Spatial Coupling and the Threshold Saturation Phenomenon

Shrinivas Kudekar
Qualcomm Research

Qualcomm

July 7th, 2013

Ruediger Urbanke
EPFL

ECOLE POLYTECHNIOUE
FEDERALE DE LAUSANNE

The latest version of these slides (Keynote and PDF) can be found at
https://ipg.epfl.ch/doku.php?id=en:publications:scc tutorial

Part I: All we know about iterative coding we learnt by looking at the BEC

Uncoupled Codes

Introduction - Graphical Codes
Low-density Parity-Check (LDPC) Codes

Saturray, July 13,1

It was shown by Miller and Cohen (The rate of regular LDPC Codes, IEEE Trans. IT, 49, 2003, pp. 2989--2992), that with high probability the rate of a randomly chosen regular code is very close to this lower bound. See also page 81 in MCT (Modern Coding Theory). By regular code here we mean a code where all variables have degree lets say di and all check nodes have degree, lets say d_{r}.

$(3,6)$ ensemble

each configuration has uniform probability

code is sampled u.a.r. from the ensemble and used for transmission
$(3,6)$ ensemble

each configuration has uniform probability
code is sampled u.a.r. from the ensemble and used for transmission

Saturday, Juy 13,13
The configuration model is a very convenient way of defining the ensemble since it is trivial to sample from this ensemble. All we need is to create a sample uniformly at random from the set of permutations on E letters, where E is the number of edges. But note that in this definition two distinct permutations can create the "same graph" once we delete the labels of the sockets. In other words, the probability distribution when we delete socket labels is no longer uniform. A further advantage of using the configuration model is that it leads to a simple analysis.

Saturday, July 13,13
Protographs have two advantages. First, they are a convenient and compact way of specifying graphical codes. Second, the additional structure can be useful if we want to implement codes in practice.

In order to create a "real" graph from a protograph we "lift" it. This means that we make M copies, where M is typically in the order of hundreds or thousands. In the example above we chose $M=5$. We then connect these copies by permuting the edges in each "edge bundle" by means of a permutation chosen uniformly at random.

Saturday, July 13,13
In order to create a "real" graph from a protograph we "lift" it. This means that we make M copies, where M is typically in the order of hundreds or thousands. In the example above we chose $M=5$. We then connect these copies by permuting the edges in each "edge bundle" by means of a permutation chosen uniformly at random.

In order to create a "real" graph from a protograph we "lift"" it. This means that we make M copies, where M is typically in the order of hundreds or thousands. In the example above we chose $M=5$. We then connect these copies by permuting the edges in each "edge bundle" by means of a permutation chosen uniformly at random.

In order to create a "real" graph from a protograph we "lift" it. This means that we make M copies, where M is typically in the order of hundreds or thousands. In the example above we chose $M=5$. We then connect these copies by permuting the edges in each "edge bundle" by means of a permutation chosen uniformly at random.

In order to create a "real" graph from a protograph we "lift" it. This means that we make M copies, where M is typically in the order of hundreds or thousands. In the example above we chose $M=5$. We then connect these copies by permuting the edges in each "edge bundle" by means of a permutation chosen uniformly at random.

Saturay, July 13,13
By "edge bundle" we mean here a set of "like" edges. I.e., edges which connect the same variable node and the same check node in each protograph. In the slide above a particular edge bundle is indicated in red.

Ensemble of Codes - Protograph Construction

Saturday, July 13,13
We now permute the edges in this edge bundle. We do the same thing for each edge bundle. Note that strictly speaking the ensemble created in this way is different from the ensemble created by the configuration model. But for the asymptotic analysis (density evolution -- see subsequent slides) the two models are equivalent.

Ensemble of Codes - Protograph Construction

We now permute the edges in this edge bundle. We do the same thing for each edge bundle. Note that strictly speaking the ensemble created in this way is different from the ensemble created by the configuration model. But for the asymptotic analysis (density evolution -- see subsequent slides) the two models are equivalent.

We now permute the edges in this edge bundle. We do the same thing for each edge bundle. Note that strictly speaking the ensemble created in this way is different from the ensemble created by the configuration model. But for the asymptotic analysis (density evolution -- see subsequent slides) the two models are equivalent.

saturday, July 13,13
We now permute the edges in this edge bundle. We do the same thing for each edge bundle. Note that strictly speaking the ensemble created in this way is different from the ensemble created by the configuration model. But for the asymptotic analysis (density evolution -- see subsequent slides) the two models are equivalent.

Ensemble of Codes - Protograph Construction

We now permute the edges in this edge bundle. We do the same thing for each edge bundle. Note that strictly speaking the ensemble created in this way is different from the ensemble created by the configuration model. But for the asymptotic analysis (density evolution -- see subsequent slides) the two models are equivalent.

We now permute the edges in this edge bundle. We do the same thing for each edge bundle. Note that strictly speaking the ensemble created in this way is different from the ensemble created by the configuration model. But for the asymptotic analysis (density evolution -- see subsequent slides) the two models are equivalent.

Saturday Juy 13,13
We now permute the edges in this edge bundle. We do the same thing for each edge bundle. Note that strictly speaking the ensemble created in this way is different from the ensemble created by the configuration model. But for the asymptotic analysis (density evolution -- see subsequent slides) the two models are equivalent.

Bit MAP Decoder to Belief Propagation Decoder

$$
\begin{aligned}
\hat{x}_{i}^{\mathrm{MAP}} & =\operatorname{argmax}_{x_{i} \in\{ \pm 1\}} p\left(X_{i}=x_{i} \mid y\right) \\
& =\operatorname{argmax}_{x_{i} \in\{ \pm 1\}} \sum_{x_{i}}\left(\prod_{j} p\left(y_{j} \mid x_{j}\right)\right) \mathbf{1}_{\{x \in \mathcal{C}\}}
\end{aligned}
$$

turday, July 13,13
For the BEC, bit MAP decoding could be done by solving a system of linear equations, i.e., in complexity n^{3}.But we are interested in an algorithm that is applicable for general BMS channels (where MAP decoding is typically intractable). We therefore only consider a message-passing algorithm which is applicable also in the general case. More precisely, we consider the sum-product (also called belief-propagation (BP)) algorithm. This algorithm performs bit MAP decoding on codes on graphs whose factor graph is a tree.

Bit MAP Decoder to Belief Propagation Decoder

$$
\begin{aligned}
& \hat{x}_{i}^{\mathrm{MAP}}=\operatorname{argmax}_{x_{i} \in\{ \pm 1\}} p\left(X_{i}=x_{i} \mid y\right) \\
& =\operatorname{argmax}_{x_{i} \in\{ \pm 1\}} \sum_{x_{i}}\left(\prod_{j} p\left(y_{j} \mid x_{j}\right)\right) \mathbf{1}_{\{x \in \mathcal{C}\}} \\
& =0
\end{aligned}
$$

Complexity for the BEC O(n^{3})

$$
\begin{aligned}
\hat{x}_{i}^{\text {MAP }} & =\operatorname{argmax}_{x_{i} \in\{ \pm 1\}} p\left(X_{i}=x_{i} \mid y\right) \\
& =\operatorname{argmax}_{x_{i} \in\{ \pm 1\}} \sum_{x_{i}}\left(\prod_{j} p\left(y_{j} \mid x_{j}\right)\right) \mathbf{1}_{\{x \in \mathcal{C}\}}
\end{aligned}
$$

$$
H x^{T}=0^{T}
$$

$=0$

Complexity for the BEC O(n^{3})

ay. July 13,13

For the BEC, bit MAP decoding could be done by solving a system of linear equations, i.e., in complexity n^{3}. But we are interested in an algorithm that is applicable for general BMS channels (where MAP decoding is typically intractable). We therefore only consider a message-passing algorithm which is applicable also in the general case. More precisely, we consider the sum-product (also called belief-propagation (BP)) algorithm. This algorithm performs bit MAP decoding on codes on graphs whose factor graph is a tree.

Bit MAP Decoder to Belief Propagation Decoder

$$
\begin{aligned}
\hat{x}_{i}^{\mathrm{MAP}} & =\operatorname{argmax}_{x_{i} \in\{ \pm 1\}} p\left(X_{i}=x_{i} \mid y\right) \\
& =\operatorname{argmax}_{x_{i} \in\{ \pm 1\}} \sum_{x_{i}}\left(\prod_{j} p\left(y_{j} \mid x_{j}\right)\right) \mathbf{1}_{\{x \in \mathcal{C}\}}
\end{aligned}
$$

$$
\begin{aligned}
& H x^{T}=0^{T} \\
& H_{\mathcal{E}} x_{\mathcal{E}}^{T}=H_{\mathcal{E}} x_{\mathcal{E}}^{T} \\
& H_{\mathcal{E}} x_{\mathcal{E}}^{T}=s^{T}
\end{aligned}
$$

Complexity for the BEC O($\left.n^{3}\right)$

$$
\begin{aligned}
\hat{x}_{i}^{\mathrm{MAP}} & =\operatorname{argmax}_{x_{i} \in\{ \pm 1\}} p\left(X_{i}=x_{i} \mid y\right) \\
& =\operatorname{argmax}_{x_{i} \in\{ \pm 1\}} \sum_{x_{i}}\left(\prod_{j} p\left(y_{j} \mid x_{j}\right)\right) \mathbf{1}_{\{x \in \mathcal{C}\}}
\end{aligned}
$$

$$
\begin{aligned}
& H x^{T}=0^{T} \\
& H_{\mathcal{E}} x_{\mathcal{E}}^{T}=H_{\overline{\mathcal{E}}} x_{\overline{\mathcal{E}}}^{T}
\end{aligned}
$$

Complexity for the BEC O($\left.n^{3}\right)$

For the BEC, bit MAP decoding could be done by solving a system of linear equations, i.e., in complexity n^{3}. But we are interested in an algorithm that is applicable for general BMS channels (where MAP decoding is typically intractable). We therefore only consider a message-passing algorithm which is applicable also in the general case. More precisely, we consider the sum-product (also called belief-propagation (BP)) algorithm. This algorithm performs bit MAP decoding on codes on graphs whose factor graph is a tree.

 a very natural operation. Every time we have a check node so that all but one of its inputs are known, the BP algorithm uses the relationship implied by this check node to determine the unknown input.

Saturday, July 13,13
Here we see the BP algorithm in action. For the BEC the BP algorithm is particularly simple and performs ${ }^{12}$ a very natural operation. Every time we have a check node so that all but one of its inputs are known, the BP algorithm uses the relationship implied by this check node to determine the unknown input.

BP Decoder - BEC

Here we see the BP algorithm in action. For the BEC the BP algorithm is particularly simple and performs a very natural operation. Every time we have a check node so that all but one of its inputs are known, the BP algorithm uses the relationship implied by this check node to determine the unknown input.

Saturray, July 13,13
Here we see the BP algorithm in action. For the BEC the BP algorithm is particularly simple and performs ${ }^{12}$ a very natural operation. Every time we have a check node so that all but one of its inputs are known, the BP algorithm uses the relationship implied by this check node to determine the unknown input.

Saturday, July 13,13
Here we see the BP algorithm in action. For the BEC the BP algorithm is particularly simple and performs ${ }^{12}$ a very natural operation. Every time we have a check node so that all but one of its inputs are known, the BP algorithm uses the relationship implied by this check node to determine the unknown input.

Saturday, July 13,13
Here we see the BP algorithm in action. For the BEC the BP algorithm is particularly simple and performs a very natural operation. Every time we have a check node so that all but one of its inputs are known, the BP algorithm uses the relationship implied by this check node to determine the unknown input.

BP Decoder - BEC

Saturday, uly 13,13 see the BP algorithm in action. For the BEC the BP algorithm is particularly simple and performs
Here a very natural operation. Every time we have a check node so that all but one of its inputs are known, the BP algorithm uses the relationship implied by this check node to determine the unknown input.

Saturday, July 13,13
Here we see the BP algorithm in action. For the BEC the BP algorithm is particularly simple and performs ${ }^{12}$ a very natural operation. Every time we have a check node so that all but one of its inputs are known, the BP algorithm uses the relationship implied by this check node to determine the unknown input.

BP Decoder - BEC

Saturday, July 13,13
Here we see the $B P$ algorithm in action. For the $B E C$ the $B P$ algorithm is particularly simple and performs a very natural operation. Every time we have a check node so that all but one of its inputs are known, the BP algorithm uses the relationship implied by this check node to determine the unknown input.

How does BP perform on the BEC?

$(3,6)$ ensemble

Saturday, Juy 13,13
Now where we have defined the class of codes we consider, and the algorithm which we use for decoding, we proceed to see how this combination performs.

How does BP perform on the BEC?

$(3,6)$ ensemble
Here is the experiment we consider. Fix the ensemble. In the above example it is the (3,6)-regular ensemble. This will serve as our running example. Now pick very long instances of this ensemble. Pick a random codeword and transmit over a BEC with erasure probability eps. Run the BP decoder until it no longer makes any progress. Record the error probability and average over many instances. Plot the average bit-error probability versus eps. Naturally, as eps decreases the error probability decreases. What is most interesting is that at some specific point we see a jump of the error probability from a non-zero value down to zero. This is the $B P$ "threshold."In the next slides, we will explain how to locate the $B P$ threshold.

How does BP perform on the BEC?

$(3,6)$ ensemble

Here is the experiment we consider. Fix the ensemble. In the above example it is the $(3,6)$-regular ensemble. This will serve as our running example. Now pick very long instances of this ensemble. Pick a random codeword and transmit over a BEC with erasure probability eps. Run the BP decoder until it no onger makes any progress. Record the error probability and average over many instances. Plot the average bit-error probability versus eps. Naturally, as eps decreases the error probability decreases. What is most interesting is that at some specific point we see a jump of the error probability from a non-zero value down to zero. This is the BP "threshold."In the next slides, we will explain how to locate the BP threshold.

How does BP perform on the BEC?

$(3,6)$ ensemble
uly 13,13
Here is the experiment we consider. Fix the ensemble. In the above example it is the (3,6)-regular ensemble. This will serve as our running example. Now pick very long instances of this ensemble. Pick a random codeword and transmit over a BEC with erasure probability eps. Run the BP decoder until it no longer makes any progress. Record the error probability and average over many instances. Plot the average bit-error probability versus eps. Naturally, as eps decreases the error probability decreases. What is most interesting is that at some specific point we see a jump of the error probability from a non-zero value down to zero. This is the BP "threshold."In the next slides, we will explain how to locate the BP threshold.

How does BP perform on the BEC?

Salurday, uluy 13,13
Here is the experiment we consider. Fix the ensemble. In the above example it is the (3, 6)-regular ensemble. This will serve as our running example. Now pick very long instances of this ensemble. Pick a random codeword and transmit over a BEC with erasure probability eps. Run the BP decoder until it no longer makes any progress. Record the error probability and average over many instances. Plot the average bit-error probability versus eps. Naturally, as eps decreases the error probability decreases. What is most interesting is that at some specific point we see a jump of the error probability from a non-zero value down to zero. This is the BP "threshold."In the next slides, we will explain how to locate the BP threshold.

How does BP perform on the BEC?

$(3,6)$ ensemble
rday, Juy 13,13
Here is the experiment we consider. Fix the ensemble. In the above example it is the $(3,6)$-regular ensemble. This will serve as our running example. Now pick very long instances of this ensemble. Pick a random codeword and transmit over a BEC with erasure probability eps. Run the BP decoder until it no longer makes any progress. Record the error probability and average over many instances. Plot the average bit-error probability versus eps. Naturally, as eps decreases the error probability decreases. What is most interesting is that at some specific point we see a jump of the error probability from a non-zero value down to zero. This is the BP "threshold."In the next slides, we will explain how to locate the BP threshold.

How does BP perform on the BEC?

$(3,6)$ ensemble
Here is the experiment we consider. Fix the ensemble. In the above example it is the $(3,6)$-regular ensemble. This will serve as our running example. Now pick very long instances of this ensemble. Pick a random codeword and transmit over a BEC with erasure probability eps. Run the BP decoder until it no onger makes any progress. Record the error probability and average over many instances. Plot the average bit-error probability versus eps. Naturally, as eps decreases the error probability decreases. What is most interesting is that at some specific point we see a jump of the error probability from a non-zero value down to zero. This is the BP "threshold."In the next slides, we will explain how to locate the BP threshold.

How does BP perform on the BEC?

 day, suy 13,13
Here is the experiment we consider. Fix the ensemble. In the above example it is the (3,6)-regular ensemble. This will serve as our running example. Now pick very long instances of this ensemble. Pick a random codeword and transmit over a BEC with erasure probability eps. Run the BP decoder until it no longer makes any progress. Record the error probability and average over many instances. Plot the average bit-error probability versus eps. Naturally, as eps decreases the error probability decreases. What is most interesting is that at some specific point we see a jump of the error probability from a non-zero value down to zero. This is the BP "threshold."In the next slides, we will explain how to locate the BP threshold.

How does BP perform on the BEC?

Salurday, uluy 13,13
Here is the experiment we consider. Fix the ensemble. In the above example it is the (3, 6)-regular ensemble. This will serve as our running example. Now pick very long instances of this ensemble. Pick a random codeword and transmit over a BEC with erasure probability eps. Run the BP decoder until it no longer makes any progress. Record the error probability and average over many instances. Plot the average bit-error probability versus eps. Naturally, as eps decreases the error probability decreases. What is most interesting is that at some specific point we see a jump of the error probability from a non-zero value down to zero. This is the BP "threshold."In the next slides, we will explain how to locate the BP threshold.

How does BP perform on the BEC?

 urray, Juy 13,13
Saturday, July 13,13
Here is the experiment we consider. Fix the ensemble. In the above example it is the $(3,6)$-regular ensemble. This will serve as our running example. Now pick very long instances of this ensemble. Pick a random codeword and transmit over a BEC with erasure probability eps. Run the BP decoder until it no longer makes any progress. Record the error probability and average over many instances. Plot the average bit-error probability versus eps. Naturally, as eps decreases the error probability decreases. What is most interesting is that at some specific point we see a jump of the error probability from a non-zero value down to zero. This is the BP "threshold."In the next slides, we will explain how to locate the BP threshold.

How does BP perform on the BEC?

$(3,6)$ ensemble
Here is the experiment we consider. Fix the ensemble. In the above example it is the $(3,6)$-regular ensemble. This will serve as our running example. Now pick very long instances of this ensemble. Pick a random codeword and transmit over a BEC with erasure probability eps. Run the BP decoder until it no onger makes any progress. Record the error probability and average over many instances. Plot the average bit-error probability versus eps. Naturally, as eps decreases the error probability decreases. What is most interesting is that at some specific point we see a jump of the error probability from a non-zero value down to zero. This is the BP "threshold."In the next slides, we will explain how to locate the BP threshold.

How does BP perform on the BEC?

Saturray, July 13,13
Here is the experiment we consider. Fix the ensemble. In the above example it is the (3,6)-regular ensemble. This will serve as our running example. Now pick very long instances of this ensemble. Pick a random codeword and transmit over a BEC with erasure probability eps. Run the BP decoder until it no longer makes any progress. Record the error probability and average over many instances. Plot the average bit-error probability versus eps. Naturally, as eps decreases the error probability decreases. What is most interesting is that at some specific point we see a jump of the error probability from a non-zero value down to zero. This is the BP "threshold."In the next slides, we will explain how to locate the BP threshold.

How does BP perform on the BEC?

Saucrata, Juy 13,13
Here is the experiment we consider. Fix the ensemble. In the above example it is the (3, 6)-regular ensemble. This will serve as our running example. Now pick very long instances of this ensemble. Pick a random codeword and transmit over a BEC with erasure probability eps. Run the BP decoder until it no longer makes any progress. Record the error probability and average over many instances. Plot the average bit-error probability versus eps. Naturally, as eps decreases the error probability decreases. What is most interesting is that at some specific point we see a jump of the error probability from a non-zero value down to zero. This is the BP "threshold."In the next slides, we will explain how to locate the BP threshold.

How does BP perform on the BEC?

Here is the experiment we consider. Fix the ensemble. In the above example it is the $(3,6)$-regular ensemble. This will serve as our running example. Now pick very long instances of this ensemble. Pick a random codeword and transmit over a BEC with erasure probability eps. Run the BP decoder until it no longer makes any progress. Record the error probability and average over many instances. Plot the average bit-error probability versus eps. Naturally, as eps decreases the error probability decreases. What is most interesting is that at some specific point we see a jump of the error probability from a non-zero value down to zero. This is the BP "threshold."In the next slides, we will explain how to locate the BP threshold.

How does BP perform on the BEC?

$(3,6)$ ensemble
Here is the experiment we consider. Fix the ensemble. In the above example it is the $(3,6)$-regular ensemble. This will serve as our running example. Now pick very long instances of this ensemble. Pick a random codeword and transmit over a BEC with erasure probability eps. Run the BP decoder until it no onger makes any progress. Record the error probability and average over many instances. Plot the average bit-error probability versus eps. Naturally, as eps decreases the error probability decreases. What is most interesting is that at some specific point we see a jump of the error probability from a non-zero value down to zero. This is the BP "threshold."In the next slides, we will explain how to locate the BP threshold.

Saturday, July 13,13
Set us analyze how the erasure probability behaves during the decoding process for a large code. We do ${ }^{15}$ this by looking how the erasure probability behaves at each of the two types of the nodes. Consider a (d , d_{r}-regular code, i.e., every variable node has degree d_{l} and and every check node has degree d_{r}.

At the variable node, if there is an incoming message which is not an erasure, then the variable node is exactly determined. This is because we are transmitting over the BEC and either we have perfect information or we have absolutely useless information. On the check node side, even if one incoming message is in erasure, the check node output has no way knowing whether it is 0 or 1 and hence the

one iteration of BP at variable node

one iteration of BP at check
node

Asymptotic Analysis - Density Evolution (DE)

one iteration of BP at variable node

one iteration
of BP at check
node

Saturday, July 13,13
Let us analyze how the erasure probability behaves during the decoding process for a large code. We do ${ }^{15}$ this by looking how the erasure probability behaves at each of the two types of the nodes. Consider a (d , d_{r}-regular code, i.e., every variable node has degree d_{l} and and every check node has degree d_{r}.

At the variable node, if there is an incoming message which is not an erasure, then the variable node is exactly determined. This is because we are transmitting over the BEC and either we have perfect information or we have absolutely useless information. On the check node side, even if one incoming message is in erasure, the check node output has no way knowing whether it is 0 or 1 and hence the

Let us analyze how the erasure probability behaves during the decoding process for a large code. We do this by looking how the erasure probability behaves at each of the two types of the nodes. Consider a (di, d_{r}-regular code, i.e., every variable node has degree d_{l} and and every check node has degree d_{r}.

At the variable node, if there is an incoming message which is not an erasure, then the variable node is exactly determined. This is because we are transmitting over the BEC and either we have perfect information or we have absolutely useless information. On the check node side, even if one incoming message is in erasure, the check node output has no way knowing whether it is 0 or 1 and hence the

Saurray Juy 13,13
Set us analyze how the erasure probability behaves during the decoding process for a large code. We do ${ }^{15}$ this by looking how the erasure probability behaves at each of the two types of the nodes. Consider a (d, $\left.d_{r}\right)$-regular code, i.e., every variable node has degree d_{l} and and every check node has degree d_{r}.

At the variable node, if there is an incoming message which is not an erasure, then the variable node is exactly determined. This is because we are transmitting over the BEC and either we have perfect information or we have absolutely useless information. On the check node side, even if one incoming message is in erasure, the check node output has no way knowing whether it is 0 or 1 and hence the

one iteration of BP at variable node

one iteration of BP at check node

Saturday, July 13,13
Let us analyze how the erasure probability behaves during the decoding process for a large code. We do this by looking how the erasure probability behaves at each of the two types of the nodes. Consider a (d), d_{r}-regular code, i.e., every variable node has degree d_{l} and and every check node has degree d_{r}.

At the variable node, if there is an incoming message which is not an erasure, then the variable node is exactly determined. This is because we are transmitting over the BEC and either we have perfect information or we have absolutely useless information. On the check node side, even if one incoming message is in erasure, the check node output has no way knowing whether it is 0 or 1 and hence the

Asymptotic Analysis - Density Evolution (DE)

one iteration of BP at variable node

one iteration
of BP at check node

Let us analyze how the erasure probability behaves during the decoding process for a large code. We do this by looking how the erasure probability behaves at each of the two types of the nodes. Consider a (d , d_{r}-regular code, i.e., every variable node has degree d_{l} and and every check node has degree d_{r}.

At the variable node, if there is an incoming message which is not an erasure, then the variable node is exactly determined. This is because we are transmitting over the BEC and either we have perfect information or we have absolutely useless information. On the check node side, even if one incoming message is in erasure, the check node output has no way knowing whether it is 0 or 1 and hence the

Asymptotic Analysis - Density Evolution (DE)

July 13,13

Let us analyze how the erasure probability behaves during the decoding process for a large code. We do this by looking how the erasure probability behaves at each of the two types of the nodes. Consider a (d), d_{r}-regular code, i.e., every variable node has degree d_{1} and and every check node has degree d_{r}.

At the variable node, if there is an incoming message which is not an erasure, then the variable node is exactly determined. This is because we are transmitting over the BEC and either we have perfect information or we have absolutely useless information. On the check node side, even if one incoming message is in erasure, the check node output has no way knowing whether it is 0 or 1 and hence the

Saturay, July 13,13
So if we perform I iterations we get a sequence of erasure probabilities. This is how Gallager analysed LDPC codes. Luby et. al. used a somewhat different procedure. In their analysis they look at the so-called peeling decoder. This decoder is entirely equivalent to the BP decoder (when transmitting over the BEC). In this decoder, as long as there is a degree-one check node, we use this check node to determine one more bit and then remove the used check node as well as the determine variable. We then follow the evolution of the graph. This can be done by writing down a system of differential equations. This method is called the Wormald method ("Differential Equations for Random Processes and Random Graphs", N. Wormald, Ann. Appl. Probability, Vol. 5, Pg. 1217-12351).

Saturday, July 13,13
So if we perform I iterations we get a sequence of erasure probabilities. This is how Gallager analysed LDPC codes. Luby et. al. used a somewhat different procedure. In their analysis they look at the so-called peeling decoder. This decoder is entirely equivalent to the BP decoder (when transmitting over the BEC). In this decoder, as long as there is a degree-one check node, we use this check node to determine one more bit and then remove the used check node as well as the determine variable. We then follow the evolution of the graph. This can be done by writing down a system of differential equations. This method is called the Wormald method (["Differential Equations for Random Processes and Random Graphs", N. Wormald, Ann. Appl. Probability, Vol. 5, Pg. 1217-1235])

yy, July 13,13
So if we perform I iterations we get a sequence of erasure probabilities. This is how Gallager analysed LDPC codes. Luby et. al. used a somewhat different procedure. In their analysis they look at the so-called peeling decoder. This decoder is entirely equivalent to the BP decoder (when transmitting over the BEC). In this decoder, as long as there is a degree-one check node, we use this check node to determine one more bit and then remove the used check node as well as the determine variable. We then follow the evolution of the graph. This can be done by writing down a system of differential equations. This method is called the Wormald method (["Differential Equations for Random Processes and Random Graphs", N. Wormald, Ann. Appl. Probability, Vol. 5, Pg. 1217-1235]).

turday July 13,13
So if we perform I iterations we get a sequence of erasure probabilities. This is how Gallager analysed LDPC codes. Luby et. al. used a somewhat different procedure. In their analysis they look at the so-called peeling decoder. This decoder is entirely equivalent to the BP decoder (when transmitting over the BEC). In this decoder, as long as there is a degree-one check node, we use this check node to determine one more bit and then remove the used check node as well as the determine variable. We then follow the evolution of the graph. This can be done by writing down a system of differential equations. This method is called the Wormald method (["Differential Equations for Random Processes and Random Graphs", N. Wormald, Ann. Appl. Probability, Vol. 5, Pg. 1217-1235]).

So if we perform I iterations we get a sequence of erasure probabilities. This is how Gallager analysed LDPC codes. Luby et. al. used a somewhat different procedure. In their analysis they look at the so-called peeling decoder. This decoder is entirely equivalent to the BP decoder (when transmitting over the BEC). In this decoder, as long as there is a degree-one check node, we use this check node to determine one more bit and then remove the used check node as well as the determine variable. We then follow the evolution of the graph. This can be done by writing down a system of differential equations. This method is called the Wormald method (["Differential Equations for Random Processes and Random Graphs", N. Wormald, Ann. Appl. Probability, Vol. 5, Pg. 1217-1235]).

13
So if we perform I iterations we get a sequence of erasure probabilities. This is how Gallager analysed LDPC codes. Luby et. al. used a somewhat different procedure. In their analysis they look at the so-called peeling decoder. This decoder is entirely equivalent to the BP decoder (when transmitting over the BEC). In this decoder, as long as there is a degree-one check node, we use this check node to determine one more bit and then remove the used check node as well as the determine variable. We then follow the evolution of the graph. This can be done by writing down a system of differential equations. This method is called the Wormald method ("Differential Equations for Random Processes and Random Graphs", N. Wormald, Ann. Appl. Probability, Vol. 5, Pg. 1217-1235]).

Saturday, July 13,13
So if we perform I iterations we get a sequence of erasure probabilities. This is how Gallager analysed LDPC codes. Luby et. al. used a somewhat different procedure. In their analysis they look at the so-called peeling decoder. This decoder is entirely equivalent to the BP decoder (when transmitting over the BEC). In this decoder, as long as there is a degree-one check node, we use this check node to determine one more bit and then remove the used check node as well as the determine variable. We then follow the evolution of the graph. This can be done by writing down a system of differential equations. This method is called the Wormald method ("Differential Equations for Random Processes and Random Graphs", N. Wormald, Ann. Appl. Probability, Vol. 5, Pg. 1217-1235]).

Asymptotic Analysis - Density Evolution (DE)

Note: DE sequence is decreasing and bounded

 from below \Rightarrow converges

$$
\begin{aligned}
& x^{(\ell)}=\epsilon\left(y^{(\ell)}\right)^{d_{l}-1} \\
& y^{(\ell)}=1-\left(1-x^{(\ell-1)}\right)^{d_{r}-1}
\end{aligned}
$$

$$
x^{(\ell=2)}=\epsilon\left(y^{(\ell=2)}\right)^{d_{l}-1}
$$

$$
y^{(\ell=2)}=1-\left(1-x^{(\ell=1)}\right)^{d_{r}-1}
$$

$$
x^{(\ell=1)}=\epsilon\left(y^{(\ell=1)}\right)^{d_{l}-1}
$$

$$
y^{(\ell=1)}=1-\left(1-x^{(\ell=0)}\right)^{d_{r}-1}
$$

Saturay, July 13,13
So if we perform I iterations we get a sequence of erasure probabilities. This is how Gallager analysed LDPC codes. Luby et. al. used a somewhat different procedure. In their analysis they look at the so-called peeling decoder. This decoder is entirely equivalent to the BP decoder (when transmitting over the BEC). In this decoder, as long as there is a degree-one check node, we use this check node to determine one more bit and then remove the used check node as well as the determine variable. We then follow the evolution of the graph. This can be done by writing down a system of differential equations. This method is called the Wormald method (["Differential Equations for Random Processes and Random Graphs", N. Wormald, Ann. Appl. Probability, Vol. 5, Pg. 1217-12351).

Note that in the density evolution approach we assume that we first fix the number of iterations and let the ength of the code tend to infinity (so that there are no loops in the graph up to the desired size). We THEN let the number of iterations tend to infinity. In the Wormald approach on the other hand we take exactly the opposite limit. Luckily both approaches give exactly the same threshold. It is then easy to see that in fact we can take the limit in any order, or jointly, and that we always get the same threshold.
Asymptotic Analysis - Density Evolution (DE)

Note: DE sequence is decreasing and bounded from below \Rightarrow converges

DE corresponds to the limit

$$
\lim _{\ell \rightarrow \infty} \lim _{n \rightarrow \infty}
$$

For the BEC it is easy to prove that result is always the same regardless of how the limits are taken

same 13

Saturday, July 13,13
Note that in the density evolution approach we assume that we first fix the number of iterations and let the ${ }^{17}$ Note that in the density evolution approach we assume that we first fix the number of iterations and let the
length of the code tend to infinity (so that there are no loops in the graph up to the desired size). We THEN let the number of iterations tend to infinity. In the Wormald approach on the other hand we take exactly the opposite limit. Luckily both approaches give exactly the same threshold. It is then easy to see that in fact we can take the limit in any order, or jointly, and that we always get the same threshold.

DE for $(3,6)$ Ensemble

Saturday July 13,13
Let us now apply DE for our running example. We see that up to the "BP threshold", which for the running example is around 0.429 , the erasure probability tends to zero if we let the number of iterations tend to infinity. For higher values of eps the x -value tends to a non-zero value.

Note: DE sequence is decreasing and bounded

 from below \Rightarrow convergesDE corresponds to the limit

$$
\lim _{\ell \rightarrow \infty} \lim _{n \rightarrow \infty}
$$

For the BEC it is easy to prove that result is always the same regardless of how the limits are taken

Concentration: It can be shown that the behavior of almost all codes in the ensemble is close to the average predicted by $D E$

Saturay, Juy 13,13
Note that in the density evolution approach we assume that we first fix the number of iterations and let the length of the code tend to infinity (so that there are no loops in the graph up to the desired size). We THEN let the number of iterations tend to infinity. In the Wormald approach on the other hand we take exactly the opposite limit. Luckily both approaches give exactly the same threshold. It is then easy to see that in fact we can take the limit in any order, or jointly, and that we always get the same threshold.

DE for $(3,6)$ Ensemble

Saturday, July 13,13 , example is around 0.429 , the erasure probability tends to zero if we let the number of iterations tend to infinity. For higher values of eps the x -value tends to a non-zero value.

DE for (3,6) Ensemble

Saturday, July 13,1
Let us now apply DE for our running example. We see that up to the "BP threshold", which for the running example is around 0.429 , the erasure probability tends to zero if we let the number of iterations tend to infinity. For higher values of eps the x -value tends to a non-zero value

DE for $(3,6)$ Ensemble

Salurday, Juy 13,13

Let us now apply DE for our running example. We see that up to the "BP threshold", which for the running example is around 0.429 , the erasure probability tends to zero if we let the number of iterations tend to infinity. For higher values of eps the x -value tends to a non-zero value.

DE for (3, 6) Ensemble
 example is around 0.429 , the erasure probability tends to zero if we let the number of iterations tend to infinity. For higher values of eps the x -value tends to a non-zero value.

DE for $(3,6)$ Ensemble

Saturday, July 13,13
Let us now apply DE for our running example. We see that up to the "BP threshold", which for the running example is around 0.429 , the erasure probability tends to zero if we let the number of iterations tend to infinity. For higher values of eps the x -value tends to a non-zero value.

DE for $(3,6)$ Ensemble

Let us now apply DE for our running example. We see that up to the "BP threshold", which for the running example is around 0.429 , the erasure probability tends to zero if we let the number of iterations tend to infinity. For higher values of eps the x -value tends to a non-zero value.

DE for (3, 6) Ensemble

DE for $(3,6)$ Ensemble

Saturday, July 13,13

Let us now apply DE for our running example. We see that up to the "BP threshold", which for the running example is around 0.429 , the erasure probability tends to zero if we let the number of iterations tend to infinity. For higher values of eps the x -value tends to a non-zero value.

Saturday, July 13,13
Instead of plotting the " x-value" on the vertical axis it is often more convenient to plot the EXIT value. The ${ }^{\text {19 }}$
Is EXIT value has a simple interpretation. It is the error probability of the best estimate we can do using all the "internal" messages at a node but without the channel observation at this bit. This is why we have y to the power dl and not $\mathrm{dl}-1$ but we do not have the factor eps corresponding to the channel erasure fraction.

EXIT Curve for $(3,6)$ Ensemble

EXIT value as a function of increasing iterations for a given channel value

Saturday, July 13,13
We now repeat the previous experiment but we plot the EXIT value instead of the x-value on the vertical axis.

EXIT Curve for $(3,6)$ Ensemble

Saturday, July 13,13
We now repeat the previous experiment but we plot the EXIT value instead of the x-value on the vertical axis.

EXIT Curve for (3,6) Ensemble

Saturday, Juy 13,13
We now repeat the previous experiment but we plot the EXIT value instead of the x-value on the vertical axis.

EXIT Curve for $(3,6)$ Ensemble

EXIT Curve for (3, 6) Ensemble

Saturray, July 13,1

We now repeat the previous experiment but we plot the EXIT value instead of the x-value on the vertical axis.

A look back...

$(3,6)$ ensemble
Saturray, July 13,13
Let us now go back to our first experiment. We see now that we can predict where the red dots will lie. In fact, in our original experiment we cheated slightly. We printed the EXIT value and not the bit error probability. These two only differ by a factor eps. We will see soon why the EXIT value is the "right" quantity to plot.

EXIT Curve for $(3,6)$ Ensemble

Saturday, Juy 13,13 , 13 , pepeat the previous experiment but we plot the EXIT value instead of the x-value on the vertical ${ }^{20}$ axis.

A look back ...

$(3,6)$ ensemble
Saturday, July 13,13
Let us now go back to our first experiment. We see now that we can predict where the red dots will lie. In fact, in our original experiment we cheated slightly. We printed the EXIT value and not the bit error probability. These two only differ by a factor eps. We will see soon why the EXIT value is the "right" quantity to plot.

A look back ...

$(3,6)$ ensemble
Saturday, July 13,13
Let us now go back to our first experiment. We see now that we can predict where the red dots will lie. In ${ }^{21}$ fact, in our original experiment we cheated slightly. We printed the EXIT value and not the bit error probability. These two only differ by a factor eps. We will see soon why the EXIT value is the "right" quantity to plot.

A look back ...

$(3,6)$ ensemble

Saturday, July 13,13

Let us now go back to our first experiment. We see now that we can predict where the red dots will lie. In fact, in our original experiment we cheated slightly. We printed the EXIT value and not the bit error probability. These two only differ by a factor eps. We will see soon why the EXIT value is the "right" quantity to plot.

A look back ...

$\begin{array}{lllllllllllllllllll}0.0 & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9 & 1.0\end{array}$

$(3,6)$ ensemble

Saturday, , uly 13,13
Let us now go back to our first experiment. We see now that we can predict where the red dots will lie. In fact, in our original experiment we cheated slightly. We printed the EXIT value and not the bit error probability. These two only differ by a factor eps. We will see soon why the EXIT value is the "right" quantity to plot.

A look back ...

$(3,6)$ ensemble
Sunday, Juy y 13 , 13
Let us now go back to our first experiment. We see now that we can predict where the red dots will lie. In fact, in our original experiment we cheated slightly. We printed the EXIT value and not the bit error probability. These two only differ by a factor eps. We will see soon why the EXIT value is the "right" quantity to plot.

A look back ...

Let us now go back to our first experiment. We see now that we can predict where the red dots will lie. In ${ }^{21}$ fact, in our original experiment we cheated slightly. We printed the EXIT value and not the bit error probability. These two only differ by a factor eps. We will see soon why the EXIT value is the "right" quantity to plot.

A look back ...

Saturday, Juy 13,13
Let us now go back to our first experiment. We see now that we can predict where the red dots will lie. In ${ }^{21}$ fact, in our original experiment we cheated slightly. We printed the EXIT value and not the bit error probability. These two only differ by a factor eps. We will see soon why the EXIT value is the "right" quantity to plot.

A look back ...

Saturday, uly
Let us now go back to our first experiment. We see now that we can predict where the red dots will lie. In ${ }^{21}$ fact, in our original experiment we cheated slightly. We printed the EXIT value and not the bit error probability. These two only differ by a factor eps. We will see soon why the EXIT value is the "right" quantity to plot.

A look back ...

Let us now go back to our first experiment. We see now that we can predict where the red dots will lie. In fact, in our original experiment we cheated slightly. We printed the EXIT value and not the bit error probability. These two only differ by a factor eps. We will see soon why the EXIT value is the "right" quantity to plot.

A look back ...

$(3,6)$ ensemble

Saturday, July 13,13
Let us now go back to our first experiment. We see now that we can predict where the red dots will lie. In ${ }^{21}$ fact, in our original experiment we cheated slightly. We printed the EXIT value and not the bit error probability. These two only differ by a factor eps. We will see soon why the EXIT value is the "right" quantity to plot.

A look back ...

Saturday, July 13,13
Let us now go back to our first experiment. We see now that we can predict where the red dots will lie. In fact, in our original experiment we cheated slightly. We printed the EXIT value and not the bit error probability. These two only differ by a factor eps. We will see soon why the EXIT value is the "right" quantity to plot.

A look back ...

$(3,6)$ ensemble
Saturday, Juy 13,13
Let us now go back to our first experiment. We see now that we can predict where the red dots will lie. In ${ }^{21}$ fact, in our original experiment we cheated slightly. We printed the EXIT value and not the bit error probability. These two only differ by a factor eps. We will see soon why the EXIT value is the "right" quantity to plot.

A look back ...

Let us now go back to our first experiment. We see now that we can predict where the red dots will lie. In fact, in our original experiment we cheated slightly. We printed the EXIT value and not the bit error probability. These two only differ by a factor eps. We will see soon why the EXIT value is the "right" quantity to plot.

A look back ...

$(3,6)$ ensemble

Saturray, Juy 13,13
Let us now go back to our first experiment. We see now that we can predict where the red dots will lie. In ${ }^{21}$ fact, in our original experiment we cheated slightly. We printed the EXIT value and not the bit error probability. These two only differ by a factor eps. We will see soon why the EXIT value is the "right" quantity to plot.

A look back ...

Saturday, uly 13 , 13
Let us now go back to our first experiment. We see now that we can predict where the red dots will lie. In ${ }^{21}$ fact, in our original experiment we cheated slightly. We printed the EXIT value and not the bit error probability. These two only differ by a factor eps. We will see soon why the EXIT value is the "right" quantity to plot.

A look back ...

$(3,6)$
Let us now go back to our first experiment. We see now that we can predict where the red dots will lie. In ${ }^{21}$ fact, in our original experiment we cheated slightly. We printed the EXIT value and not the bit error probability. These two only differ by a factor eps. We will see soon why the EXIT value is the "right" quantity to plot.

A look back ...

${ }^{21}$
Let us now go back to our first experiment. We see now that we can predict where the red dots will lie. In fact, in our original experiment we cheated slightly. We printed the EXIT value and not the bit error probability. These two only differ by a factor eps. We will see soon why the EXIT value is the "right" quantity to plot.

Static Analysis via Fixed points

Forward Fixed points of DE

$$
\begin{aligned}
& x^{(\ell=0)}=\epsilon \\
& y^{(\ell)}=1-\left(1-x^{(\ell-1)}\right)^{d_{r}-1} \\
& x^{(\ell)}=\epsilon\left(y^{(\ell)}\right)^{d_{l}-1}
\end{aligned}
$$

rday July 13,13

Saturay, July 13,13
Rather than running the recursion we can right away figure out the value to which the recursion converges. This is because this final value must be a solution to the fixed-point (FP) equation $x=f(e p s, x)$, where f) denotes the recursive DE equations. Note that there are in general several values of x which satisfies the FP equation for a given eps, but there is always just a single value of eps for a given x, which is easily seen by solving for eps from the FP equation above. This makes it easy to plot this curve. But note also that in this picture we have "additional" fixed points. These FPs are unstable and we cannot get them by running DE. But as we will see they nevertheless play an important role in the analysis.

Static Analysis via Fixed points

Forward Fixed points of DE

$$
\begin{aligned}
& x^{(\ell=0)}=\epsilon \\
& y^{(\ell)}=1-\left(1-x^{(\ell-1)}\right)^{d_{r}-1} \\
& x^{(\ell)}=\epsilon\left(y^{(\ell)}\right)^{d_{l}-1} \\
& \left.x=\epsilon(1-(1-x))^{d_{r}-1}\right)^{d_{l}-1}
\end{aligned}
$$

Static Analysis via Fixed points

Forward Fixed points of DE

$x^{(\ell=0)}=\epsilon$
$y^{(\ell)}=1-\left(1-x^{(\ell-1)}\right)^{d_{r}-1}$
$x^{(\ell)}=\epsilon\left(y^{(\ell)}\right)^{d_{l}-1}$
$\left.x=\epsilon(1-(1-x))^{d_{r}-1}\right)^{d_{l}-1}$

Rather than running the recursion we can right away figure out the value to which the recursion converges. This is because this final value must be a solution to the fixed-point (FP) equation $x=f(e p s, x)$, where f) denotes the recursive DE equations. Note that there are in general several values of x which satisfies the FP equation for a given eps, but there is always just a single value of eps for a given x, which is easily seen by solving for eps from the FP equation above. This makes it easy to plot this curve. But note also that in this picture we have "additional" fixed points. These FPs are unstable and we cannot get them by running DE. But as we will see they nevertheless play an important role in the analysis.

Static Analysis via Fixed points

$$
\begin{aligned}
& \quad \text { Forward Fixed points of DE } \\
& x^{(\ell=0)}=\epsilon \\
& y^{(\ell)}=1-\left(1-x^{(\ell-1)}\right)^{d_{r}-1} \\
& x^{(\ell)}=\epsilon\left(y^{(\ell)}\right)^{d_{l}-1} \\
& \left.x=\epsilon(1-(1-x))^{d_{r}-1}\right)^{d_{l}-1}
\end{aligned}
$$

All Fixed points of DE

Saturday, July 13,13

Rather than running the recursion we can right away figure out the value to which the recursion converges. This is because this final value must be a solution to the fixed-point (FP) equation $\mathrm{x}=\mathrm{f}(\mathrm{eps}, \mathrm{x})$, where f) denotes the recursive DE equations. Note that there are in general several values of x which satisfies the FP equation for a given eps, but there is always just a single value of eps for a given x , which is easily seen by solving for eps from the FP equation above. This makes it easy to plot this curve. But note also that in this picture we have "additional" fixed points. These FPs are unstable and we cannot get them by running DE. But as we will see they nevertheless play an important role in the analysis.

Static Analysis via Fixed points

Forward Fixed points of DE

$$
\begin{aligned}
& x^{(\ell=0)}=\epsilon \\
& y^{(\ell)}=1-\left(1-x^{(\ell-1)}\right)^{d_{r}-1} \\
& x^{(\ell)}=\epsilon\left(y^{(\ell)}\right)^{d_{l}-1} \\
& \left.x=\epsilon(1-(1-x))^{d_{r}-1}\right)^{d_{l}-1}
\end{aligned}
$$

All Fixed points of DE

$$
\begin{aligned}
& \left.x=\epsilon(1-(1-x))^{d_{r}-1}\right)^{d_{l}-1} \\
& \epsilon=\frac{x}{\left.(1-(1-x))^{d_{r}-1}\right)^{d_{l}-1}}
\end{aligned}
$$

Saturday, July 13,13
Rather than running the recursion we can right away figure out the value to which the recursion converges, This is because this final value must be a solution to the fixed-point (FP) equation $x=f(e p s, x)$, where $f()$ denotes the recursive DE equations. Note that there are in general several values of x which satisfies the FP equation for a given eps, but there is always just a single value of eps for a given x , which is easily seen by solving for eps from the FP equation above. This makes it easy to plot this curve. But note also that in this picture we have "additional" fixed points. These FPs are unstable and we cannot get them by running DE. But as we will see they nevertheless play an important role in the analysis.

Static Analysis via Fixed points
Forward Fixed points of DE

$$
\begin{aligned}
& x^{(\ell=0)}=\epsilon \\
& y^{(\ell)}=1-\left(1-x^{(\ell-1)}\right)^{d_{r}-1} \\
& x^{(\ell)}=\epsilon\left(y^{(\ell)}\right)^{d_{l}-1} \\
& \left.x=\epsilon(1-(1-x))^{d_{r}-1}\right)^{d_{l}-1}
\end{aligned}
$$

All Fixed points of DE

$$
\begin{aligned}
& \left.x=\epsilon(1-(1-x))^{d_{r}-1}\right)^{d_{l}-1} \\
& \epsilon=\frac{x}{\left.(1-(1-x))^{d_{r}-1}\right)^{d_{l}-1}}
\end{aligned}
$$

Saturay, Juy y, 13

Rather than running the recursion we can right away figure out the value to which the recursion converges. This is because this final value must be a solution to the fixed-point (FP) equation $x=f(e p s, x)$, where f) denotes the recursive DE equations. Note that there are in general several values of x which satisfies the FP equation for a given eps, but there is always just a single value of eps for a given x , which is easily seen by solving for eps from the FP equation above. This makes it easy to plot this curve. But note also that in this picture we have "additional" fixed points. These FPs are unstable and we cannot get them by running DE. But as we will see they nevertheless play an important role in the analysis.

Static Analysis via Fixed points

Forward Fixed points of DE
$x^{(\ell=0)}=\epsilon$
$y^{(\ell)}=1-\left(1-x^{(\ell-1)}\right)^{d_{r}-1}$
$x^{(\ell)}=\epsilon\left(y^{(\ell)}\right)^{d_{l}-1}$
$\left.x=\epsilon(1-(1-x))^{d_{r}-1}\right)^{d_{l}-1}$

All Fixed points of DE

$$
\begin{aligned}
& \left.x=\epsilon(1-(1-x))^{d_{r}-1}\right)^{d_{l}-1} \\
& \epsilon=\frac{x}{\left.(1-(1-x))^{d_{r}-1}\right)^{d_{l}-1}}
\end{aligned}
$$

Saurday, July 13,13
Rather than running the recursion we can right away figure out the value to which the recursion converges This is because this final value must be a solution to the fixed-point (FP) equation $x=f(e p s, x)$, where f) denotes the recursive DE equations. Note that there are in general several values of x which satisfies the FP equation for a given eps, but there is always just a single value of eps for a given x, which is easily seen by solving for eps from the FP equation above. This makes it easy to plot this curve. But note also that in this picture we have "additional" fixed points. These FPs are unstable and we cannot get them by running DE. But as we will see they nevertheless play an important role in the analysis.

As for uncoupled codes, there are many flavors and variations on the theme. The exact version we use is ${ }^{24}$ not so important. They all behave more or less the same. For the purpose of this tutorial we consider two variations. Namely coupled ensembles defined by a protograph as well as a random version. In the protograph version, we connect neighboring copies in a regular fashion as described above. We stress that above we show the construction of the protograph of the coupled code and not the actual code which will be used for transmission. As mentioned before, for the real code, we need to "lift" the graph M times and then randomly permute edges in the same edge bundle. The "spatially coupled" qualifier for the codes comes about naturally since we consider protograph of standard LDPC codes, arrange them

Coupled Ensembles - Protograph Construction

As for uncoupled codes, there are many flavors and variations on the theme. The exact version we use is not so important. They all behave more or less the same. For the purpose of this tutorial we consider two variations. Namely coupled ensembles defined by a protograph as well as a random version. In the protograph version, we connect neighboring copies in a regular fashion as described above. We stress that above we show the construction of the protograph of the coupled code and not the actual code which will be used for transmission. As mentioned before, for the real code, we need to "lift" the graph M times and then randomly permute edges in the same edge bundle. The "spatially coupled" qualifier for the codes comes about naturally since we consider protograph of standard LDPC codes, arrange them

As for uncoupled codes, there are many flavors and variations on the theme. The exact version we use is not so important. They all behave more or less the same. For the purpose of this tutorial we consider two variations. Namely coupled ensembles defined by a protograph as well as a random version. In the protograph version, we connect neighboring copies in a regular fashion as described above. We stress that above we show the construction of the protograph of the coupled code and not the actual code which will be used for transmission. As mentioned before, for the real code, we need to "lift" the graph M times and then randomly permute edges in the same edge bundle. The "spatially coupled" qualifier for the codes comes about naturally since we consider protograph of standard LDPC codes, arrange them

ay. July 13,13

As for uncoupled codes, there are many flavors and variations on the theme. The exact version we use is not so important. They all behave more or less the same. For the purpose of this tutorial we consider two variations. Namely coupled ensembles defined by a protograph as well as a random version. In the protograph version, we connect neighboring copies in a regular fashion as described above. We stress that above we show the construction of the protograph of the coupled code and not the actual code which will be used for transmission. As mentioned before, for the real code, we need to "lift" the graph M times and then randomly permute edges in the same edge bundle. The "spatially coupled" qualifier for the codes comes about naturally since we consider protograph of standard LDPC codes, arrange them

Coupled Ensembles - Protograph Construction

As for uncoupled codes, there are many flavors and variations on the theme. The exact version we use is not so important. They all behave more or less the same. For the purpose of this tutorial we consider two variations. Namely coupled ensembles defined by a protograph as well as a random version. In the protograph version, we connect neighboring copies in a regular fashion as described above. We stress that above we show the construction of the protograph of the coupled code and not the actual code which will be used for transmission. As mentioned before, for the real code, we need to "lift" the graph M times and then randomly permute edges in the same edge bundle. The "spatially coupled" qualifier for the codes comes about naturally since we consider protograph of standard LDPC codes, arrange them

Saturday, Juy 13,13
As for uncoupled codes, there are many flavors and variations on the theme. The exact version we use is not so important. They all behave more or less the same. For the purpose of this tutorial we consider two variations. Namely coupled ensembles defined by a protograph as well as a random version. In the protograph version, we connect neighboring copies in a regular fashion as described above. We stress that above we show the construction of the protograph of the coupled code and not the actual code which will be used for transmission. As mentioned before, for the real code, we need to "lift" the graph M times and then randomly permute edges in the same edge bundle. The "spatially coupled" qualifier for the codes comes about naturally since we consider protograph of standard LDPC codes, arrange them

Saturday, July 13,13
In the random version, for each edge we pick a position within a window of size w . The only restriction is that the global edge counts have to match up. But for large instance this only imposes a negligible global restriction. It is not hard to see that if we allow the window to span the entire spatial length, we will recover the standard uncoupled LDPC code.

Coupled Ensembles

Protograph construction:	good performance suitable for implementation
Random construction:	good for proofs

If we implement such codes in "practice", protographs are the better choice. They in fact behave better, due to their decreased randomness. Further, the additional structure makes them well-suited for implementations. The random code construction on the other hand is better suited for proofs.

Why coupling might help

Saturday, Juy 13,13
Before we get to a more serious analysis let us see why spatial coupling might help. Let us first consider what happens if we take uncoupled ensembles and if we keep the rate fixed but increase the degrees. As we see in the sequence of EXIT curves (and as one can easily prove) the threshold decreases to zero as we increase the degrees.

Why coupling might help

$\left(d_{1}, d_{r}=2 d_{1}\right)$-regular uncoupled ensemble
d) increasing; BEC

Saturday, July 13,13
Before we get to a more serious analysis let us see why spatial coupling might help. Let us first consider what happens if we take uncoupled ensembles and if we keep the rate fixed but increase the degrees. As we see in the sequence of EXIT curves (and as one can easily prove) the threshold decreases to zero as we increase the degrees.

Why coupling might help

Before we get to a more serious analysis let us see why spatial coupling might help. Let us first consider what happens if we take uncoupled ensembles and if we keep the rate fixed but increase the degrees. As we see in the sequence of EXIT curves (and as one can easily prove) the threshold decreases to zero as we increase the degrees.

When we decode we can always ignore some additional information. This only makes the decoder perform worse. But as we see in the above case, at the boundary the code contains a $(2,4)$ cycle code. This code is know to have a BP threshold of $1 / 4$ when transmitting over the BEC. So we can decode jus the boundary nodes if we transmit over a BEC with erasure probability at most $1 / 4$ using the BP decoder

Why coupling might help
ignore extra edges when decoding the first section; this makes the code worse
$(2,4)$ cycle code with threshold $\epsilon^{\mathrm{BP}}=\frac{1}{3}$

Sautray, July 13,13
When we decode we can always ignore some additional information. This only makes the decoder perform worse. But as we see in the above case, at the boundary the code contains a (2,4) cycle code. This code is know to have a BP threshold of $1 / 4$ when transmitting over the BEC. So we can decode just the boundary nodes if we transmit over a BEC with erasure probability at most $1 / 4$ using the BP decoder.

Why coupling might help

Saturday, Juy 13,13
When we decode we can always ignore some additional information. This only makes the decoder perform worse. But as we see in the above case, at the boundary the code contains a $(2,4)$ cycle code. This code is know to have a BP threshold of $1 / 4$ when transmitting over the BEC. So we can decode just the boundary nodes if we transmit over a BEC with erasure probability at most $1 / 4$ using the BP decoder.

When we decode we can always ignore some additional information. This only makes the decoder
perform worse. But as we see in the above case, at the boundary the code contains a $(2,4)$ cycle code. This code is know to have a BP threshold of $1 / 4$ when transmitting over the BEC. So we can decode just the boundary nodes if we transmit over a BEC with erasure probability at most $1 / 4$ using the BP decoder

When we decode we can always ignore some additional information. This only makes the decoder perform worse. But as we see in the above case, at the boundary the code contains a $(2,4)$ cycle code. This code is know to have a BP threshold of $1 / 4$ when transmitting over the BEC. So we can decode just the boundary nodes if we transmit over a BEC with erasure probability at most $1 / 4$ using the BP decoder.

looks just like before; we conclude that the threshold is at at least $1 / 3$

Why coupling might help
$(6,12)$-regular coupled ensemble

But now where we decoded the boundary nodes we see that the remainder of the code looks just like the original code, except that we "chopped" off the left-most section. The code is "self-similar" in this sense So we can continue in recursive fashion and now decode the second section and so on. We conclude that this ensemble has a BP threshold of at least $1 / 3$.

Why coupling might help

But the same argument holds if we do not start with a $(6,12)$ ensemble but with any ($2 \mathrm{k}, 4 \mathrm{k}$) ensemble, regardless how large the degrees are. So the BP threshold does NOT tend to zero for coupled ensembles if we increase the degrees. Indeed, we will see that they in fact get BETTER.

But the same argument holds if we do not start with a $(6,12)$ ensemble but with any $(2 k, 4 k)$ ensemble, regardless how large the degrees are. So the BP threshold does NOT tend to zero for coupled ensembles if we increase the degrees. Indeed, we will see that they in fact get BETTER.

$$
\begin{aligned}
& x^{(\ell)}=\epsilon\left(y^{(\ell)}\right)^{d_{l}-1} \\
& y^{(\ell)}=1-\left(1-x^{(\ell-1)}\right)^{d_{r}-1}
\end{aligned}
$$

symmetric

Let us write down now the DE equations for the coupled case. First recall that for the uncoupled case the "state" used in DE is a single scalar, namely x , which represents the erasure fraction along an outgoing edge from the variable node.

Saturday, July 13,13
For the coupled case the state is no longer a scalar. In the "interior" of the chain the structure of the code is shift invariant (i.e., looks the same for each position) but at the boundary the conditions are no longer uniform. We hence need one scalar x_{i} to describe the state at each position i . Why is the boundary set to 0 . We assume that at the boundary we know the values. So hence the erasure probability at the boundary is 0 .

DE for the Coupled Case - Random Construction

$$
\begin{gathered}
x_{i}=\epsilon\left(\frac{1}{w} \sum_{j=0}^{w-1} y_{i+j}\right)^{d_{l}-1} \quad y_{i}=1-\left(1-\frac{1}{w} \sum_{k=0}^{w-1} x_{i-k}\right)^{d_{r}-1} \\
y_{i}, \cdots, y_{i+w-1} \\
x_{i}, \cdots, x_{i-w+1}
\end{gathered}
$$

Saturday, Juy 13,13
Again we look at what happens at the two nodes. The equations are very similar to the uncoupled case but there is one difference. If we look e.g.at the random case then each edge can be connected to positions in a certain range. We therefore need to average over the incoming messages from this range. Once we have done the average, we proceed as in the uncoupled case. Note that with respect to the way we defined the random ensemble, variables are always connected to position "to the right" and check nodes are always connected to variable nodes "on the left."

DE for the Coupled Case - Random Construction

$$
x_{i}=\epsilon\left(\frac{1}{w} \sum_{j=0}^{w-1} y_{i+j}\right)^{d_{l}-1}
$$

$$
y_{i}=1-\left(1-\frac{1}{w} \sum_{k=0}^{w-1} x_{i-k}\right)^{d_{r}-1}
$$

$$
y_{i}, \cdots, y_{i+w-1}
$$

$$
x_{i}, \cdots, x_{i-w+1}
$$

DE for the Coupled Case - Random Construction

$$
x_{i}^{(\ell)}=\epsilon\left(1-\frac{1}{w} \sum_{j=0}^{w-1}\left(1-\frac{1}{w} \sum_{k=0}^{w-1} x_{i+j-k}^{(\ell-1)}\right)^{d_{r}-1}\right)^{d_{l}-1}
$$

Saturday, Juy 13,13
If we put the two parts together we get now the recursive DE equations for the coupled chain. Note that we now have as many x_{i} values as the length of the chain and that the various equations for the x_{i} values are "coupled" through the averaging operations.

Let us now see how coupled codes perform. Let us first run DE for an eps value below the BP threshold of the uncoupled case. Note that except at the boundary, coupled codes have exactly the same local connectivity as the uncoupled ensemble they are based on. At the boundary they are "better" due to the known variables there. So we expect them to behave no worse than their uncoupled sisters. In the movie above we plot the x_{i} values as a function of the iteration. For the case above, the chain has length 100. Indeed, as we see from this movie, DE proceeds exactly as for the uncoupled case if we look at the x_{i} values in the center of the chain. At the boundary we see somewhat better values due to the termination And as expected, the DE is able to drive the erasure fraction in each section to zero and BP is successful.

July 13,13

Saturay, July 13,13
Let us now see how coupled codes perform. Let us first run DE for an eps value below the BP threshold of the uncoupled case. Note that except at the boundary, coupled codes have exactly the same local connectivity as the uncoupled ensemble they are based on. At the boundary they are "better" due to the known variables there. So we expect them to behave no worse than their uncoupled sisters. In the movie above we plot the x_{i} values as a function of the iteration. For the case above, the chain has length 100 . ndeed, as we see from this movie, DE proceeds exactly as for the uncoupled case if we look at the x_{i} values in the center of the chain. At the boundary we see somewhat better values due to the termination. And as expected, the DE is able to drive the erasure fraction in each section to zero and BP is successful.

Now let us do the same experiment for a value above the BP threshold of the uncoupled ensemble but not too much larger. As we see we get a very interesting behavior. After a few iterations where all the obvious" deductions are being made the decoder still proceeds to make progress. On both ends a small "wave front" has formed. These wave fronts move towards the center at a constant speed. Note that the wave connects the two FPs which exist also for the uncoupled case. Namely, the undesired FP in which the uncoupled code gets stuck (forward FP of DE) and the desired FP (namely zero) which an optimal decoder would find. The wave "bridges" these two FPs and thus guides nodes in the interior of the chain towards the desired FP. Also, note the special structure that the erasure fraction at each section forms:

Saturday, July 13,13
Now let us do the same experiment for a value above the BP threshold of the uncoupled ensemble but not too much larger. As we see we get a very interesting behavior. After a few iterations where all the "obvious" deductions are being made the decoder still proceeds to make progress. On both ends a small "wave front" has formed. These wave fronts move towards the center at a constant speed. Note that the wave connects the two FPs which exist also for the uncoupled case. Namely, the undesired FP in which the uncoupled code gets stuck (forward FP of DE) and the desired FP (namely zero) which an optimal decoder would find. The wave "bridges" these two FPs and thus guides nodes in the interior of the chain towards the desired FP. Also, note the special structure that the erasure fraction at each section forms: Now let us do the same experiment for a value above the BP threshold of the uncoupled ensemble but not too much larger. As we see we get a very interesting behavior. After a few iterations where all the "obvious" deductions are being made the decoder still proceeds to make progress. On both ends a small "wave front" has formed. These wave fronts move towards the center at a constant speed. Note that the wave connects the two FPs which exist also for the uncoupled case. Namely, the undesired FP in which the uncoupled code gets stuck (forward FP of DE) and the desired FP (namely zero) which an optimal decoder would find. The wave "bridges" these two FPs and thus guides nodes in the interior of the chain towards the desired FP. Also, note the special structure that the erasure fraction at each section forms:

Saturday, July 13,13

Finally, if we go above a certain value of eps and we run DE then we get a non-trivial FP. Note that in the middle of the chain the xi values are exactly as large as they would be for the same eps value in the uncoupled case. Only at the boundary do we get somewhat better values due to the termination.

DE for Coupled Ensemble

Saturday, Juy 13,13
Finally, if we go above a certain value of eps and we run DE then we get a non-trivial FP. Note that in the middle of the chain the xi values are exactly as large as they would be for the same eps value in the uncoupled case. Only at the boundary do we get somewhat better values due to the termination.

- 1

Finally, if we go above a certain value of eps and we run DE then we get a non-trivial FP. Note that in the middle of the chain the xi values are exactly as large as they would be for the same eps value in the uncoupled case. Only at the boundary do we get somewhat better values due to the termination.

What is $\epsilon^{\text {Area }}$?

Why does this happen?

Spoiler alert: We will see that the area threshold is essentially equal to the MAP threshold of the underlying ensemble! Here, the MAP threshold is the threshold an optimal decoder would achieve. And it turns out to be the BP threshold of the coupled code ensemble!

Saturday, July 13,13
Given what we have seen, we are faced with a few questions. First, what is this parameter $\varepsilon^{\text {Area }}$ up to which spatially coupled ensembles can decode? Second, why does the system so drastically change its behavior when we couple it? Spoiler Alert: We will see that the answer to the first question is that $\varepsilon^{\text {Area }}$ is essentially equal $\varepsilon^{\text {MAP }}$ of the underlying ensemble! We say here essentially since, as we will explain in more detail later, this is strictly true only when we let certain quantities tend to infinity. But even if we do not let these quantities tend to infinity but choose them reasonably small, the difference is typically very very small.

Historical Outline of Spatially Coupled Codes

Big bang:
A. J. Felström and K. S. Zigangirov, "Time-varying periodic convolu-
tional codes with low-density parity-check matrix," IEEE Trans. Inform. Theory, vol. 45, no. 5, pp. 2181-2190, Sept. 1999.

Big bang:
A. J. Felström and K. S. Zigangirov, "Time-varying periodic convolutonal codes with low-density parity-check matrix,' IEEE Trans. Inform
Theory, vol. 45, no. 5, pp. 2181-2190, Sedt. 1999

Variations, code word and pseudo code word analysis:

Historical Outline of Spatially Coupled Codes

Termination and density evolution analysis:
$\begin{aligned} & \text { A. Sridharan, M. Lentmaier, D. J. Costello, J., and K. S. Zigangirov, } \\
& \text { "Convergence anal ysis of }\end{aligned}$
erasure channel," in Proc. of the Allerton Conf. on Commun., Control,

and Computing, Monticello, IL, USA, Oct. 2004.

M. Lentmaier, A. Sridharan, K. .S. Zigangirov, and D. J. Costello,
r., "Terminated LDPC convolutional codes with thresholds close to
pacity, 2005
$\begin{aligned} & \text { M. Lentmaier and G. P. Fettweis, "On the thresholds of generalized } \\
& \text { LDPC convolutional codes based on protographs", in Proc. of the IEEE }\end{aligned}$
Int. Symposium on Inform. Theory, Austin, USA, 2010.
M. Lentmaier, A. Sridharan, K. S. Zigangirov, and D. J. Costello, Jr., "Iterative decoding threshold analysis for LDPC convolutional codes," IEEE Trans. Info. Theory, Oct. 2010. Vol. 56, No. 10, pp. 5274

Threshold saturation effect and proof for the BEC:

```
S. Kudekar, T. Richardson, and R. Urbanke, "Threshold Saturation via
Spatial Coupling: Why Convolutional LDPC Ensembles Perform so
803-834, Feb. 2011.
S. Kudekar, T. Richardson, and R. Urbanke, "Wave-Like Solutions of
General One-Dimensional Spatially Coupled Systems." In preparation,
Jan. 2012.
A. Yedla, Y. Jian, P. Nguyen, and H. Pfister, "A Simple Proof of
Threshold Saturation for Coupled Scalar Recursions," 2012, e-print:
http://arxiv.org/abs/1204.5703.
```


Main Message

Coupled ensembles under BP decoding behave like uncoupled ensembles under MAP decoding.

Main Message
 Coupled ensembles under BP decoding behave like uncoupled ensembles under MAP decoding.

Since coupled ensemble achieve the highest threshold they can achieve (namely the MAP threshold) under BP we speak of the threshold saturation phenomenon.

1. In order to get exactly $\varepsilon^{\text {MAP }}$ we have to let the "connection width" w tend to infinity. But in practice even small widths like $w=3{ }^{45}$ ead to thresholds which are almost indistinguishable $\varepsilon^{\text {MAP }}$. (e.g., for the $(3,6)$ case and the BEC the difference is about 10^{-5}. 2. The MAP threshold is an increasing function of the degrees and converges to the Shannon threshold exponentially fast. This is contrary to the BP treshold for unooulod codes which ypically cocreases in he degree.
andy-achieving universally across the whole set of 4. On the downside, due to the termination which is required, we loose in rate. We hence have to take the chain length large enough in order to amortize this rate loss. Therefore, the blocklength has to be reasonably large.

Main Message

Coupled ensembles under BP decoding behave
like uncoupled ensembles under MAP decoding.
Since coupled ensemble achieve the highest threshold they can achieve (namely the MAP threshold) under BP we speak of the threshold saturation phenomenon.

We will see that using spatial coupling we can construct codes which are capacity-achieving universally across the whole set of BMS channels.

1. In order to get exactly $\varepsilon^{\text {MAP }}$ we have to let the "connection width" w tend to infinity. But in practice even small widths like $w=3$ lead to thresholds which are almost indistinguishable $\varepsilon^{\text {MAP. (e.g., for the }}(3,6)$ case and the $B E C$ the difference is about $10^{\text {s. }}$ 2. The MAP threshold is an increasing function of the degrees and converges to the Shannon threshold exponentially fast. This is contrary to the BP threshold for uncoupled codes which typically decreases in the degree,
2. We will see that using spatial coupling we can construct codes which are capacity-achie
that using spatial coupling we can construct codes which are capacity-achieving universally across the whole set of 4. On the downside, due to the termination which is required, we loose in rate. We hence have to take the chain length large enough in order to amortize this rate loss. Therefore, the blocklength has to be reasonably large.

Main Message

Coupled ensembles under BP decoding behave
like uncoupled ensembles under MAP decoding.
Since coupled ensemble achieve the highest threshold they can achieve (namely the MAP threshold) under BP we speak of the threshold saturation phenomenon.

We will see that using spatial coupling we can construct codes which are capacity-achieving universally across the whole set of BMS channels.

On the downside, due to the termination which is required, we loose in rate. We hence have to take the chain length large enough in order to amortize this rate loss. Therefore, the blocklength has to be reasonably large.
(not exhaustive) References

.andi.

17. axivivi20:s.s73 I loff, ps, other

Joint Compute and forward for the Two way Relay Channel with Spatially Coupled LDPC Codes

Saturday, July 13,13

axtr:1201.2999 bodt ps, otherel

Daidimation-Theoreticially Optimal Compressed Sensing via Spatial Coupling and Approximate Message Passing

Soberss interemoior theary (sis)

 Nas kudear, Henry . Ppining on Compress ive Sensing

coll

