does BP perform on the BEC?

13Saturday, July 13, 13

Now where we have defined the class of codes we consider, and the algorithm which we use for
decoding, we proceed to see how this combination performs.

How does BP perform on the BEC?

(3, 6) ensemble

P e
ra

su
re

0.1 0.4 0.5 0.6 0.7 0.8 0.9 1.00.30.20.0

0.
1

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
3

0.
2

0.
0 �

14Saturday, July 13, 13

Here is the experiment we consider. Fix the ensemble. In the above example it is the (3, 6)-regular
ensemble. This will serve as our running example. Now pick very long instances of this ensemble. Pick a
random codeword and transmit over a BEC with erasure probability eps. Run the BP decoder until it no
longer makes any progress. Record the error probability and average over many instances. Plot the
average bit-error probability versus eps. Naturally, as eps decreases the error probability decreases. What
is most interesting is that at some specific point we see a jump of the error probability from a non-zero
value down to zero. This is the BP “threshold.”In the next slides, we will explain how to locate the BP
threshold.

How does BP perform on the BEC?

(3, 6) ensemble

P e
ra

su
re

0.1 0.4 0.5 0.6 0.7 0.8 0.9 1.00.30.20.0

0.
1

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
3

0.
2

0.
0 �

14Saturday, July 13, 13

Here is the experiment we consider. Fix the ensemble. In the above example it is the (3, 6)-regular
ensemble. This will serve as our running example. Now pick very long instances of this ensemble. Pick a
random codeword and transmit over a BEC with erasure probability eps. Run the BP decoder until it no
longer makes any progress. Record the error probability and average over many instances. Plot the
average bit-error probability versus eps. Naturally, as eps decreases the error probability decreases. What
is most interesting is that at some specific point we see a jump of the error probability from a non-zero
value down to zero. This is the BP “threshold.”In the next slides, we will explain how to locate the BP
threshold.

How does BP perform on the BEC?

(3, 6) ensemble

P e
ra

su
re

0.1 0.4 0.5 0.6 0.7 0.8 0.9 1.00.30.20.0

0.
1

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
3

0.
2

0.
0 �

14Saturday, July 13, 13

Here is the experiment we consider. Fix the ensemble. In the above example it is the (3, 6)-regular
ensemble. This will serve as our running example. Now pick very long instances of this ensemble. Pick a
random codeword and transmit over a BEC with erasure probability eps. Run the BP decoder until it no
longer makes any progress. Record the error probability and average over many instances. Plot the
average bit-error probability versus eps. Naturally, as eps decreases the error probability decreases. What
is most interesting is that at some specific point we see a jump of the error probability from a non-zero
value down to zero. This is the BP “threshold.”In the next slides, we will explain how to locate the BP
threshold.

How does BP perform on the BEC?

(3, 6) ensemble

P e
ra

su
re

0.1 0.4 0.5 0.6 0.7 0.8 0.9 1.00.30.20.0

0.
1

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
3

0.
2

0.
0 �

14Saturday, July 13, 13

Here is the experiment we consider. Fix the ensemble. In the above example it is the (3, 6)-regular
ensemble. This will serve as our running example. Now pick very long instances of this ensemble. Pick a
random codeword and transmit over a BEC with erasure probability eps. Run the BP decoder until it no
longer makes any progress. Record the error probability and average over many instances. Plot the
average bit-error probability versus eps. Naturally, as eps decreases the error probability decreases. What
is most interesting is that at some specific point we see a jump of the error probability from a non-zero
value down to zero. This is the BP “threshold.”In the next slides, we will explain how to locate the BP
threshold.

How does BP perform on the BEC?

(3, 6) ensemble

P e
ra

su
re

0.1 0.4 0.5 0.6 0.7 0.8 0.9 1.00.30.20.0

0.
1

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
3

0.
2

0.
0 �

14Saturday, July 13, 13

Here is the experiment we consider. Fix the ensemble. In the above example it is the (3, 6)-regular
ensemble. This will serve as our running example. Now pick very long instances of this ensemble. Pick a
random codeword and transmit over a BEC with erasure probability eps. Run the BP decoder until it no
longer makes any progress. Record the error probability and average over many instances. Plot the
average bit-error probability versus eps. Naturally, as eps decreases the error probability decreases. What
is most interesting is that at some specific point we see a jump of the error probability from a non-zero
value down to zero. This is the BP “threshold.”In the next slides, we will explain how to locate the BP
threshold.

How does BP perform on the BEC?

(3, 6) ensemble

P e
ra

su
re

0.1 0.4 0.5 0.6 0.7 0.8 0.9 1.00.30.20.0

0.
1

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
3

0.
2

0.
0 �

14Saturday, July 13, 13

Here is the experiment we consider. Fix the ensemble. In the above example it is the (3, 6)-regular
ensemble. This will serve as our running example. Now pick very long instances of this ensemble. Pick a
random codeword and transmit over a BEC with erasure probability eps. Run the BP decoder until it no
longer makes any progress. Record the error probability and average over many instances. Plot the
average bit-error probability versus eps. Naturally, as eps decreases the error probability decreases. What
is most interesting is that at some specific point we see a jump of the error probability from a non-zero
value down to zero. This is the BP “threshold.”In the next slides, we will explain how to locate the BP
threshold.

How does BP perform on the BEC?

(3, 6) ensemble

P e
ra

su
re

0.1 0.4 0.5 0.6 0.7 0.8 0.9 1.00.30.20.0

0.
1

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
3

0.
2

0.
0 �

14Saturday, July 13, 13

Here is the experiment we consider. Fix the ensemble. In the above example it is the (3, 6)-regular
ensemble. This will serve as our running example. Now pick very long instances of this ensemble. Pick a
random codeword and transmit over a BEC with erasure probability eps. Run the BP decoder until it no
longer makes any progress. Record the error probability and average over many instances. Plot the
average bit-error probability versus eps. Naturally, as eps decreases the error probability decreases. What
is most interesting is that at some specific point we see a jump of the error probability from a non-zero
value down to zero. This is the BP “threshold.”In the next slides, we will explain how to locate the BP
threshold.

How does BP perform on the BEC?

(3, 6) ensemble

P e
ra

su
re

0.1 0.4 0.5 0.6 0.7 0.8 0.9 1.00.30.20.0

0.
1

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
3

0.
2

0.
0 �

14Saturday, July 13, 13

Here is the experiment we consider. Fix the ensemble. In the above example it is the (3, 6)-regular
ensemble. This will serve as our running example. Now pick very long instances of this ensemble. Pick a
random codeword and transmit over a BEC with erasure probability eps. Run the BP decoder until it no
longer makes any progress. Record the error probability and average over many instances. Plot the
average bit-error probability versus eps. Naturally, as eps decreases the error probability decreases. What
is most interesting is that at some specific point we see a jump of the error probability from a non-zero
value down to zero. This is the BP “threshold.”In the next slides, we will explain how to locate the BP
threshold.

How does BP perform on the BEC?

(3, 6) ensemble

P e
ra

su
re

0.1 0.4 0.5 0.6 0.7 0.8 0.9 1.00.30.20.0

0.
1

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
3

0.
2

0.
0 �

14Saturday, July 13, 13

Here is the experiment we consider. Fix the ensemble. In the above example it is the (3, 6)-regular
ensemble. This will serve as our running example. Now pick very long instances of this ensemble. Pick a
random codeword and transmit over a BEC with erasure probability eps. Run the BP decoder until it no
longer makes any progress. Record the error probability and average over many instances. Plot the
average bit-error probability versus eps. Naturally, as eps decreases the error probability decreases. What
is most interesting is that at some specific point we see a jump of the error probability from a non-zero
value down to zero. This is the BP “threshold.”In the next slides, we will explain how to locate the BP
threshold.

How does BP perform on the BEC?

(3, 6) ensemble

P e
ra

su
re

0.1 0.4 0.5 0.6 0.7 0.8 0.9 1.00.30.20.0

0.
1

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
3

0.
2

0.
0 �

14Saturday, July 13, 13

Here is the experiment we consider. Fix the ensemble. In the above example it is the (3, 6)-regular
ensemble. This will serve as our running example. Now pick very long instances of this ensemble. Pick a
random codeword and transmit over a BEC with erasure probability eps. Run the BP decoder until it no
longer makes any progress. Record the error probability and average over many instances. Plot the
average bit-error probability versus eps. Naturally, as eps decreases the error probability decreases. What
is most interesting is that at some specific point we see a jump of the error probability from a non-zero
value down to zero. This is the BP “threshold.”In the next slides, we will explain how to locate the BP
threshold.

How does BP perform on the BEC?

(3, 6) ensemble

P e
ra

su
re

0.1 0.4 0.5 0.6 0.7 0.8 0.9 1.00.30.20.0

0.
1

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
3

0.
2

0.
0 �

14Saturday, July 13, 13

Here is the experiment we consider. Fix the ensemble. In the above example it is the (3, 6)-regular
ensemble. This will serve as our running example. Now pick very long instances of this ensemble. Pick a
random codeword and transmit over a BEC with erasure probability eps. Run the BP decoder until it no
longer makes any progress. Record the error probability and average over many instances. Plot the
average bit-error probability versus eps. Naturally, as eps decreases the error probability decreases. What
is most interesting is that at some specific point we see a jump of the error probability from a non-zero
value down to zero. This is the BP “threshold.”In the next slides, we will explain how to locate the BP
threshold.

How does BP perform on the BEC?

(3, 6) ensemble

P e
ra

su
re

0.1 0.4 0.5 0.6 0.7 0.8 0.9 1.00.30.20.0

0.
1

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
3

0.
2

0.
0 �

14Saturday, July 13, 13

Here is the experiment we consider. Fix the ensemble. In the above example it is the (3, 6)-regular
ensemble. This will serve as our running example. Now pick very long instances of this ensemble. Pick a
random codeword and transmit over a BEC with erasure probability eps. Run the BP decoder until it no
longer makes any progress. Record the error probability and average over many instances. Plot the
average bit-error probability versus eps. Naturally, as eps decreases the error probability decreases. What
is most interesting is that at some specific point we see a jump of the error probability from a non-zero
value down to zero. This is the BP “threshold.”In the next slides, we will explain how to locate the BP
threshold.

How does BP perform on the BEC?

(3, 6) ensemble

P e
ra

su
re

0.1 0.4 0.5 0.6 0.7 0.8 0.9 1.00.30.20.0

0.
1

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
3

0.
2

0.
0 �

14Saturday, July 13, 13

Here is the experiment we consider. Fix the ensemble. In the above example it is the (3, 6)-regular
ensemble. This will serve as our running example. Now pick very long instances of this ensemble. Pick a
random codeword and transmit over a BEC with erasure probability eps. Run the BP decoder until it no
longer makes any progress. Record the error probability and average over many instances. Plot the
average bit-error probability versus eps. Naturally, as eps decreases the error probability decreases. What
is most interesting is that at some specific point we see a jump of the error probability from a non-zero
value down to zero. This is the BP “threshold.”In the next slides, we will explain how to locate the BP
threshold.

How does BP perform on the BEC?

(3, 6) ensemble

P e
ra

su
re

0.1 0.4 0.5 0.6 0.7 0.8 0.9 1.00.30.20.0

0.
1

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
3

0.
2

0.
0 �

14Saturday, July 13, 13

Here is the experiment we consider. Fix the ensemble. In the above example it is the (3, 6)-regular
ensemble. This will serve as our running example. Now pick very long instances of this ensemble. Pick a
random codeword and transmit over a BEC with erasure probability eps. Run the BP decoder until it no
longer makes any progress. Record the error probability and average over many instances. Plot the
average bit-error probability versus eps. Naturally, as eps decreases the error probability decreases. What
is most interesting is that at some specific point we see a jump of the error probability from a non-zero
value down to zero. This is the BP “threshold.”In the next slides, we will explain how to locate the BP
threshold.

How does BP perform on the BEC?

(3, 6) ensemble

P e
ra

su
re

0.1 0.4 0.5 0.6 0.7 0.8 0.9 1.00.30.20.0

0.
1

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
3

0.
2

0.
0 �

14Saturday, July 13, 13

Here is the experiment we consider. Fix the ensemble. In the above example it is the (3, 6)-regular
ensemble. This will serve as our running example. Now pick very long instances of this ensemble. Pick a
random codeword and transmit over a BEC with erasure probability eps. Run the BP decoder until it no
longer makes any progress. Record the error probability and average over many instances. Plot the
average bit-error probability versus eps. Naturally, as eps decreases the error probability decreases. What
is most interesting is that at some specific point we see a jump of the error probability from a non-zero
value down to zero. This is the BP “threshold.”In the next slides, we will explain how to locate the BP
threshold.

Asymptotic Analysis - Density Evolution (DE)

one iteration
of BP at variable

node

one iteration
of BP at check

node

15Saturday, July 13, 13

Let us analyze how the erasure probability behaves during the decoding process for a large code. We do
this by looking how the erasure probability behaves at each of the two types of the nodes. Consider a (dl,
dr)-regular code, i.e., every variable node has degree dl and and every check node has degree dr.

At the variable node, if there is an incoming message which is not an erasure, then the variable node is
exactly determined. This is because we are transmitting over the BEC and either we have perfect
information or we have absolutely useless information. On the check node side, even if one incoming
message is in erasure, the check node output has no way knowing whether it is 0 or 1 and hence the
outgoing message is an erasure as well. This input/output relation between erasure values is depicted by
the equations above.

Note that in the above equations the erasure probability entering a variable node or check node along the
various edges is the same for each edge. This simplifies the analysis considerably.

Asymptotic Analysis - Density Evolution (DE)

? ? ?

one iteration
of BP at variable

node

one iteration
of BP at check

node

15Saturday, July 13, 13

Let us analyze how the erasure probability behaves during the decoding process for a large code. We do
this by looking how the erasure probability behaves at each of the two types of the nodes. Consider a (dl,
dr)-regular code, i.e., every variable node has degree dl and and every check node has degree dr.

At the variable node, if there is an incoming message which is not an erasure, then the variable node is
exactly determined. This is because we are transmitting over the BEC and either we have perfect
information or we have absolutely useless information. On the check node side, even if one incoming
message is in erasure, the check node output has no way knowing whether it is 0 or 1 and hence the
outgoing message is an erasure as well. This input/output relation between erasure values is depicted by
the equations above.

Note that in the above equations the erasure probability entering a variable node or check node along the
various edges is the same for each edge. This simplifies the analysis considerably.

Asymptotic Analysis - Density Evolution (DE)

? ? ?

?

one iteration
of BP at variable

node

one iteration
of BP at check

node

15Saturday, July 13, 13

Let us analyze how the erasure probability behaves during the decoding process for a large code. We do
this by looking how the erasure probability behaves at each of the two types of the nodes. Consider a (dl,
dr)-regular code, i.e., every variable node has degree dl and and every check node has degree dr.

At the variable node, if there is an incoming message which is not an erasure, then the variable node is
exactly determined. This is because we are transmitting over the BEC and either we have perfect
information or we have absolutely useless information. On the check node side, even if one incoming
message is in erasure, the check node output has no way knowing whether it is 0 or 1 and hence the
outgoing message is an erasure as well. This input/output relation between erasure values is depicted by
the equations above.

Note that in the above equations the erasure probability entering a variable node or check node along the
various edges is the same for each edge. This simplifies the analysis considerably.

Asymptotic Analysis - Density Evolution (DE)

?
y

?
y

?
y

?
channel
erasure
fraction

one iteration
of BP at variable

node

one iteration
of BP at check

node

�

15Saturday, July 13, 13

Let us analyze how the erasure probability behaves during the decoding process for a large code. We do
this by looking how the erasure probability behaves at each of the two types of the nodes. Consider a (dl,
dr)-regular code, i.e., every variable node has degree dl and and every check node has degree dr.

At the variable node, if there is an incoming message which is not an erasure, then the variable node is
exactly determined. This is because we are transmitting over the BEC and either we have perfect
information or we have absolutely useless information. On the check node side, even if one incoming
message is in erasure, the check node output has no way knowing whether it is 0 or 1 and hence the
outgoing message is an erasure as well. This input/output relation between erasure values is depicted by
the equations above.

Note that in the above equations the erasure probability entering a variable node or check node along the
various edges is the same for each edge. This simplifies the analysis considerably.

Asymptotic Analysis - Density Evolution (DE)

?
y

�

?
y

?
y

ydl�1

?
channel
erasure
fraction

one iteration
of BP at variable

node

one iteration
of BP at check

node

�

15Saturday, July 13, 13

Let us analyze how the erasure probability behaves during the decoding process for a large code. We do
this by looking how the erasure probability behaves at each of the two types of the nodes. Consider a (dl,
dr)-regular code, i.e., every variable node has degree dl and and every check node has degree dr.

At the variable node, if there is an incoming message which is not an erasure, then the variable node is
exactly determined. This is because we are transmitting over the BEC and either we have perfect
information or we have absolutely useless information. On the check node side, even if one incoming
message is in erasure, the check node output has no way knowing whether it is 0 or 1 and hence the
outgoing message is an erasure as well. This input/output relation between erasure values is depicted by
the equations above.

Note that in the above equations the erasure probability entering a variable node or check node along the
various edges is the same for each edge. This simplifies the analysis considerably.

Asymptotic Analysis - Density Evolution (DE)

?
y

�

?
y

?
y

ydl�1

? ? ?

?
channel
erasure
fraction

one iteration
of BP at variable

node

one iteration
of BP at check

node

�

15Saturday, July 13, 13

Let us analyze how the erasure probability behaves during the decoding process for a large code. We do
this by looking how the erasure probability behaves at each of the two types of the nodes. Consider a (dl,
dr)-regular code, i.e., every variable node has degree dl and and every check node has degree dr.

At the variable node, if there is an incoming message which is not an erasure, then the variable node is
exactly determined. This is because we are transmitting over the BEC and either we have perfect
information or we have absolutely useless information. On the check node side, even if one incoming
message is in erasure, the check node output has no way knowing whether it is 0 or 1 and hence the
outgoing message is an erasure as well. This input/output relation between erasure values is depicted by
the equations above.

Note that in the above equations the erasure probability entering a variable node or check node along the
various edges is the same for each edge. This simplifies the analysis considerably.

Asymptotic Analysis - Density Evolution (DE)

?
y

�

?
y

?
y

ydl�1

? ? ?

? ?
channel
erasure
fraction

one iteration
of BP at variable

node

one iteration
of BP at check

node

�

15Saturday, July 13, 13

Let us analyze how the erasure probability behaves during the decoding process for a large code. We do
this by looking how the erasure probability behaves at each of the two types of the nodes. Consider a (dl,
dr)-regular code, i.e., every variable node has degree dl and and every check node has degree dr.

At the variable node, if there is an incoming message which is not an erasure, then the variable node is
exactly determined. This is because we are transmitting over the BEC and either we have perfect
information or we have absolutely useless information. On the check node side, even if one incoming
message is in erasure, the check node output has no way knowing whether it is 0 or 1 and hence the
outgoing message is an erasure as well. This input/output relation between erasure values is depicted by
the equations above.

Note that in the above equations the erasure probability entering a variable node or check node along the
various edges is the same for each edge. This simplifies the analysis considerably.

Asymptotic Analysis - Density Evolution (DE)

?
y

�

x
?
y

?
y

ydl�1

?
x
?

x
?

? ?
channel
erasure
fraction

one iteration
of BP at variable

node

one iteration
of BP at check

node

�

15Saturday, July 13, 13

Let us analyze how the erasure probability behaves during the decoding process for a large code. We do
this by looking how the erasure probability behaves at each of the two types of the nodes. Consider a (dl,
dr)-regular code, i.e., every variable node has degree dl and and every check node has degree dr.

At the variable node, if there is an incoming message which is not an erasure, then the variable node is
exactly determined. This is because we are transmitting over the BEC and either we have perfect
information or we have absolutely useless information. On the check node side, even if one incoming
message is in erasure, the check node output has no way knowing whether it is 0 or 1 and hence the
outgoing message is an erasure as well. This input/output relation between erasure values is depicted by
the equations above.

Note that in the above equations the erasure probability entering a variable node or check node along the
various edges is the same for each edge. This simplifies the analysis considerably.

Asymptotic Analysis - Density Evolution (DE)

?
y

�

x
?
y

?
y

ydl�1

?
x
?

x
?

1� (1� x)dr�1

? ?
channel
erasure
fraction

one iteration
of BP at variable

node

one iteration
of BP at check

node

�

15Saturday, July 13, 13

Let us analyze how the erasure probability behaves during the decoding process for a large code. We do
this by looking how the erasure probability behaves at each of the two types of the nodes. Consider a (dl,
dr)-regular code, i.e., every variable node has degree dl and and every check node has degree dr.

At the variable node, if there is an incoming message which is not an erasure, then the variable node is
exactly determined. This is because we are transmitting over the BEC and either we have perfect
information or we have absolutely useless information. On the check node side, even if one incoming
message is in erasure, the check node output has no way knowing whether it is 0 or 1 and hence the
outgoing message is an erasure as well. This input/output relation between erasure values is depicted by
the equations above.

Note that in the above equations the erasure probability entering a variable node or check node along the
various edges is the same for each edge. This simplifies the analysis considerably.

Asymptotic Analysis - Density Evolution (DE)

16Saturday, July 13, 13

So if we perform l iterations we get a sequence of erasure probabilities. This is how Gallager analysed
LDPC codes. Luby et. al. used a somewhat different procedure. In their analysis they look at the so-called
peeling decoder. This decoder is entirely equivalent to the BP decoder (when transmitting over the BEC).
In this decoder, as long as there is a degree-one check node, we use this check node to determine one
more bit and then remove the used check node as well as the determine variable. We then follow the
evolution of the graph. This can be done by writing down a system of differential equations. This method is
called the Wormald method ([“Differential Equations for Random Processes and Random Graphs”, N.
Wormald, Ann. Appl. Probability, Vol. 5, Pg. 1217-1235]).

Asymptotic Analysis - Density Evolution (DE)

16Saturday, July 13, 13

So if we perform l iterations we get a sequence of erasure probabilities. This is how Gallager analysed
LDPC codes. Luby et. al. used a somewhat different procedure. In their analysis they look at the so-called
peeling decoder. This decoder is entirely equivalent to the BP decoder (when transmitting over the BEC).
In this decoder, as long as there is a degree-one check node, we use this check node to determine one
more bit and then remove the used check node as well as the determine variable. We then follow the
evolution of the graph. This can be done by writing down a system of differential equations. This method is
called the Wormald method ([“Differential Equations for Random Processes and Random Graphs”, N.
Wormald, Ann. Appl. Probability, Vol. 5, Pg. 1217-1235]).

Asymptotic Analysis - Density Evolution (DE)

16Saturday, July 13, 13

So if we perform l iterations we get a sequence of erasure probabilities. This is how Gallager analysed
LDPC codes. Luby et. al. used a somewhat different procedure. In their analysis they look at the so-called
peeling decoder. This decoder is entirely equivalent to the BP decoder (when transmitting over the BEC).
In this decoder, as long as there is a degree-one check node, we use this check node to determine one
more bit and then remove the used check node as well as the determine variable. We then follow the
evolution of the graph. This can be done by writing down a system of differential equations. This method is
called the Wormald method ([“Differential Equations for Random Processes and Random Graphs”, N.
Wormald, Ann. Appl. Probability, Vol. 5, Pg. 1217-1235]).

Asymptotic Analysis - Density Evolution (DE)

x

(`=0) = ✏

16Saturday, July 13, 13

So if we perform l iterations we get a sequence of erasure probabilities. This is how Gallager analysed
LDPC codes. Luby et. al. used a somewhat different procedure. In their analysis they look at the so-called
peeling decoder. This decoder is entirely equivalent to the BP decoder (when transmitting over the BEC).
In this decoder, as long as there is a degree-one check node, we use this check node to determine one
more bit and then remove the used check node as well as the determine variable. We then follow the
evolution of the graph. This can be done by writing down a system of differential equations. This method is
called the Wormald method ([“Differential Equations for Random Processes and Random Graphs”, N.
Wormald, Ann. Appl. Probability, Vol. 5, Pg. 1217-1235]).

Asymptotic Analysis - Density Evolution (DE)

y

(`=1) = 1� (1� x

(`=0))dr�1

x

(`=0) = ✏

16Saturday, July 13, 13

So if we perform l iterations we get a sequence of erasure probabilities. This is how Gallager analysed
LDPC codes. Luby et. al. used a somewhat different procedure. In their analysis they look at the so-called
peeling decoder. This decoder is entirely equivalent to the BP decoder (when transmitting over the BEC).
In this decoder, as long as there is a degree-one check node, we use this check node to determine one
more bit and then remove the used check node as well as the determine variable. We then follow the
evolution of the graph. This can be done by writing down a system of differential equations. This method is
called the Wormald method ([“Differential Equations for Random Processes and Random Graphs”, N.
Wormald, Ann. Appl. Probability, Vol. 5, Pg. 1217-1235]).

Asymptotic Analysis - Density Evolution (DE)

y

(`=1) = 1� (1� x

(`=0))dr�1

x

(`=1) = ✏(y(`=1))dl�1

x

(`=0) = ✏

16Saturday, July 13, 13

So if we perform l iterations we get a sequence of erasure probabilities. This is how Gallager analysed
LDPC codes. Luby et. al. used a somewhat different procedure. In their analysis they look at the so-called
peeling decoder. This decoder is entirely equivalent to the BP decoder (when transmitting over the BEC).
In this decoder, as long as there is a degree-one check node, we use this check node to determine one
more bit and then remove the used check node as well as the determine variable. We then follow the
evolution of the graph. This can be done by writing down a system of differential equations. This method is
called the Wormald method ([“Differential Equations for Random Processes and Random Graphs”, N.
Wormald, Ann. Appl. Probability, Vol. 5, Pg. 1217-1235]).

Asymptotic Analysis - Density Evolution (DE)

y

(`=1) = 1� (1� x

(`=0))dr�1

y

(`=2) = 1� (1� x

(`=1))dr�1

x

(`=1) = ✏(y(`=1))dl�1

x

(`=0) = ✏

16Saturday, July 13, 13

So if we perform l iterations we get a sequence of erasure probabilities. This is how Gallager analysed
LDPC codes. Luby et. al. used a somewhat different procedure. In their analysis they look at the so-called
peeling decoder. This decoder is entirely equivalent to the BP decoder (when transmitting over the BEC).
In this decoder, as long as there is a degree-one check node, we use this check node to determine one
more bit and then remove the used check node as well as the determine variable. We then follow the
evolution of the graph. This can be done by writing down a system of differential equations. This method is
called the Wormald method ([“Differential Equations for Random Processes and Random Graphs”, N.
Wormald, Ann. Appl. Probability, Vol. 5, Pg. 1217-1235]).

Asymptotic Analysis - Density Evolution (DE)

y

(`=1) = 1� (1� x

(`=0))dr�1

y

(`=2) = 1� (1� x

(`=1))dr�1

x

(`=2) = ✏(y(`=2))dl�1

x

(`=1) = ✏(y(`=1))dl�1

x

(`=0) = ✏

16Saturday, July 13, 13

So if we perform l iterations we get a sequence of erasure probabilities. This is how Gallager analysed
LDPC codes. Luby et. al. used a somewhat different procedure. In their analysis they look at the so-called
peeling decoder. This decoder is entirely equivalent to the BP decoder (when transmitting over the BEC).
In this decoder, as long as there is a degree-one check node, we use this check node to determine one
more bit and then remove the used check node as well as the determine variable. We then follow the
evolution of the graph. This can be done by writing down a system of differential equations. This method is
called the Wormald method ([“Differential Equations for Random Processes and Random Graphs”, N.
Wormald, Ann. Appl. Probability, Vol. 5, Pg. 1217-1235]).

Asymptotic Analysis - Density Evolution (DE)

y

(`=1) = 1� (1� x

(`=0))dr�1

y

(`=2) = 1� (1� x

(`=1))dr�1

y

(`) = 1� (1� x

(`�1))dr�1

x

(`=2) = ✏(y(`=2))dl�1

x

(`=1) = ✏(y(`=1))dl�1

x

(`=0) = ✏

16Saturday, July 13, 13

So if we perform l iterations we get a sequence of erasure probabilities. This is how Gallager analysed
LDPC codes. Luby et. al. used a somewhat different procedure. In their analysis they look at the so-called
peeling decoder. This decoder is entirely equivalent to the BP decoder (when transmitting over the BEC).
In this decoder, as long as there is a degree-one check node, we use this check node to determine one
more bit and then remove the used check node as well as the determine variable. We then follow the
evolution of the graph. This can be done by writing down a system of differential equations. This method is
called the Wormald method ([“Differential Equations for Random Processes and Random Graphs”, N.
Wormald, Ann. Appl. Probability, Vol. 5, Pg. 1217-1235]).

Asymptotic Analysis - Density Evolution (DE)

erasure fraction
at the root after

iterations�
x

(`) = ✏(y(`))dl�1

y

(`=1) = 1� (1� x

(`=0))dr�1

y

(`=2) = 1� (1� x

(`=1))dr�1

y

(`) = 1� (1� x

(`�1))dr�1

x

(`=2) = ✏(y(`=2))dl�1

x

(`=1) = ✏(y(`=1))dl�1

x

(`=0) = ✏

16Saturday, July 13, 13

So if we perform l iterations we get a sequence of erasure probabilities. This is how Gallager analysed
LDPC codes. Luby et. al. used a somewhat different procedure. In their analysis they look at the so-called
peeling decoder. This decoder is entirely equivalent to the BP decoder (when transmitting over the BEC).
In this decoder, as long as there is a degree-one check node, we use this check node to determine one
more bit and then remove the used check node as well as the determine variable. We then follow the
evolution of the graph. This can be done by writing down a system of differential equations. This method is
called the Wormald method ([“Differential Equations for Random Processes and Random Graphs”, N.
Wormald, Ann. Appl. Probability, Vol. 5, Pg. 1217-1235]).

Asymptotic Analysis - Density Evolution (DE)

DE sequence is decreasing and bounded
from below ⇒ converges

Note:

17Saturday, July 13, 13

Note that in the density evolution approach we assume that we first fix the number of iterations and let the
length of the code tend to infinity (so that there are no loops in the graph up to the desired size). We THEN
let the number of iterations tend to infinity. In the Wormald approach on the other hand we take exactly the
opposite limit. Luckily both approaches give exactly the same threshold. It is then easy to see that in fact
we can take the limit in any order, or jointly, and that we always get the same threshold.

Asymptotic Analysis - Density Evolution (DE)

DE sequence is decreasing and bounded
from below ⇒ converges

Note:

lim
`!1

lim
n!1

DE corresponds to the limit

For the BEC it is easy to prove that result
is always the same regardless of how
the limits are taken

17Saturday, July 13, 13

Note that in the density evolution approach we assume that we first fix the number of iterations and let the
length of the code tend to infinity (so that there are no loops in the graph up to the desired size). We THEN
let the number of iterations tend to infinity. In the Wormald approach on the other hand we take exactly the
opposite limit. Luckily both approaches give exactly the same threshold. It is then easy to see that in fact
we can take the limit in any order, or jointly, and that we always get the same threshold.

Asymptotic Analysis - Density Evolution (DE)

DE sequence is decreasing and bounded
from below ⇒ converges

Note:

lim
`!1

lim
n!1

DE corresponds to the limit

For the BEC it is easy to prove that result
is always the same regardless of how
the limits are taken

Concentration: It can be shown that the behavior
of almost all codes in the ensemble is close to the
average predicted by DE

17Saturday, July 13, 13

Note that in the density evolution approach we assume that we first fix the number of iterations and let the
length of the code tend to infinity (so that there are no loops in the graph up to the desired size). We THEN
let the number of iterations tend to infinity. In the Wormald approach on the other hand we take exactly the
opposite limit. Luckily both approaches give exactly the same threshold. It is then easy to see that in fact
we can take the limit in any order, or jointly, and that we always get the same threshold.

DE for (3, 6) Ensemble

0.2 0.4 0.6 0.8 1.0
eps

0.2

0.4

0.6

0.8

1.0

x

0.2 0.4 0.6 0.8 1.0
eps

0.2

0.4

0.6

0.8

1.0

x

erasure fraction as a
function of increasing
iterations for a given

channel value

18Saturday, July 13, 13

Let us now apply DE for our running example. We see that up to the “BP threshold”, which for the running
example is around 0.429, the erasure probability tends to zero if we let the number of iterations tend to
infinity. For higher values of eps the x-value tends to a non-zero value.

DE for (3, 6) Ensemble

0.2 0.4 0.6 0.8 1.0
eps

0.2

0.4

0.6

0.8

1.0

x

0.2 0.4 0.6 0.8 1.0
eps

0.2

0.4

0.6

0.8

1.0

x

erasure fraction as a
function of increasing
iterations for a given

channel value

18Saturday, July 13, 13

Let us now apply DE for our running example. We see that up to the “BP threshold”, which for the running
example is around 0.429, the erasure probability tends to zero if we let the number of iterations tend to
infinity. For higher values of eps the x-value tends to a non-zero value.

DE for (3, 6) Ensemble

0.2 0.4 0.6 0.8 1.0
eps

0.2

0.4

0.6

0.8

1.0

x

0.2 0.4 0.6 0.8 1.0
eps

0.2

0.4

0.6

0.8

1.0

x

erasure fraction as a
function of increasing
iterations for a given

channel value

18Saturday, July 13, 13

Let us now apply DE for our running example. We see that up to the “BP threshold”, which for the running
example is around 0.429, the erasure probability tends to zero if we let the number of iterations tend to
infinity. For higher values of eps the x-value tends to a non-zero value.

DE for (3, 6) Ensemble

0.2 0.4 0.6 0.8 1.0
eps

0.2

0.4

0.6

0.8

1.0

x

0.2 0.4 0.6 0.8 1.0
eps

0.2

0.4

0.6

0.8

1.0

x

erasure fraction as a
function of increasing
iterations for a given

channel value

18Saturday, July 13, 13

Let us now apply DE for our running example. We see that up to the “BP threshold”, which for the running
example is around 0.429, the erasure probability tends to zero if we let the number of iterations tend to
infinity. For higher values of eps the x-value tends to a non-zero value.

DE for (3, 6) Ensemble

0.2 0.4 0.6 0.8 1.0
eps

0.2

0.4

0.6

0.8

1.0

x

0.2 0.4 0.6 0.8 1.0
eps

0.2

0.4

0.6

0.8

1.0

x

erasure fraction as a
function of increasing
iterations for a given

channel value

18Saturday, July 13, 13

Let us now apply DE for our running example. We see that up to the “BP threshold”, which for the running
example is around 0.429, the erasure probability tends to zero if we let the number of iterations tend to
infinity. For higher values of eps the x-value tends to a non-zero value.

DE for (3, 6) Ensemble

0.2 0.4 0.6 0.8 1.0
eps

0.2

0.4

0.6

0.8

1.0

x

0.2 0.4 0.6 0.8 1.0
eps

0.2

0.4

0.6

0.8

1.0

x

erasure fraction as a
function of increasing
iterations for a given

channel value

18Saturday, July 13, 13

Let us now apply DE for our running example. We see that up to the “BP threshold”, which for the running
example is around 0.429, the erasure probability tends to zero if we let the number of iterations tend to
infinity. For higher values of eps the x-value tends to a non-zero value.

DE for (3, 6) Ensemble

0.2 0.4 0.6 0.8 1.0
eps

0.2

0.4

0.6

0.8

1.0

x

0.2 0.4 0.6 0.8 1.0
eps

0.2

0.4

0.6

0.8

1.0

x

erasure fraction as a
function of increasing
iterations for a given

channel value

18Saturday, July 13, 13

Let us now apply DE for our running example. We see that up to the “BP threshold”, which for the running
example is around 0.429, the erasure probability tends to zero if we let the number of iterations tend to
infinity. For higher values of eps the x-value tends to a non-zero value.

DE for (3, 6) Ensemble

0.2 0.4 0.6 0.8 1.0
eps

0.2

0.4

0.6

0.8

1.0

x

0.2 0.4 0.6 0.8 1.0
eps

0.2

0.4

0.6

0.8

1.0

x

erasure fraction as a
function of increasing
iterations for a given

channel value

18Saturday, July 13, 13

Let us now apply DE for our running example. We see that up to the “BP threshold”, which for the running
example is around 0.429, the erasure probability tends to zero if we let the number of iterations tend to
infinity. For higher values of eps the x-value tends to a non-zero value.

DE for (3, 6) Ensemble

0.2 0.4 0.6 0.8 1.0
eps

0.2

0.4

0.6

0.8

1.0

x

0.2 0.4 0.6 0.8 1.0
eps

0.2

0.4

0.6

0.8

1.0

x

erasure fraction as a
function of increasing
iterations for a given

channel value

18Saturday, July 13, 13

Let us now apply DE for our running example. We see that up to the “BP threshold”, which for the running
example is around 0.429, the erasure probability tends to zero if we let the number of iterations tend to
infinity. For higher values of eps the x-value tends to a non-zero value.

DE for (3, 6) Ensemble

BP successful below � � 0.429

0.2 0.4 0.6 0.8 1.0
eps

0.2

0.4

0.6

0.8

1.0

x

0.2 0.4 0.6 0.8 1.0
eps

0.2

0.4

0.6

0.8

1.0

x

erasure fraction as a
function of increasing
iterations for a given

channel value

18Saturday, July 13, 13

Let us now apply DE for our running example. We see that up to the “BP threshold”, which for the running
example is around 0.429, the erasure probability tends to zero if we let the number of iterations tend to
infinity. For higher values of eps the x-value tends to a non-zero value.

x versus EXIT

y y y

�

EXIT = ydl
x = ✏y

dl�1

y y y

y

19Saturday, July 13, 13

Instead of plotting the “x-value” on the vertical axis it is often more convenient to plot the EXIT value. The
EXIT value has a simple interpretation. It is the error probability of the best estimate we can do using all the
“internal” messages at a node but without the channel observation at this bit. This is why we have y to the
power dl and not dl-1 but we do not have the factor eps corresponding to the channel erasure fraction.

EXIT Curve for (3, 6) Ensemble

0.0 0.2 0.4 0.6 0.8 1.0
eps

0.2

0.4

0.6

0.8

1.0
x

0.0 0.2 0.4 0.6 0.8 1.0
eps

0.2

0.4

0.6

0.8

1.0
x

EX
IT

EXIT value as a
function of increasing
iterations for a given

channel value

20Saturday, July 13, 13

We now repeat the previous experiment but we plot the EXIT value instead of the x-value on the vertical
axis.

EXIT Curve for (3, 6) Ensemble

0.2 0.4 0.6 0.8 1.0
eps

0.2

0.4

0.6

0.8

1.0

x

0.2 0.4 0.6 0.8 1.0
eps

0.2

0.4

0.6

0.8

1.0

x

EX
IT

EXIT value as a
function of increasing
iterations for a given

channel value

20Saturday, July 13, 13

We now repeat the previous experiment but we plot the EXIT value instead of the x-value on the vertical
axis.

EXIT Curve for (3, 6) Ensemble

0.2 0.4 0.6 0.8 1.0
eps

0.2

0.4

0.6

0.8

1.0

x

0.2 0.4 0.6 0.8 1.0
eps

0.2

0.4

0.6

0.8

1.0

x

EX
IT

EXIT value as a
function of increasing
iterations for a given

channel value

20Saturday, July 13, 13

We now repeat the previous experiment but we plot the EXIT value instead of the x-value on the vertical
axis.

EXIT Curve for (3, 6) Ensemble

0.2 0.4 0.6 0.8 1.0
eps

0.2

0.4

0.6

0.8

1.0

x

0.2 0.4 0.6 0.8 1.0
eps

0.2

0.4

0.6

0.8

1.0

x

EX
IT

EXIT value as a
function of increasing
iterations for a given

channel value

20Saturday, July 13, 13

We now repeat the previous experiment but we plot the EXIT value instead of the x-value on the vertical
axis.

EXIT Curve for (3, 6) Ensemble

0.2 0.4 0.6 0.8 1.0
eps

0.2

0.4

0.6

0.8

1.0

x

0.2 0.4 0.6 0.8 1.0
eps

0.2

0.4

0.6

0.8

1.0

x

EX
IT

EXIT value as a
function of increasing
iterations for a given

channel value

20Saturday, July 13, 13

We now repeat the previous experiment but we plot the EXIT value instead of the x-value on the vertical
axis.

EXIT Curve for (3, 6) Ensemble

0.2 0.4 0.6 0.8 1.0
eps

0.2

0.4

0.6

0.8

1.0

x

0.2 0.4 0.6 0.8 1.0
eps

0.2

0.4

0.6

0.8

1.0

x

EX
IT

EXIT value as a
function of increasing
iterations for a given

channel value

20Saturday, July 13, 13

We now repeat the previous experiment but we plot the EXIT value instead of the x-value on the vertical
axis.

EXIT Curve for (3, 6) Ensemble

0.2 0.4 0.6 0.8 1.0
eps

0.2

0.4

0.6

0.8

1.0

x

0.2 0.4 0.6 0.8 1.0
eps

0.2

0.4

0.6

0.8

1.0

x

EX
IT

EXIT value as a
function of increasing
iterations for a given

channel value

20Saturday, July 13, 13

We now repeat the previous experiment but we plot the EXIT value instead of the x-value on the vertical
axis.

EXIT Curve for (3, 6) Ensemble

0.2 0.4 0.6 0.8 1.0
eps

0.2

0.4

0.6

0.8

1.0

x

0.2 0.4 0.6 0.8 1.0
eps

0.2

0.4

0.6

0.8

1.0

x

EX
IT

EXIT value as a
function of increasing
iterations for a given

channel value

20Saturday, July 13, 13

We now repeat the previous experiment but we plot the EXIT value instead of the x-value on the vertical
axis.

EXIT Curve for (3, 6) Ensemble

0.2 0.4 0.6 0.8 1.0
eps

0.2

0.4

0.6

0.8

1.0

x

0.2 0.4 0.6 0.8 1.0
eps

0.2

0.4

0.6

0.8

1.0

x

EX
IT

EXIT value as a
function of increasing
iterations for a given

channel value

20Saturday, July 13, 13

We now repeat the previous experiment but we plot the EXIT value instead of the x-value on the vertical
axis.

A look back ...

(3, 6) ensemble
0.1 0.4 0.5 0.6 0.7 0.8 0.9 1.00.30.20.0

0.
1

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
3

0.
2

0.
0

21Saturday, July 13, 13

Let us now go back to our first experiment. We see now that we can predict where the red dots will lie. In
fact, in our original experiment we cheated slightly. We printed the EXIT value and not the bit error
probability. These two only differ by a factor eps. We will see soon why the EXIT value is the “right”
quantity to plot.

A look back ...

(3, 6) ensemble

P e
rro

r

0.1 0.4 0.5 0.6 0.7 0.8 0.9 1.00.30.20.0

0.
1

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
3

0.
2

0.
0

21Saturday, July 13, 13

Let us now go back to our first experiment. We see now that we can predict where the red dots will lie. In
fact, in our original experiment we cheated slightly. We printed the EXIT value and not the bit error
probability. These two only differ by a factor eps. We will see soon why the EXIT value is the “right”
quantity to plot.

A look back ...

(3, 6) ensemble

P e
rro

r

0.1 0.4 0.5 0.6 0.7 0.8 0.9 1.00.30.20.0

0.
1

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
3

0.
2

0.
0

21Saturday, July 13, 13

Let us now go back to our first experiment. We see now that we can predict where the red dots will lie. In
fact, in our original experiment we cheated slightly. We printed the EXIT value and not the bit error
probability. These two only differ by a factor eps. We will see soon why the EXIT value is the “right”
quantity to plot.

A look back ...

(3, 6) ensemble

P e
rro

r

0.1 0.4 0.5 0.6 0.7 0.8 0.9 1.00.30.20.0

0.
1

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
3

0.
2

0.
0

21Saturday, July 13, 13

Let us now go back to our first experiment. We see now that we can predict where the red dots will lie. In
fact, in our original experiment we cheated slightly. We printed the EXIT value and not the bit error
probability. These two only differ by a factor eps. We will see soon why the EXIT value is the “right”
quantity to plot.

A look back ...

(3, 6) ensemble

P e
rro

r

0.1 0.4 0.5 0.6 0.7 0.8 0.9 1.00.30.20.0

0.
1

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
3

0.
2

0.
0

21Saturday, July 13, 13

Let us now go back to our first experiment. We see now that we can predict where the red dots will lie. In
fact, in our original experiment we cheated slightly. We printed the EXIT value and not the bit error
probability. These two only differ by a factor eps. We will see soon why the EXIT value is the “right”
quantity to plot.

A look back ...

(3, 6) ensemble

P e
rro

r

0.1 0.4 0.5 0.6 0.7 0.8 0.9 1.00.30.20.0

0.
1

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
3

0.
2

0.
0

21Saturday, July 13, 13

Let us now go back to our first experiment. We see now that we can predict where the red dots will lie. In
fact, in our original experiment we cheated slightly. We printed the EXIT value and not the bit error
probability. These two only differ by a factor eps. We will see soon why the EXIT value is the “right”
quantity to plot.

A look back ...

(3, 6) ensemble

P e
rro

r

0.1 0.4 0.5 0.6 0.7 0.8 0.9 1.00.30.20.0

0.
1

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
3

0.
2

0.
0

21Saturday, July 13, 13

Let us now go back to our first experiment. We see now that we can predict where the red dots will lie. In
fact, in our original experiment we cheated slightly. We printed the EXIT value and not the bit error
probability. These two only differ by a factor eps. We will see soon why the EXIT value is the “right”
quantity to plot.

A look back ...

(3, 6) ensemble
0.1 0.4 0.5 0.6 0.7 0.8 0.9 1.00.30.20.0

0.
1

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
3

0.
2

0.
0

EX
IT

21Saturday, July 13, 13

Let us now go back to our first experiment. We see now that we can predict where the red dots will lie. In
fact, in our original experiment we cheated slightly. We printed the EXIT value and not the bit error
probability. These two only differ by a factor eps. We will see soon why the EXIT value is the “right”
quantity to plot.

A look back ...

(3, 6) ensemble
0.1 0.4 0.5 0.6 0.7 0.8 0.9 1.00.30.20.0

0.
1

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
3

0.
2

0.
0

EX
IT

21Saturday, July 13, 13

Let us now go back to our first experiment. We see now that we can predict where the red dots will lie. In
fact, in our original experiment we cheated slightly. We printed the EXIT value and not the bit error
probability. These two only differ by a factor eps. We will see soon why the EXIT value is the “right”
quantity to plot.

A look back ...

(3, 6) ensemble
0.1 0.4 0.5 0.6 0.7 0.8 0.9 1.00.30.20.0

0.
1

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
3

0.
2

0.
0

EX
IT

21Saturday, July 13, 13

Let us now go back to our first experiment. We see now that we can predict where the red dots will lie. In
fact, in our original experiment we cheated slightly. We printed the EXIT value and not the bit error
probability. These two only differ by a factor eps. We will see soon why the EXIT value is the “right”
quantity to plot.

A look back ...

(3, 6) ensemble
0.1 0.4 0.5 0.6 0.7 0.8 0.9 1.00.30.20.0

0.
1

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
3

0.
2

0.
0

EX
IT

21Saturday, July 13, 13

Let us now go back to our first experiment. We see now that we can predict where the red dots will lie. In
fact, in our original experiment we cheated slightly. We printed the EXIT value and not the bit error
probability. These two only differ by a factor eps. We will see soon why the EXIT value is the “right”
quantity to plot.

A look back ...

(3, 6) ensemble
0.1 0.4 0.5 0.6 0.7 0.8 0.9 1.00.30.20.0

0.
1

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
3

0.
2

0.
0

EX
IT

21Saturday, July 13, 13

Let us now go back to our first experiment. We see now that we can predict where the red dots will lie. In
fact, in our original experiment we cheated slightly. We printed the EXIT value and not the bit error
probability. These two only differ by a factor eps. We will see soon why the EXIT value is the “right”
quantity to plot.

A look back ...

(3, 6) ensemble
0.1 0.4 0.5 0.6 0.7 0.8 0.9 1.00.30.20.0

0.
1

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
3

0.
2

0.
0

EX
IT

21Saturday, July 13, 13

Let us now go back to our first experiment. We see now that we can predict where the red dots will lie. In
fact, in our original experiment we cheated slightly. We printed the EXIT value and not the bit error
probability. These two only differ by a factor eps. We will see soon why the EXIT value is the “right”
quantity to plot.

A look back ...

(3, 6) ensemble
0.1 0.4 0.5 0.6 0.7 0.8 0.9 1.00.30.20.0

0.
1

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
3

0.
2

0.
0

EX
IT

21Saturday, July 13, 13

Let us now go back to our first experiment. We see now that we can predict where the red dots will lie. In
fact, in our original experiment we cheated slightly. We printed the EXIT value and not the bit error
probability. These two only differ by a factor eps. We will see soon why the EXIT value is the “right”
quantity to plot.

A look back ...

(3, 6) ensemble
0.1 0.4 0.5 0.6 0.7 0.8 0.9 1.00.30.20.0

0.
1

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
3

0.
2

0.
0

EX
IT

21Saturday, July 13, 13

Let us now go back to our first experiment. We see now that we can predict where the red dots will lie. In
fact, in our original experiment we cheated slightly. We printed the EXIT value and not the bit error
probability. These two only differ by a factor eps. We will see soon why the EXIT value is the “right”
quantity to plot.

A look back ...

(3, 6) ensemble
0.1 0.4 0.5 0.6 0.7 0.8 0.9 1.00.30.20.0

0.
1

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
3

0.
2

0.
0

EX
IT

21Saturday, July 13, 13

Let us now go back to our first experiment. We see now that we can predict where the red dots will lie. In
fact, in our original experiment we cheated slightly. We printed the EXIT value and not the bit error
probability. These two only differ by a factor eps. We will see soon why the EXIT value is the “right”
quantity to plot.

A look back ...

(3, 6) ensemble
0.1 0.4 0.5 0.6 0.7 0.8 0.9 1.00.30.20.0

0.
1

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
3

0.
2

0.
0

EX
IT

21Saturday, July 13, 13

Let us now go back to our first experiment. We see now that we can predict where the red dots will lie. In
fact, in our original experiment we cheated slightly. We printed the EXIT value and not the bit error
probability. These two only differ by a factor eps. We will see soon why the EXIT value is the “right”
quantity to plot.

A look back ...

(3, 6) ensemble
0.1 0.4 0.5 0.6 0.7 0.8 0.9 1.00.30.20.0

0.
1

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
3

0.
2

0.
0

0.0 0.2 0.4 0.6 0.8 1.0
eps

0.2

0.4

0.6

0.8

1.0
x

EX
IT

21Saturday, July 13, 13

Let us now go back to our first experiment. We see now that we can predict where the red dots will lie. In
fact, in our original experiment we cheated slightly. We printed the EXIT value and not the bit error
probability. These two only differ by a factor eps. We will see soon why the EXIT value is the “right”
quantity to plot.

Static Analysis via Fixed points

x

(`) = ✏(y(`))dl�1

y

(`) = 1� (1� x

(`�1))dr�1

x

(`=0) = ✏

Forward Fixed points of DE

22Saturday, July 13, 13

Rather than running the recursion we can right away figure out the value to which the recursion converges.
This is because this final value must be a solution to the fixed-point (FP) equation x=f(eps, x), where f()
denotes the recursive DE equations. Note that there are in general several values of x which satisfies the
FP equation for a given eps, but there is always just a single value of eps for a given x, which is easily seen
by solving for eps from the FP equation above. This makes it easy to plot this curve. But note also that in
this picture we have “additional” fixed points. These FPs are unstable and we cannot get them by running
DE. But as we will see they nevertheless play an important role in the analysis.

Static Analysis via Fixed points

x

(`) = ✏(y(`))dl�1

y

(`) = 1� (1� x

(`�1))dr�1

x

(`=0) = ✏

Forward Fixed points of DE

x = ✏(1� (1� x))dr�1)dl�1

22Saturday, July 13, 13

Rather than running the recursion we can right away figure out the value to which the recursion converges.
This is because this final value must be a solution to the fixed-point (FP) equation x=f(eps, x), where f()
denotes the recursive DE equations. Note that there are in general several values of x which satisfies the
FP equation for a given eps, but there is always just a single value of eps for a given x, which is easily seen
by solving for eps from the FP equation above. This makes it easy to plot this curve. But note also that in
this picture we have “additional” fixed points. These FPs are unstable and we cannot get them by running
DE. But as we will see they nevertheless play an important role in the analysis.

Static Analysis via Fixed points

x

(`) = ✏(y(`))dl�1

y

(`) = 1� (1� x

(`�1))dr�1

x

(`=0) = ✏

0.0 0.2 0.4 0.6 0.8 1.0
eps

0.2

0.4

0.6

0.8

1.0
x

Forward Fixed points of DE

x = ✏(1� (1� x))dr�1)dl�1

22Saturday, July 13, 13

Rather than running the recursion we can right away figure out the value to which the recursion converges.
This is because this final value must be a solution to the fixed-point (FP) equation x=f(eps, x), where f()
denotes the recursive DE equations. Note that there are in general several values of x which satisfies the
FP equation for a given eps, but there is always just a single value of eps for a given x, which is easily seen
by solving for eps from the FP equation above. This makes it easy to plot this curve. But note also that in
this picture we have “additional” fixed points. These FPs are unstable and we cannot get them by running
DE. But as we will see they nevertheless play an important role in the analysis.

Static Analysis via Fixed points

x

(`) = ✏(y(`))dl�1

y

(`) = 1� (1� x

(`�1))dr�1

x

(`=0) = ✏

0.0 0.2 0.4 0.6 0.8 1.0
eps

0.2

0.4

0.6

0.8

1.0
x

Forward Fixed points of DE

All Fixed points of DE

x = ✏(1� (1� x))dr�1)dl�1

22Saturday, July 13, 13

Rather than running the recursion we can right away figure out the value to which the recursion converges.
This is because this final value must be a solution to the fixed-point (FP) equation x=f(eps, x), where f()
denotes the recursive DE equations. Note that there are in general several values of x which satisfies the
FP equation for a given eps, but there is always just a single value of eps for a given x, which is easily seen
by solving for eps from the FP equation above. This makes it easy to plot this curve. But note also that in
this picture we have “additional” fixed points. These FPs are unstable and we cannot get them by running
DE. But as we will see they nevertheless play an important role in the analysis.

Static Analysis via Fixed points

x = ✏(1� (1� x))dr�1)dl�1

✏ =
x

(1� (1� x))dr�1)dl�1

x

(`) = ✏(y(`))dl�1

y

(`) = 1� (1� x

(`�1))dr�1

x

(`=0) = ✏

0.0 0.2 0.4 0.6 0.8 1.0
eps

0.2

0.4

0.6

0.8

1.0
x

Forward Fixed points of DE

All Fixed points of DE

x = ✏(1� (1� x))dr�1)dl�1

22Saturday, July 13, 13

Rather than running the recursion we can right away figure out the value to which the recursion converges.
This is because this final value must be a solution to the fixed-point (FP) equation x=f(eps, x), where f()
denotes the recursive DE equations. Note that there are in general several values of x which satisfies the
FP equation for a given eps, but there is always just a single value of eps for a given x, which is easily seen
by solving for eps from the FP equation above. This makes it easy to plot this curve. But note also that in
this picture we have “additional” fixed points. These FPs are unstable and we cannot get them by running
DE. But as we will see they nevertheless play an important role in the analysis.

Static Analysis via Fixed points

x = ✏(1� (1� x))dr�1)dl�1

✏ =
x

(1� (1� x))dr�1)dl�1

x

(`) = ✏(y(`))dl�1

y

(`) = 1� (1� x

(`�1))dr�1

x

(`=0) = ✏

0.0 0.2 0.4 0.6 0.8 1.0
eps

0.2

0.4

0.6

0.8

1.0
x

0.0 0.2 0.4 0.6 0.8 1.0
eps0.0

0.2

0.4

0.6

0.8

1.0
EXIT

Forward Fixed points of DE

All Fixed points of DE

x = ✏(1� (1� x))dr�1)dl�1

22Saturday, July 13, 13

Rather than running the recursion we can right away figure out the value to which the recursion converges.
This is because this final value must be a solution to the fixed-point (FP) equation x=f(eps, x), where f()
denotes the recursive DE equations. Note that there are in general several values of x which satisfies the
FP equation for a given eps, but there is always just a single value of eps for a given x, which is easily seen
by solving for eps from the FP equation above. This makes it easy to plot this curve. But note also that in
this picture we have “additional” fixed points. These FPs are unstable and we cannot get them by running
DE. But as we will see they nevertheless play an important role in the analysis.

Static Analysis via Fixed points

x = ✏(1� (1� x))dr�1)dl�1

✏ =
x

(1� (1� x))dr�1)dl�1

x

(`) = ✏(y(`))dl�1

y

(`) = 1� (1� x

(`�1))dr�1

x

(`=0) = ✏

0.0 0.2 0.4 0.6 0.8 1.0
eps

0.2

0.4

0.6

0.8

1.0
x

0.0 0.2 0.4 0.6 0.8 1.0
eps0.0

0.2

0.4

0.6

0.8

1.0
EXIT

Forward Fixed points of DE

All Fixed points of DE

x = ✏(1� (1� x))dr�1)dl�1

22Saturday, July 13, 13

Rather than running the recursion we can right away figure out the value to which the recursion converges.
This is because this final value must be a solution to the fixed-point (FP) equation x=f(eps, x), where f()
denotes the recursive DE equations. Note that there are in general several values of x which satisfies the
FP equation for a given eps, but there is always just a single value of eps for a given x, which is easily seen
by solving for eps from the FP equation above. This makes it easy to plot this curve. But note also that in
this picture we have “additional” fixed points. These FPs are unstable and we cannot get them by running
DE. But as we will see they nevertheless play an important role in the analysis.

Coupled Codes

23Saturday, July 13, 13

We now get to the topic of this tutorial, namely spatially coupled codes. We start with their construction
and then proceed towards their analysis. We will see how these codes are intimately tied to the standard
LDPC codes we have introduced till now.

Coupled Ensembles - Protograph Construction

24Saturday, July 13, 13

As for uncoupled codes, there are many flavors and variations on the theme. The exact version we use is
not so important. They all behave more or less the same. For the purpose of this tutorial we consider two
variations. Namely coupled ensembles defined by a protograph as well as a random version. In the
protograph version, we connect neighboring copies in a regular fashion as described above. We stress
that above we show the construction of the protograph of the coupled code and not the actual code
which will be used for transmission. As mentioned before, for the real code, we need to “lift” the graph M
times and then randomly permute edges in the same edge bundle. The “spatially coupled” qualifier for the
codes comes about naturally since we consider protograph of standard LDPC codes, arrange them
“spatially” and “couple” or connect them. Note that at the boundaries the code has “more” information
available than towards the middle where it looks just like the base graph it is based on. As we will see, this
boundary condition plays a crucial role.

Coupled Ensembles - Protograph Construction

24Saturday, July 13, 13

As for uncoupled codes, there are many flavors and variations on the theme. The exact version we use is
not so important. They all behave more or less the same. For the purpose of this tutorial we consider two
variations. Namely coupled ensembles defined by a protograph as well as a random version. In the
protograph version, we connect neighboring copies in a regular fashion as described above. We stress
that above we show the construction of the protograph of the coupled code and not the actual code
which will be used for transmission. As mentioned before, for the real code, we need to “lift” the graph M
times and then randomly permute edges in the same edge bundle. The “spatially coupled” qualifier for the
codes comes about naturally since we consider protograph of standard LDPC codes, arrange them
“spatially” and “couple” or connect them. Note that at the boundaries the code has “more” information
available than towards the middle where it looks just like the base graph it is based on. As we will see, this
boundary condition plays a crucial role.

Coupled Ensembles - Protograph Construction

24Saturday, July 13, 13

As for uncoupled codes, there are many flavors and variations on the theme. The exact version we use is
not so important. They all behave more or less the same. For the purpose of this tutorial we consider two
variations. Namely coupled ensembles defined by a protograph as well as a random version. In the
protograph version, we connect neighboring copies in a regular fashion as described above. We stress
that above we show the construction of the protograph of the coupled code and not the actual code
which will be used for transmission. As mentioned before, for the real code, we need to “lift” the graph M
times and then randomly permute edges in the same edge bundle. The “spatially coupled” qualifier for the
codes comes about naturally since we consider protograph of standard LDPC codes, arrange them
“spatially” and “couple” or connect them. Note that at the boundaries the code has “more” information
available than towards the middle where it looks just like the base graph it is based on. As we will see, this
boundary condition plays a crucial role.

Coupled Ensembles - Protograph Construction

24Saturday, July 13, 13

As for uncoupled codes, there are many flavors and variations on the theme. The exact version we use is
not so important. They all behave more or less the same. For the purpose of this tutorial we consider two
variations. Namely coupled ensembles defined by a protograph as well as a random version. In the
protograph version, we connect neighboring copies in a regular fashion as described above. We stress
that above we show the construction of the protograph of the coupled code and not the actual code
which will be used for transmission. As mentioned before, for the real code, we need to “lift” the graph M
times and then randomly permute edges in the same edge bundle. The “spatially coupled” qualifier for the
codes comes about naturally since we consider protograph of standard LDPC codes, arrange them
“spatially” and “couple” or connect them. Note that at the boundaries the code has “more” information
available than towards the middle where it looks just like the base graph it is based on. As we will see, this
boundary condition plays a crucial role.

Coupled Ensembles - Protograph Construction

24Saturday, July 13, 13

As for uncoupled codes, there are many flavors and variations on the theme. The exact version we use is
not so important. They all behave more or less the same. For the purpose of this tutorial we consider two
variations. Namely coupled ensembles defined by a protograph as well as a random version. In the
protograph version, we connect neighboring copies in a regular fashion as described above. We stress
that above we show the construction of the protograph of the coupled code and not the actual code
which will be used for transmission. As mentioned before, for the real code, we need to “lift” the graph M
times and then randomly permute edges in the same edge bundle. The “spatially coupled” qualifier for the
codes comes about naturally since we consider protograph of standard LDPC codes, arrange them
“spatially” and “couple” or connect them. Note that at the boundaries the code has “more” information
available than towards the middle where it looks just like the base graph it is based on. As we will see, this
boundary condition plays a crucial role.

Coupled Ensembles - Protograph Construction

24Saturday, July 13, 13

As for uncoupled codes, there are many flavors and variations on the theme. The exact version we use is
not so important. They all behave more or less the same. For the purpose of this tutorial we consider two
variations. Namely coupled ensembles defined by a protograph as well as a random version. In the
protograph version, we connect neighboring copies in a regular fashion as described above. We stress
that above we show the construction of the protograph of the coupled code and not the actual code
which will be used for transmission. As mentioned before, for the real code, we need to “lift” the graph M
times and then randomly permute edges in the same edge bundle. The “spatially coupled” qualifier for the
codes comes about naturally since we consider protograph of standard LDPC codes, arrange them
“spatially” and “couple” or connect them. Note that at the boundaries the code has “more” information
available than towards the middle where it looks just like the base graph it is based on. As we will see, this
boundary condition plays a crucial role.

Coupled Ensembles - Protograph Construction

24Saturday, July 13, 13

As for uncoupled codes, there are many flavors and variations on the theme. The exact version we use is
not so important. They all behave more or less the same. For the purpose of this tutorial we consider two
variations. Namely coupled ensembles defined by a protograph as well as a random version. In the
protograph version, we connect neighboring copies in a regular fashion as described above. We stress
that above we show the construction of the protograph of the coupled code and not the actual code
which will be used for transmission. As mentioned before, for the real code, we need to “lift” the graph M
times and then randomly permute edges in the same edge bundle. The “spatially coupled” qualifier for the
codes comes about naturally since we consider protograph of standard LDPC codes, arrange them
“spatially” and “couple” or connect them. Note that at the boundaries the code has “more” information
available than towards the middle where it looks just like the base graph it is based on. As we will see, this
boundary condition plays a crucial role.

Coupled Ensembles - Random Construction

L=15

w=3

?

25Saturday, July 13, 13

In the random version, for each edge we pick a position within a window of size w. The only restriction is
that the global edge counts have to match up. But for large instance this only imposes a negligible global
restriction. It is not hard to see that if we allow the window to span the entire spatial length, we will recover
the standard uncoupled LDPC code.

Coupled Ensembles

Protograph construction:

Random construction:

good performance
suitable for implementation

good for proofs

26Saturday, July 13, 13

If we implement such codes in “practice”, protographs are the better choice. They in fact behave better,
due to their decreased randomness. Further, the additional structure makes them well-suited for
implementations. The random code construction on the other hand is better suited for proofs.

Why coupling might help

eH3, 6L:= 0.42944

0.0 0.2 0.4 0.6 0.8 1.0
e0.0

0.2

0.4

0.6

0.8

1.0
EXIT

eH3, 6L:= 0.42944

0.0 0.2 0.4 0.6 0.8 1.0
e0.0

0.2

0.4

0.6

0.8

1.0
EXIT

(dl, dr =2dl)-regular
uncoupled ensemble
dl increasing; BEC

27Saturday, July 13, 13

Before we get to a more serious analysis let us see why spatial coupling might help. Let us first consider
what happens if we take uncoupled ensembles and if we keep the rate fixed but increase the degrees. As
we see in the sequence of EXIT curves (and as one can easily prove) the threshold decreases to zero as
we increase the degrees.

Why coupling might help

eH100, 200L:= 0.0372964

0.0 0.2 0.4 0.6 0.8 1.0
e0.0

0.2

0.4

0.6

0.8

1.0
EXIT

eH100, 200L:= 0.0372964

0.0 0.2 0.4 0.6 0.8 1.0
e0.0

0.2

0.4

0.6

0.8

1.0
EXIT

(dl, dr =2dl)-regular
uncoupled ensemble
dl increasing; BEC

27Saturday, July 13, 13

Before we get to a more serious analysis let us see why spatial coupling might help. Let us first consider
what happens if we take uncoupled ensembles and if we keep the rate fixed but increase the degrees. As
we see in the sequence of EXIT curves (and as one can easily prove) the threshold decreases to zero as
we increase the degrees.

Why coupling might help

eH100, 200L:= 0.0372964

0.0 0.2 0.4 0.6 0.8 1.0
e0.0

0.2

0.4

0.6

0.8

1.0
EXIT

eH100, 200L:= 0.0372964

0.0 0.2 0.4 0.6 0.8 1.0
e0.0

0.2

0.4

0.6

0.8

1.0
EXIT

(dl, dr =2dl)-regular
uncoupled ensemble
dl increasing; BEC

General:

27Saturday, July 13, 13

Before we get to a more serious analysis let us see why spatial coupling might help. Let us first consider
what happens if we take uncoupled ensembles and if we keep the rate fixed but increase the degrees. As
we see in the sequence of EXIT curves (and as one can easily prove) the threshold decreases to zero as
we increase the degrees.

Why coupling might help

28Saturday, July 13, 13

Now let us look what happens if we do the same thing for coupled ensemble. We look here at coupled
ensembles constructed via the protograph approach. Further, to make the argument simple, we assume
that all the edges are “double” edges, i.e., for every indicated edge above there are in fact two edges.

Why coupling might help

double edge

28Saturday, July 13, 13

Now let us look what happens if we do the same thing for coupled ensemble. We look here at coupled
ensembles constructed via the protograph approach. Further, to make the argument simple, we assume
that all the edges are “double” edges, i.e., for every indicated edge above there are in fact two edges.

Why coupling might help

(6, 12)-regular coupled ensemble

double edge

28Saturday, July 13, 13

Now let us look what happens if we do the same thing for coupled ensemble. We look here at coupled
ensembles constructed via the protograph approach. Further, to make the argument simple, we assume
that all the edges are “double” edges, i.e., for every indicated edge above there are in fact two edges.

Why coupling might help

29Saturday, July 13, 13

When we decode we can always ignore some additional information. This only makes the decoder
perform worse. But as we see in the above case, at the boundary the code contains a (2, 4) cycle code.
This code is know to have a BP threshold of 1/4 when transmitting over the BEC. So we can decode just
the boundary nodes if we transmit over a BEC with erasure probability at most 1/4 using the BP decoder.

Why coupling might help

29Saturday, July 13, 13

When we decode we can always ignore some additional information. This only makes the decoder
perform worse. But as we see in the above case, at the boundary the code contains a (2, 4) cycle code.
This code is know to have a BP threshold of 1/4 when transmitting over the BEC. So we can decode just
the boundary nodes if we transmit over a BEC with erasure probability at most 1/4 using the BP decoder.

Why coupling might help

ignore extra edges when decoding the first section;
this makes the code worse

29Saturday, July 13, 13

When we decode we can always ignore some additional information. This only makes the decoder
perform worse. But as we see in the above case, at the boundary the code contains a (2, 4) cycle code.
This code is know to have a BP threshold of 1/4 when transmitting over the BEC. So we can decode just
the boundary nodes if we transmit over a BEC with erasure probability at most 1/4 using the BP decoder.

Why coupling might help

ignore extra edges when decoding the first section;
this makes the code worse

(2, 4) cycle code with threshold ✏BP
=

1

3

29Saturday, July 13, 13

When we decode we can always ignore some additional information. This only makes the decoder
perform worse. But as we see in the above case, at the boundary the code contains a (2, 4) cycle code.
This code is know to have a BP threshold of 1/4 when transmitting over the BEC. So we can decode just
the boundary nodes if we transmit over a BEC with erasure probability at most 1/4 using the BP decoder.

Why coupling might help

ignore extra edges when decoding the first section;
this makes the code worse

(2, 4) cycle code with threshold ✏BP
=

1

3

pick ✏ <
1

3

29Saturday, July 13, 13

When we decode we can always ignore some additional information. This only makes the decoder
perform worse. But as we see in the above case, at the boundary the code contains a (2, 4) cycle code.
This code is know to have a BP threshold of 1/4 when transmitting over the BEC. So we can decode just
the boundary nodes if we transmit over a BEC with erasure probability at most 1/4 using the BP decoder.

Why coupling might help

ignore extra edges when decoding the first section;
this makes the code worse

then the first section will decode correctly whp on its own

(2, 4) cycle code with threshold ✏BP
=

1

3

pick ✏ <
1

3

29Saturday, July 13, 13

When we decode we can always ignore some additional information. This only makes the decoder
perform worse. But as we see in the above case, at the boundary the code contains a (2, 4) cycle code.
This code is know to have a BP threshold of 1/4 when transmitting over the BEC. So we can decode just
the boundary nodes if we transmit over a BEC with erasure probability at most 1/4 using the BP decoder.

Why coupling might help

(6, 12)-regular coupled ensemble

looks just like before; we conclude that the threshold is at at least 1/3

30Saturday, July 13, 13

But now where we decoded the boundary nodes we see that the remainder of the code looks just like the
original code, except that we “chopped” off the left-most section. The code is “self-similar” in this sense.
So we can continue in recursive fashion and now decode the second section and so on. We conclude
that this ensemble has a BP threshold of at least 1/3.

Why coupling might help
(6, 12)-regular coupled ensemble

31Saturday, July 13, 13

But the same argument holds if we do not start with a (6, 12) ensemble but with any (2 k, 4 k) ensemble,
regardless how large the degrees are. So the BP threshold does NOT tend to zero for coupled ensembles
if we increase the degrees. Indeed, we will see that they in fact get BETTER.

Why coupling might help

but the same argument holds
even if we increase degrees

(8, 16)-regular coupled ensemble

therefore threshold is lower
bounded by 1/3 even if the
degrees tend to infinity

(6, 12)-regular coupled ensemble

31Saturday, July 13, 13

But the same argument holds if we do not start with a (6, 12) ensemble but with any (2 k, 4 k) ensemble,
regardless how large the degrees are. So the BP threshold does NOT tend to zero for coupled ensembles
if we increase the degrees. Indeed, we will see that they in fact get BETTER.

Recall DE for the uncoupled case

x

(`) = ✏(y(`))dl�1

y

(`) = 1� (1� x

(`�1))dr�1

32Saturday, July 13, 13

Let us write down now the DE equations for the coupled case. First recall that for the uncoupled case the
“state” used in DE is a single scalar, namely x, which represents the erasure fraction along an outgoing
edge from the variable node.

DE for the Coupled Case - Random Construction

x1 x3x2 xi+w-1xi xi+1 xLx0x-w+2

symmetric

000
boundary the x (erasure fraction) is a function of the position i

33Saturday, July 13, 13

For the coupled case the state is no longer a scalar. In the “interior” of the chain the structure of the code
is shift invariant (i.e., looks the same for each position) but at the boundary the conditions are no longer
uniform. We hence need one scalar xi to describe the state at each position i. Why is the boundary set to
0. We assume that at the boundary we know the values. So hence the erasure probability at the boundary
is 0.

DE for the Coupled Case - Random Construction

xi = ✏(
1

w

w�1X

j=0

yi+j)
dl�1

yi, · · · , yi+w�1 xi, · · · , xi�w+1

yi = 1� (1� 1

w

w�1X

k=0

xi�k)
dr�1

34Saturday, July 13, 13

Again we look at what happens at the two nodes. The equations are very similar to the uncoupled case
but there is one difference. If we look e.g.at the random case then each edge can be connected to
positions in a certain range. We therefore need to average over the incoming messages from this range.
Once we have done the average, we proceed as in the uncoupled case. Note that with respect to the way
we defined the random ensemble, variables are always connected to position “to the right” and check
nodes are always connected to variable nodes “on the left.”

DE for the Coupled Case - Random Construction

�

xi = ✏(
1

w

w�1X

j=0

yi+j)
dl�1

yi, · · · , yi+w�1 xi, · · · , xi�w+1

yi = 1� (1� 1

w

w�1X

k=0

xi�k)
dr�1

34Saturday, July 13, 13

Again we look at what happens at the two nodes. The equations are very similar to the uncoupled case
but there is one difference. If we look e.g.at the random case then each edge can be connected to
positions in a certain range. We therefore need to average over the incoming messages from this range.
Once we have done the average, we proceed as in the uncoupled case. Note that with respect to the way
we defined the random ensemble, variables are always connected to position “to the right” and check
nodes are always connected to variable nodes “on the left.”

DE for the Coupled Case - Random Construction

x1 x3x2 xi+w-1xi xi+1 xLx0x-w+2

symmetric

000
boundary

x

(`)
i = ✏

⇣
1� 1

w

w�1X

j=0

(1� 1

w

w�1X

k=0

x

(`�1)
i+j�k)

dr�1
⌘dl�1

35Saturday, July 13, 13

If we put the two parts together we get now the recursive DE equations for the coupled chain. Note that
we now have as many xi values as the length of the chain and that the various equations for the xi values
are “coupled” through the averaging operations.

DE for Coupled Ensemble

�

✏Area✏BP

36Saturday, July 13, 13

Let us now see how coupled codes perform. Let us first run DE for an eps value below the BP threshold
of the uncoupled case. Note that except at the boundary, coupled codes have exactly the same local
connectivity as the uncoupled ensemble they are based on. At the boundary they are “better” due to the
known variables there. So we expect them to behave no worse than their uncoupled sisters. In the movie
above we plot the xi values as a function of the iteration. For the case above, the chain has length 100.
Indeed, as we see from this movie, DE proceeds exactly as for the uncoupled case if we look at the xi
values in the center of the chain. At the boundary we see somewhat better values due to the termination.
And as expected, the DE is able to drive the erasure fraction in each section to zero and BP is successful.

DE for Coupled Ensemble

�

✏Area✏BP

36Saturday, July 13, 13

Let us now see how coupled codes perform. Let us first run DE for an eps value below the BP threshold
of the uncoupled case. Note that except at the boundary, coupled codes have exactly the same local
connectivity as the uncoupled ensemble they are based on. At the boundary they are “better” due to the
known variables there. So we expect them to behave no worse than their uncoupled sisters. In the movie
above we plot the xi values as a function of the iteration. For the case above, the chain has length 100.
Indeed, as we see from this movie, DE proceeds exactly as for the uncoupled case if we look at the xi
values in the center of the chain. At the boundary we see somewhat better values due to the termination.
And as expected, the DE is able to drive the erasure fraction in each section to zero and BP is successful.

DE for Coupled Ensemble

�

✏Area✏BP

37Saturday, July 13, 13

Now let us do the same experiment for a value above the BP threshold of the uncoupled ensemble but
not too much larger. As we see we get a very interesting behavior. After a few iterations where all the
“obvious” deductions are being made the decoder still proceeds to make progress. On both ends a small
“wave front” has formed. These wave fronts move towards the center at a constant speed. Note that the
wave connects the two FPs which exist also for the uncoupled case. Namely, the undesired FP in which
the uncoupled code gets stuck (forward FP of DE) and the desired FP (namely zero) which an optimal
decoder would find. The wave “bridges” these two FPs and thus guides nodes in the interior of the chain
towards the desired FP. Also, note the special structure that the erasure fraction at each section forms:
there is long tail of almost decoded or zero values, a quick transition and a large flat part near the stable
FP of DE for uncoupled case. In fact, one can demonstrate that as eps approaches the special value
epsArea, the wave front moves ever so slowly, but still is able to move all the way inside and decode
successfully.

DE for Coupled Ensemble

�

✏Area✏BP

37Saturday, July 13, 13

Now let us do the same experiment for a value above the BP threshold of the uncoupled ensemble but
not too much larger. As we see we get a very interesting behavior. After a few iterations where all the
“obvious” deductions are being made the decoder still proceeds to make progress. On both ends a small
“wave front” has formed. These wave fronts move towards the center at a constant speed. Note that the
wave connects the two FPs which exist also for the uncoupled case. Namely, the undesired FP in which
the uncoupled code gets stuck (forward FP of DE) and the desired FP (namely zero) which an optimal
decoder would find. The wave “bridges” these two FPs and thus guides nodes in the interior of the chain
towards the desired FP. Also, note the special structure that the erasure fraction at each section forms:
there is long tail of almost decoded or zero values, a quick transition and a large flat part near the stable
FP of DE for uncoupled case. In fact, one can demonstrate that as eps approaches the special value
epsArea, the wave front moves ever so slowly, but still is able to move all the way inside and decode
successfully.

DE for Coupled Ensemble

�

✏Area✏BP

37Saturday, July 13, 13

Now let us do the same experiment for a value above the BP threshold of the uncoupled ensemble but
not too much larger. As we see we get a very interesting behavior. After a few iterations where all the
“obvious” deductions are being made the decoder still proceeds to make progress. On both ends a small
“wave front” has formed. These wave fronts move towards the center at a constant speed. Note that the
wave connects the two FPs which exist also for the uncoupled case. Namely, the undesired FP in which
the uncoupled code gets stuck (forward FP of DE) and the desired FP (namely zero) which an optimal
decoder would find. The wave “bridges” these two FPs and thus guides nodes in the interior of the chain
towards the desired FP. Also, note the special structure that the erasure fraction at each section forms:
there is long tail of almost decoded or zero values, a quick transition and a large flat part near the stable
FP of DE for uncoupled case. In fact, one can demonstrate that as eps approaches the special value
epsArea, the wave front moves ever so slowly, but still is able to move all the way inside and decode
successfully.

DE for Coupled Ensemble

�

✏Area✏BP

38Saturday, July 13, 13

Finally, if we go above a certain value of eps and we run DE then we get a non-trivial FP. Note that in the
middle of the chain the xi values are exactly as large as they would be for the same eps value in the
uncoupled case. Only at the boundary do we get somewhat better values due to the termination.

DE for Coupled Ensemble

�

✏Area✏BP

38Saturday, July 13, 13

Finally, if we go above a certain value of eps and we run DE then we get a non-trivial FP. Note that in the
middle of the chain the xi values are exactly as large as they would be for the same eps value in the
uncoupled case. Only at the boundary do we get somewhat better values due to the termination.

DE for Coupled Ensemble

�

✏Area✏BP

38Saturday, July 13, 13

Finally, if we go above a certain value of eps and we run DE then we get a non-trivial FP. Note that in the
middle of the chain the xi values are exactly as large as they would be for the same eps value in the
uncoupled case. Only at the boundary do we get somewhat better values due to the termination.

Questions

✏AreaWhat is ?

Why does this happen?

Spoiler alert: We will see that the area threshold is essentially equal to the MAP
threshold of the underlying ensemble! Here, the MAP threshold is the threshold an

optimal decoder would achieve. And it turns out to be the BP threshold of the
coupled code ensemble!

39Saturday, July 13, 13

Given what we have seen, we are faced with a few questions. First, what is this parameter ɛArea up to
which spatially coupled ensembles can decode? Second, why does the system so drastically change its
behavior when we couple it? Spoiler Alert: We will see that the answer to the first question is that ɛArea is
essentially equal ɛMAP of the underlying ensemble! We say here essentially since, as we will explain in more
detail later, this is strictly true only when we let certain quantities tend to infinity. But even if we do not let
these quantities tend to infinity but choose them reasonably small, the difference is typically very very small.

Big bang:

Historical Outline of Spatially Coupled Codes

40Saturday, July 13, 13

Big bang:

Historical Outline of Spatially Coupled Codes

40Saturday, July 13, 13

Variations, code word and pseudo code word analysis:

Historical Outline of Spatially Coupled Codes

41Saturday, July 13, 13

Termination and density evolution analysis:

Historical Outline of Spatially Coupled Codes

Vol. 56, No. 10, pp. 5274

42Saturday, July 13, 13

Termination and density evolution analysis:

Historical Outline of Spatially Coupled Codes

Vol. 56, No. 10, pp. 5274
42Saturday, July 13, 13

Historical Outline of Spatially Coupled Codes

Maxwell Construction, MAP Thresholds,
generalized EXIT functions

43Saturday, July 13, 13

Threshold saturation effect and proof for the BEC:

Historical Outline of Spatially Coupled Codes

44Saturday, July 13, 13

Main Message

45Saturday, July 13, 13

1. In order to get exactly ɛMAP we have to let the “connection width” w tend to infinity. But in practice even small widths like w=3
lead to thresholds which are almost indistinguishable ɛMAP. (e.g., for the (3, 6) case and the BEC the difference is about 10-5.
2. The MAP threshold is an increasing function of the degrees and converges to the Shannon threshold exponentially fast. This is
contrary to the BP threshold for uncoupled codes which typically decreases in the degree.
3. We will see that using spatial coupling we can construct codes which are capacity-achieving universally across the whole set of
BMS channels.
4. On the downside, due to the termination which is required, we loose in rate. We hence have to take the chain length large
enough in order to amortize this rate loss. Therefore, the blocklength has to be reasonably large.

Main Message

Coupled ensembles under BP decoding behave
like uncoupled ensembles under MAP decoding.

45Saturday, July 13, 13

1. In order to get exactly ɛMAP we have to let the “connection width” w tend to infinity. But in practice even small widths like w=3
lead to thresholds which are almost indistinguishable ɛMAP. (e.g., for the (3, 6) case and the BEC the difference is about 10-5.
2. The MAP threshold is an increasing function of the degrees and converges to the Shannon threshold exponentially fast. This is
contrary to the BP threshold for uncoupled codes which typically decreases in the degree.
3. We will see that using spatial coupling we can construct codes which are capacity-achieving universally across the whole set of
BMS channels.
4. On the downside, due to the termination which is required, we loose in rate. We hence have to take the chain length large
enough in order to amortize this rate loss. Therefore, the blocklength has to be reasonably large.

Main Message

Coupled ensembles under BP decoding behave
like uncoupled ensembles under MAP decoding.

Since coupled ensemble achieve the highest threshold they can
achieve (namely the MAP threshold) under BP we speak of the
threshold saturation phenomenon.

45Saturday, July 13, 13

1. In order to get exactly ɛMAP we have to let the “connection width” w tend to infinity. But in practice even small widths like w=3
lead to thresholds which are almost indistinguishable ɛMAP. (e.g., for the (3, 6) case and the BEC the difference is about 10-5.
2. The MAP threshold is an increasing function of the degrees and converges to the Shannon threshold exponentially fast. This is
contrary to the BP threshold for uncoupled codes which typically decreases in the degree.
3. We will see that using spatial coupling we can construct codes which are capacity-achieving universally across the whole set of
BMS channels.
4. On the downside, due to the termination which is required, we loose in rate. We hence have to take the chain length large
enough in order to amortize this rate loss. Therefore, the blocklength has to be reasonably large.

Main Message

Coupled ensembles under BP decoding behave
like uncoupled ensembles under MAP decoding.

Since coupled ensemble achieve the highest threshold they can
achieve (namely the MAP threshold) under BP we speak of the
threshold saturation phenomenon.

We will see that using spatial coupling we can construct codes
which are capacity-achieving universally across the whole set of
BMS channels.

45Saturday, July 13, 13

1. In order to get exactly ɛMAP we have to let the “connection width” w tend to infinity. But in practice even small widths like w=3
lead to thresholds which are almost indistinguishable ɛMAP. (e.g., for the (3, 6) case and the BEC the difference is about 10-5.
2. The MAP threshold is an increasing function of the degrees and converges to the Shannon threshold exponentially fast. This is
contrary to the BP threshold for uncoupled codes which typically decreases in the degree.
3. We will see that using spatial coupling we can construct codes which are capacity-achieving universally across the whole set of
BMS channels.
4. On the downside, due to the termination which is required, we loose in rate. We hence have to take the chain length large
enough in order to amortize this rate loss. Therefore, the blocklength has to be reasonably large.

Main Message

Coupled ensembles under BP decoding behave
like uncoupled ensembles under MAP decoding.

Since coupled ensemble achieve the highest threshold they can
achieve (namely the MAP threshold) under BP we speak of the
threshold saturation phenomenon.

We will see that using spatial coupling we can construct codes
which are capacity-achieving universally across the whole set of
BMS channels.

On the downside, due to the termination which is required, we loose
in rate. We hence have to take the chain length large enough in order
to amortize this rate loss. Therefore, the blocklength has to be
reasonably large.

45Saturday, July 13, 13

1. In order to get exactly ɛMAP we have to let the “connection width” w tend to infinity. But in practice even small widths like w=3
lead to thresholds which are almost indistinguishable ɛMAP. (e.g., for the (3, 6) case and the BEC the difference is about 10-5.
2. The MAP threshold is an increasing function of the degrees and converges to the Shannon threshold exponentially fast. This is
contrary to the BP threshold for uncoupled codes which typically decreases in the degree.
3. We will see that using spatial coupling we can construct codes which are capacity-achieving universally across the whole set of
BMS channels.
4. On the downside, due to the termination which is required, we loose in rate. We hence have to take the chain length large
enough in order to amortize this rate loss. Therefore, the blocklength has to be reasonably large.

(not exhaustive) References

46Saturday, July 13, 13

Most papers on this topic can be found on arXiv.org. To get started, look for “spatial” and “coupl” in the
title and restrict your search to the time range since 2009 and the Computer Science category. Currently
you will find 45 articles on this topic on arXiv.org. But there are many more ... e.g., many important papers
which use spatial coupling in the area of compressive sensing do not contain these two keywords in their
title and are hence not included in this list.

47Saturday, July 13, 13

47Saturday, July 13, 13 47Saturday, July 13, 13

47Saturday, July 13, 13 47Saturday, July 13, 13

