
Routing and Search on Large Scale Networks

Routing and Search on Large Scale Networks

Dominique Tschopp

EPFL - Ecole Polytechnique Fédérale de Lausanne

Thesis No. 4589 (January 2010)

Thesis presented to the faculty of computer and communication sciences for
obtaining the degree of Docteur ès Sciences

Accepted by the jury:

M. Grossglauser and S. Diggavi
Thesis directors

J.-Y. Le Boudec
Expert

M. Mitzenmacher
Expert

S. Shakkottai
Expert

E. Telatar
President of the jury

Ecole Polytechnique Fédérale de Lausanne, 2010

to my wife, Joyce, and my family...

Abstract

In this thesis, we address two seemingly unrelated problems, namely routing in
large wireless ad hoc networks and comparison based search in image databases.
However, the underlying problem is in essence similar and we can use the same
strategy to attack those two problems. In both cases, the intrinsic complexity
of the problem is in some sense low, and we can exploit this fact to design
efficient algorithms.

A wireless ad hoc network is a communication network consisting of wireless
devices such as for instance laptops or cell phones. The network does not
have any fixed infrastructure, and hence nodes which cannot communicate
directly over the wireless medium must use intermediate nodes as relays. This
immediately raises the question of how to select the relay nodes. Ideally, one
would like to find a path from the source to the destination which is as short
as possible. The length of the found path, also called route, typically depends
on how much signaling traffic is generated in order to establish the route.
This is the fundamental trade-off that we will investigate in this thesis. As
mentioned above, we try and exploit the fact that the communication network
is intrinsically low-dimensional, or in other words has low complexity. We show
that this is indeed the case for a large class of models and that we can design
efficient algorithms for routing that use this property. Low dimensionality
implies that we can well embed the network in a low-dimensional space, or
build simple hierarchical decompositions of the network. We use both those
techniques to design routing algorithms.

Comparison based search in image databases is a new problem that can
be defined as follows. Given a large databases of images, can a human user
retrieve an image which he has in mind, or at least an image similar to that
image, without going sequentially through all images? More precisely, we ask
whether we can search a database of images only by making comparisons be-
tween images. As a case in point, we ask whether we can find a query image
q only by asking questions of the type “does image q look more like image A
or image B”? The analogous to signaling traffic for wireless networks would
here be the questions we can ask human users in a learning phase anterior to
the search. In other words, we would like to ask as few questions as possible to
pre-process and preprare the database, while guaranteeing a certain quality of

i

ii Abstract

the results obtained in the search phase. As the underlying image space is not
necessarily metric, this raises new questions on how to search spaces for which
only rank information can be obtained. The rank of A with respect to B is k,
if A is B’s kth nearest neighbor. In this setup, low-dimensionality is analogous
to the homogeneity of the image space. As we will see, the homogeneity can be
captured by properties of the rank relationships. In turn, homogeneous spaces
can be well decomposed hierarchically using comparisons. Further, it allows us
to design good hash functions.

To design efficient algorithms for these two problems, we can apply the same
techniques mutatis mutandis. In both cases, we relied on the intuition that the
problem has a low intrinsic complexity, and that we can exploit this fact. Our
results come in the form of simulation results and asymptotic bounds.

Keywords: Wireless Networks, Search, Dimensionality Reduction, Databases,
Routing, Algorithms, Asymptotic Bounds, Similarity

Résumé

Dans cette thèse, nous abordons deux problèmes qui semblent à première
vue ne pas avoir de liens entre eux. Ces deux problèmes sont le routage dans
les réseaux sans fil ad hoc, et la recherche basée sur des comparaisons dans
des bases de données d’images. Pourtant, le problème sous-jacent est essen-
tiellement similaire et nous pouvons utiliser la même stratégie pour attaquer
ces deux problèmes. Dans les deux cas, la complexité intrinsèque du problème
est dans un certain sens basse. Nous pouvons exploiter cette propriété pour
concevoir des algorithmes performants.

Un réseau sans fil ad hoc est un réseau de communication composé d’appa-
reils sans fil, tels des ordinateurs portables ou des téléphones mobiles. Le réseau
n’a pas d’infrastructures fixes, et par conséquent les noeuds qui ne peuvent pas
communiquer directement doivent pouvoir utiliser d’autres noeuds comme re-
lais pour transmettre leurs paquets. Un élément important dans la conception
et le déploiement de tels réseaux est bien sûr la méthode de séléction de ces
relais. Idéalement, nous aimerions obtenir une séquence de relais, ou route, de
la source à la destination qui soit aussi courte que possible. La longueur de
la route dépend typiquement de la quantité de trafique additionelle que nous
sommes prêts à générer. C’est ce compromis fondamental entre trafique et lon-
gueur des routes auquel nous nous intéressons dans cette thèse. Nous exploitons
le fait que le réseau de communication est intrinsèquement de basse dimensions,
ou en d’autres termes, de basse complexité. Nous montrons que c’est bien le
cas pour une grande class de modèles et que nous pouvons concevoir des al-
gorithmes performants qui exploitent cette propriété. La basse dimensionalité
implique que nous pouvons incorporer le réseau dans un espace de basse di-
mension, ou construire une décomposition hiérarchique simple. Nous utilisons
ces deux techniques pour déveloper des algorithmes de routage.

La recherche basée sur des comparaisons dans des bases de données d’images
est un nouveau problème qui peut être défini comme suit. Est-ce qu’un utilisa-
teur humain peut trouver, dans une grande base de données, une image qu’il a
en tête, ou au moins trouver une image similaire à cette image, sans parcourir
toutes les images ? Plus précisément, nous posons la question de savoir s’il est
possible de chercher une image dans une base de données, uniquement en fai-
sant des comparaisons. C’est-à-dire, en posant des questions du type “est-ce que

iii

iv Résumé

l’image recherchée q ressemble plus à l’image A ou à l’image B ?”. L’équivalent
du trafique dans les réseaux sans fil sont ici les questions posées durant la
phase d’apprentissage aux utilisateurs humains. Nous aimerions poser aussi
peu de questions que possible pour préparer les données avant de débuter les
recherches, tout en garantissant une certaine qualité dans le résultat des re-
cherches. Etant donné que l’espace sous-jacent contenant les images n’est pas
nécessairement métrique, ce problème nous amène à réfléchir sur la recherche
dans des espaces où seul des informations sur les rangs respectifs peuvent être
obtenues. Le rang de A par rapport à B est k, si A est le kème élément le
plus proche de B. Dans ce contexte, la basse dimensionalité peut être associée
à l’homogénéité de l’espace contenant les images. Nous verrons que cette ho-
mogénéité peut être décrite par des propriétés définies sur les rangs. Les espaces
homogènes peuvent être décomposés en hiérarchie, et permettent de déveloper
des fonctions de hashage performantes.

Pour concevoir des algorithmes performants pour ces deux problèmes, nous
pouvons appliquer les mêmes techniques mutatis mutandis. Dans les deux cas,
nous nous sommes basés sur l’intuition que le problème possède une complexité
intrinsèque basse, et que nous pouvions nous servir de cette particularité du
problème. Nos résultats se présentent sous la forme de résultats de simulations
et de bornes asymptotiques.

Mots-clés: Réseaux sans fil, Recherche, Réduction de Dimensionalité, Bases
de Données, Routage, Algorithmes, Bornes Asymptotiques, Similarité

Acktionary

First, I would like to heartfully thank my supervisors, Prof. Suhas Diggavi and
Prof. Matthias Grossglauser, for welcoming me in their groups and helping
me with my research in the past 5 years. Working with them has taught me
to think about complex problems in a new, more structured and creative way.
Second, I would like to thank my wife Joyce, my parents Erna and Juerg, and
my sister Muriel, for their support during this long process. In addition to my
supervisors, I would also like to thank the other members of my thesis jury,
Prof. Michael Mitzenmacher, Prof. Sanjay Shakkottai, and Prof. Jean-Yves
Le Boudec for kindly accepting to review my thesis, and Prof. Emre Telatar
for accepting to be the president of this jury. I thank Docomo Eurolabs for
funding the first part of my thesis work, and the MICS NCCR for funding the
second part. Finally, I would like to thank my colleagues and friends at EPFL,
with whom it was a great pleasure interacting, both at work and outside. In
particular, I would like to thank the members, present and past, of our lunch
group (also known as the LCA lunchers): Irina, Mathilde, Daniel, George,
Gianluca, Hung, Manuel, Nikodin, Patrick, Ramin and Ruben.

v

Contents

Abstract i

Résumé iii

Acktionary v

Contents vii

1 Introduction 1
1.1 Routing in Mobile Wireless Ad hoc Networks 1
1.2 Comparison-based Search in Image Databases 4
1.3 A Needle in a Flat Haystack . 6

2 Virtual Coordinates for Routing in Dynamic Ad hoc Networks 9
2.1 Relationship to Published Works 12
2.2 Low-Dimensional Embeddings 13

2.2.1 Stable Dynamic Embedding of Connectivity Graph . . . 15
2.2.2 Observations on Wireless Connectivity Graph 16

2.3 Embedding Algorithm . 18
2.3.1 Embedding Heuristic . 18
2.3.2 Dealing with Dynamic Graphs 21
2.3.3 Formal Description of PB Algorithm 21

2.4 Routing Algorithm . 22
2.5 Simulation Results . 24

2.5.1 Experiment Design . 25
2.5.2 Performance Metrics . 25
2.5.3 Static Networks . 26
2.5.4 Mobile Networks . 29

2.6 Concluding Remarks . 32

3 Hierarchical Routing in Dynamic Ad hoc Networks 33
3.1 Relationship to Published Works 35
3.2 Models and Definitions . 37

vii

viii Contents

3.2.1 Geometric random graph 38
3.2.2 SINR full connectivity 39
3.2.3 Uniform speed-limited (USL) mobility 41
3.2.4 Assumptions . 43

3.3 Network Properties . 43
3.3.1 Inhomogeneous Topologies 47
3.3.2 Sequences of Communication Graphs 54

3.4 Routing Algorithm . 56
3.4.1 Beaconing Algorithm . 58
3.4.2 Forwarding Algorithm 61
3.4.3 Load-balancing . 63

3.5 Performance Analysis . 65
3.5.1 Control Traffic . 66
3.5.2 Route Stretch . 67

3.6 Implementation Issues . 68
3.7 Concluding Remarks . 70

4 Comparison-based Nearest Neighbor Search 71
4.1 Relationship to Published Works 73
4.2 Definitions and Problem Statement 75
4.3 Contributions . 77
4.4 Searching with Known Disorder Constant 78

4.4.1 Hierarchical Data Structure For Nearest-Neighbor Search 79
4.4.2 Lower Bound . 83

4.5 Searching with Unknown Characterization 87
4.5.1 Consequences of knowing the disorder constant 88
4.5.2 Binary Tree Decomposition 89
4.5.3 Rank-Sensitive Hashing 92
4.5.4 Rank-Sensitive Hashing in high-dimensional Euclidean

Spaces . 94
4.6 Concluding Remarks . 97

5 A Platform for Similarity Search 99
5.1 Relationship to Published Works 100
5.2 Image Processing . 102

5.2.1 Eigenfaces . 102
5.3 System . 104
5.4 Experimental Results . 106

5.4.1 Web Platform . 108
5.5 Concluding Remarks . 109

6 Conclusions and Future Work 111

Appendix 113
A-1 Unit Disc Graphs . 113

Contents ix

A-2 Random Geometric Graphs with subthreshold Communication
Radius . 114

A-3 Locality-Sensitive Hashing . 117

Bibliography 119

Curriculum Vitae 127

Introduction 1
In this thesis we address two seemingly unrelated problems, namely routing in
large mobile wireless ad hoc networks, and comparison-based search in large
databases of pictures. However, as we will see, similar techniques can be used
mutatis mutandis to work on those two problems. In particular, in both cases
we can try and exploit some properties of the database or the network that
make the intrinsic complexity of those structures low. For both wireless net-
works and databases of pictures, it seems intuitive that there must exist efficient
search algorithms. Obviously, one of the main difficulties is to find the right
characterization of the problem, and then to design algorithms of which the
performance depends on this characterization. The low complexity typically
leads to a hierarchical decomposition or a low-dimensional representation, and
roughly logarithmic search times. We design algorithms that are very efficient
when this intrinsic complexity is low. In Sections 1.1 and 1.2 of this intro-
ductory chapter, we will first define and motivate those two problems in a
somewhat informal way. More precise and formal definitions, as well as results,
are then provided in subsequent chapters.

1.1 Routing in Mobile Wireless Ad hoc Networks

A mobile wireless ad hoc network is a network of nodes such as laptops, PDA’s,
or cell phones, that cannot rely on any fixed infrastructure to communicate.
This model is different from the classical model used in existing WiFi or cellular
infrastructures, where nodes communicate via a base station. This ad hoc
setup implies that every node must have the capability of acting simultaneously
as a client, a server and a relay. The capacity to act as a relay is crucial,
as the source and the destination of a message might be out of radio range
and could consequently not necessarily communicate directly. An illustration

1

2 Introduction

of an ad hoc network is shown in Figure 1.1. As mentioned above, ad hoc

Figure 1.1: An illustration of a wireless ad hoc network composed of seven laptops.
Due to a limited radio range and to interferences, the laptops on the right hand side
and on the left hand side cannot communicate directly with each other. Rather,
messages must be relayed by intermediate nodes.

networks do not depend on any fixed infrastructure. Clearly, there are many
scenarios where this is potentially an advantage. One could think of disaster
relief situations, where existing base stations would have been destroyed, and
rescue workers would communicate in an ad hoc manner. Alternatively, one
could think of vehicular networks, in regions where constructing base stations
to ensure full coverage would be far to expensive. Another scenario which is
often cited as example are sensor networks. Such networks are composed of
devices with limited communication capabilities and obviously sensors. They
are typically deployed in regions which are hard to access and where building
a fixed infrastructure would be too costly or simply too difficult because of the
terrain. Finally, the scenario that is maybe the most interesting one is the use
of ad hoc communications to extend the range of base stations. This might be
particularly interesting in countries where buying land to setup a fixed antenna
is very costly and legally difficult.

Due notably to the mobility of the nodes and the random nature of the wire-
less channel, designing protocols for such networks is very challenging. One of
the most difficult problems to solve for ad hoc networks is routing1. Indeed,
in contrast to networks with fixed infrastructure, communications cannot be
routed through a central base station known to all nodes. Further, one cannot
even rely on a central repository containing the addresses or locations of all
nodes. As nodes are inherently mobile, routes change over time and conse-
quently fixed routing tables are not useful, as routes are often only valid for a
short period of time. Recall that distant nodes cannot communicate directly
with each other and intermediate nodes must act as relays. Hence, we need to
design a routing scheme that allows us to maintain short paths between nodes,
while at the same time not adding a large overhead in terms of signaling traffic.

1In this thesis we focus on the scenario that multihop routing is the throughput optimal
strategy. It is perhaps appropriate to note that node cooperation might be important in
other scenarios [ADT07, ÖLT07,ADT09]

1.1. Routing in Mobile Wireless Ad hoc Networks 3

The latter point is of great importance in wireless networks, where bandwidth
is a scarce resource. The first part of this thesis will be dedicated to the design
of efficient routing schemes for mobile ad hoc wireless networks.

Intuitively, it seems that wireless ad hoc networks must be low dimen-
sional. Indeed, it seems that the embedding of the network into ℜ2 provided
by the global positioning system (GPS) coordinates should roughly capture the
topology of the network. In other words, the Euclidean distance between the
positions of the nodes in the “real” world should be roughly proportional to
some graph distance measured in the network (e.g., we could build a graph by
adding an edge of weight 1 between nodes that can communicate directly and
measure distances as the shortest path distance in the graph). This intuition
relies on the fact that the signal strength decays super-linearly with distance,
and that consequently direct communications must be local2. In turn, dis-
tant nodes must communicate over multiple hops, and the more distant nodes
are, the more hops separates them. This idea is clearly true if the nodes are
distributed homogeneously and sufficiently densely on a convex area, and if
the radio range is small with respect to the diameter of the network. In this
case, a greedy forwarding strategy, where nodes repeatedly send packets to the
neighbor with the position closest to the destination of the message will be
successful and will lead to short routes. In case the nodes were mobile, the
major difficulty would be to locate the destination. The common solution to
this problem consists in implementing a distributed database in the network
that is dynamically updated when the topology changes.

In this thesis, we investigate the more general case where the network does
not necessarily originate from an homogeneous distribution of nodes. In par-
ticular, in any realistic scenario, there could be obstacles such as walls, or
topological voids, that prevent nearby nodes from communicating directly or
over a small number of relays. Hence, a greedy forwarding strategy based on
GPS coordinates would fail. Recovery mechanisms exist to get out of so-called
“dead-ends”, but they are also costly in terms of overhead, and are to some
extent dependent on a specific model for the network. Moreover, the fact that
the nodes are mobile prevents us from storing static routes, and maintaining
all-to-all short routes is too costly in terms of signaling traffic. We try and
exploit the fact that even though the network topology might not be perfectly
homogeneous, it is still likely to be low-dimensional. That is, the network might
not necessarily be embeddable in a two dimensional space but potentially in a
space of dimension either constant (i.e., independent of the cardinality of the
network), or at least only logarithmic in the cardinality of the network. Our
first approach will consist in developing a distributed algorithm that embeds
the network in a low dimensional space. We expect that by “pushing nodes
around a bit”, the new coordinates will correspond better to the topology of the
network. In particular, we now expect the Euclidean distance between nodes
to be a better approximation of the graph distance. This approach is described
in Chapter 2. The virtual coordinates obtained in that way will considerably

2This is true in the case when path loss decay with distance is large (α ≥ 3)

4 Introduction

increase the quality of greedy forwarding, while not increasing the signaling
traffic much. The results in Chapter 2 are based on simulations of our routing
protocol and comparisons with the performance of existing routing schemes.
Our second approach, described in Chapter 3, consists in developing a structure
that adapts to the intrinsic dimension of the network. Here, intrinsic dimen-
sion refers to the doubling dimension, a notion to be defined more formally in
Chapter 3, and which can informally be defined as the maximum number of
balls of radius r required to cover a ball of radius 2r. The results presented in
Chapter 3 are in some sense a theoretical extension of the results in Chapter 2.
Indeed, in this chapter we try and formalize the intuition that we will develop
in Chapter 2. In contrast to the simulation results in Chapter 2, the results
in Chapter 3 come in the form of asymptotic bounds. We also prove that for
common models for wireless networks and mobility, the communication graph
has desirable properties. For instance, we try and capture the intuition that
under mobility, distant nodes will not suddenly be connected directly, if they
were several hops apart. In fact, one of the key contributions of this thesis
is the formal analysis of networks with dynamically changing topologies. In
other words, our theoretical results do not only apply to static networks, but
also to networks of mobile nodes and networks with uncertain communcation
channels.

1.2 Comparison-based Search in Image Databases

To explain the second problem, comparison-based search in large databases,
we first give an example that motivates this question. Assume that a large
organization, a company, the police or (why not) a dating service stores a large
database of faces. For instance, a company could store a database containing a
picture of every employee, where every picture is linked with the office number,
the phone number and an email address. Assume, further, that you recently
met someone who was working on a topic of great interest to you, and that
you would like to find his contact details. As a distracted person, you only
remember the organization he works for, but forgot his name. Can you effi-
ciently retrieve the contact details of this person from the employee database,
without an exhaustive search i.e., can you design a search engine that returns
the picture of this employee very quickly? Similarly, the police could store
a database of dangerous criminals. A victim could then try to browse this
database to find the person who attacked her, and help the police arrest him.
Potentially, no digital form of the query image is available, or automatic image
processing algorithms perform poorly because some images are taken in dif-
ferent environments (e.g., light, angle, background, exposition, distance, etc.).
Further, it is hard to define a meaningful similarity measure based on image
processing that fits the perception of all humans, for all images. Neverthe-
less, it might be possible to actually use humans as classifiers, if the number
of questions humans must answer is reasonably small. In this thesis, we try
and characterize the properties which the image space must have if we want

1.2. Comparison-based Search in Image Databases 5

to perform search based only on comparisons. The practical problem exposed
above raises deeper and more theoretical questions about search in non-metric
spaces, which can be characterized only by relative distance information (i.e,
by rank relationships3). In particular, one could ask what desirable properties
of such a space are. We try and answer some of these questions in this thesis.
In essence, our plan of attack for this problem is analogous to the approach
taken for wireless networks. Indeed, we first try and find an appropriate char-
acterization of the problem that makes its complexity low, and then develop
algorithms that exploit this property.

More precisely, we ask the question of whether we can search such a database
of pictures only by making comparisons. In other words, can we retrieve a pic-
ture similar to a query image, only by asking questions of the type “does the
image you are looking for look more similar to image B, or image C” (an ex-
ample is shown in Figure 1.2). As mentioned above, the intuition underlying

Figure 1.2: The user is asked whether the image he is looking for i.e., the query
image on the left hand side, looks more similar to the reference image A or B.
Even though the man in reference image B is wearing a wig, a human user is very
likely to click on image B. Indeed, the user can very efficiently process and classify
or label the three images.

this approach is that humans are excellent classifiers for images, and that we
can use them to do some processing which cannot be automated. Comparisons
based on feature vectors or other image processing techniques often partly fail
if the images are not taken under the same conditions. For instance, it is dif-
ficult to compare images that are taken from different angles, with different
backgrounds and with different exposition times. It is then even more difficult
to compute meaningful distances or similarities based on these vectors. In fact,
similarity between pictures is a notion that is difficult to define formally, even
in words, and even more difficult to measure automatically based on the con-
tent of images. Nevertheless, we expect humans to be able to classify images,
at least up to a certain “precision”. For instance, we expect that if a user who
is looking for the picture of a woman, is asked whether this woman is more
similar to a woman or a man, he is very likely to click on the woman. Similarly,
we expect humans to have the capacity to classify images based on age, hair

3The rank of A with respect to B is k, if A is B’s kth nearest neighbor.

6 Introduction

color, eye color, size of the ears, and so on. More importantly, humans are
likely to give more importance to criteria such as gender and skin color, which
leads to a shared notion of similarity. It is also likely that the human brain
takes into account other features that are not obvious. Hence, we intend to use
humans to answer “difficult” questions in the learning phase, and to perform
searches. One of the difficulties of this problem is that on one hand, there are
many comparisons that can be made, and on the other hand asking humans
to make comparisons is very costly in terms of time and effort. Thus, we must
carefully choose the questions that we ask users, while guaranteeing a certain
quality of search. Another difficulty is that the space in which the images live,
and the similarities perceived by humans, might not result in a metric space.
Hence, we need to think about new ways of searching, as classical approaches
are not necessarily applicable.

In Chapter 4, we ask a more general theoretical question. Indeed, we ask
what property a space of object (e.g, images, but potentially also music, videos,
etc.) must have such that it can be searched efficiently by human users who
can only make comparisons. Moreover, given that the space of objects has such
a property, we try and develop algorithms of which the performance depends
on this property. Again, as it is the case for wireless ad hoc networks, it
appears that images must have an intrinsic structure that has a low complexity.
For databases, we will measure this complexity in terms of two properties of
the space, namely its disorder constant and rank distortion. Both properties
roughly capture how homogeneous the space is. The first one, however, is a
worst case criterion, and the second one an average criterion. This setup is
also interesting because, in contrast to many existing formulations, we do not
necessarily require the space in which the objects live to be metric. Rather,
we characterize the space in terms of its rank relationships. Such relationships
can be defined for any space.

In Chapter 5, we then present the architecture of a system that implements
some of the ideas of Chapter 4. We also present experimental results for search
based on comparisons. As we will see, a practical implementation raises a
number of additional issues. We highlight a few of these issues and propose
practical solutions. In particular, humans sometimes (if not often) disagree on
the notion of similarity, and we need to take care of this problem. We try and
reduce the number of training clicks further by combining human training with
image processing.

1.3 A Needle in a Flat Haystack

The problem underlying both routing in large wireless networks and comparison
based search in large databases is the same in essence. In both cases, we need
to efficiently retrieve a specific element in a large collection of elements i.e., in
the database or in the network. Further, we need to find good “paths” in the
collection towards this specific element, that is we must in some sense make
the collection navigable. Indeed, in wireless networks we must establish routes

1.3. A Needle in a Flat Haystack 7

from source nodes to destination nodes, and in the database, we must identify
sequences of questions that allow us to retrieve specific elements. In both cases,
an exhaustive search of the collection is too costly, either in terms of control
traffic, or in terms of questions that we need to ask the human user. Hence, we
need to develop methods to proactively process the elements in such a way that
the search phase can be considerably sped up. However, preprocessing does
obviously not come for free either. Surely, preprocessing also requires sending
messages through the network or asking questions. On the other hand, in the
preprocessing phase, the cost can be amortized over all the elements. Hence,
in both cases, we need to find a trade-off between preprocessing operations and
search time.

The two problems addressed in this thesis were not chosen at random. In-
deed, in general it might not be possible to considerably reduce the search
time by preprocessing the elements. However, for routing in wireless networks
and comparison-based search in databases, it appears that the respective col-
lections of elements have the desirable property that they are not intrinsically
very complex. The most natural notion of complexity is the dimension in
which the elements live. For instance, if the elements were a set of points in
ℜd, for large d, most problems might be difficult to solve. However, if the
points lie close to a low dimensional plain in ℜd, the problem might become
much easier to solve. Another difficulty that we have not mentioned so far is
that even though the elements of both problems live in spaces of low intrinsic
complexity, we cannot “batch process” these spaces by building classical data
structures such as k-d-trees or hash tables. Indeed, we are in both cases only
given partial information e.g., a subset of hop distances or a subset of human
answers, and need to do the best possible job with it. In wireless networks,
this implies that we need to develop efficient distributed routing algorithms,
and for database search, it implies that we need to ask the right questions to
human users, and be able to work only with relative distance information i.e.,
we know that image A looks more like B than like C, but we cannot obtain
meaningful numerical values for distances between images.

In Chapter 2, we make a first attempt at exploiting the intrinsically low
dimensional structure of wireless networks. We present an approach for em-
bedding connectivity graphs into a low-dimensional Euclidean space in a dis-
tributed way. We also show how the “virtual coordinates” obtained this way
can be used for greedy forwarding of packets. We evaluate our techniques
through simulations. In Chapter 3, we first show formally that a large class
of common models for the connectivity and the mobility of wireless ad hoc
networks share the property that the resulting communication graph is intrin-
sically low-dimensional (a notion to be defined formally in Chapter 3). Then,
we present algorithms that exploit this low dimensionality and prove asymp-
totic bounds on the signaling traffic and the route stretch. In Chapter 4, we
present our work on comparison based search for image database. In this chap-
ter, we present a theoretical model for such spaces of images and algorithms
that exploit the properties of such spaces. Again, we prove asymptotic bounds
on the performance. Then, in Chapter 5, we present the architecture of a web

8 Introduction

platform that implements the ideas from Chapter 4. Finally, in Chapter 6, we
present our conclusions and ideas for future work.

The three main chapters i.e., Chapters 2,3 and 4, treat clearly distinguish-
able topics. In order to make those chapters self-contained, so that they can be
read separately, each one has its own generally non-overlapping related work
section. Similarly, we present a model, definitions, assumptions as well as
results in each of these chapters.

Virtual Coordinates for Routing

in Dynamic Ad hoc Networks 2
In this chapter, we investigate routing for mobile wireless networks based on
virtual coordinates. More precisely, we develop a distributed algorithm to
embed the network into a low dimensional space, and then perform greedy
forwarding based on those virtual coordinates. The algorithms developed in
this chapter are evaluated through simulations and compared to existing ap-
proaches. In Chapter 3, we will then formalize the intuition developed in this
chapter by first introducing models to capture the low intrinsic dimensionality
and the restricted mobility, and second by proving theoretical bounds on the
stretch and the signaling traffic for routing in wireless networks. Chapter 2
is structured as follows. First, we introduce the different paradigms for rout-
ing in wireless networks. Related work is discussed in Section 2.1, and some
background on graph embeddings is given in Section 2.2. In Section 2.3, we
develop a random beacon-based embedding with the following features: (i)
approximates well the single snapshot graph distances, (ii) gives a stable co-
ordinate system when embedding dynamic graph topologies, and (iii) has low
overhead in terms of network-wide control traffic. This embedding algorithm
is then combined with a novel randomized greedy routing algorithm in Section
2.4. The idea behind the randomized routing strategy is also independently
applicable to other scenarios with uncertainties in the topology or location. We
give extensive simulation results to validate the properties of our algorithms in
Section 2.5.

As mentioned in Chapter 1, mobile wireless networks comprise wireless de-
vices with a limited transmission range, such as laptop computers, personal dig-
ital assistants (PDAs), cell phones, or embedded sensing and actuation devices.
Such networks often rely on multi-hop communication i.e., the forwarding of
messages from a sender to a receiver outside the sender’s radio range through
intermediate nodes. One of the fundamental problems in ad hoc networking is

9

10 Virtual Coordinates for Routing in Dynamic Ad hoc Networks

thus the routing problem.
There are two approaches to the routing problem. The first approach relies

uniquely on the topology of the network. Topology-based routing establishes
an end-to-end path from a source to a destination through flooding or partial
flooding of the network. By flooding, we mean that a node sends a message to
all its neighbors in the network, which in turn resend the message to all their
neighbors and so on until either all nodes have seen the message, or the hop
count limit has been reached (partial flooding). Nodes either maintain a routing
table that contains next hop and distance information for each destination
[PR99], or the complete route can be stored in the header of all data packets
[JMB01b]. The concept of topology based routing is illustrated in Figure 2.1(a).

The second approach exploits the geometry of the network. Nodes for-
ward packets to neighbors geographically closer to the destination, assum-
ing that the geographic proximity is representative of the network distance
[BMSU99, KK00,KWZZ03]. Geographic routing protocols require a location
service [DPH05, GV06], which can be queried to obtain the location of other
nodes. For instance, a location service could work as follows. If the network
area is known, every node can use a universally known hash function to map
its own identifier to a position in this area. In turn, every node can send its
current location to the node closest to the position obtained with the hash
function. Later, when a source node intends to send a packet to a node of
which it only knows the identifier, it hashes the identifier of the destination
to a position in the area using the same hash function. In turn, it queries the
node closest to that position to obtain the location of the destination. In Figure
2.1, we illustrate those two paradigms. Both approaches have advantages and
disadvantages. The protocol overhead of topology-based routing stems from
the flooding necessary for path establishment and maintenance. It is therefore
very sensitive to mobility and uncertain channel environments, since even small
changes in a node’s neighborhood may lead to the failure of routes, which need
to be reestablished. In contrast, geographic routing does not maintain state
in the nodes, and forwarding decisions require only local knowledge i.e., the
geographic position of a node’s neighbors. Topology changes that do not af-
fect this local knowledge do not affect routing decisions, and therefore do not
have to be advertised network-wide. However, geographic routing is inefficient
when the network topology is not well captured by the geographic coordinates
of nodes (e.g., due to a fading channel, obstacles, etc.). In such inhomoge-
neous networks, greedy routing towards the destination often reaches a local
minimum, where no nodes with forward progress are known. Here, a recov-
ery strategy is necessary, which requires either flooding or establishing state in
nodes around the local minimum. This, together with the overhead introduced
by the location service, may be more costly than the use of a topology-based
routing protocol.

In this chapter, we investigate how to bridge the two paradigms. More
specifically, we are interested in building a virtual coordinate system that em-
beds the connectivity graph in a way that is coherent with the network topology.
Nodes which are close in the topology should also be close in the embedding.

Virtual Coordinates for Routing in Dynamic Ad hoc Networks 11

(a) Topology based Routing (b) Geographic Routing

Figure 2.1: Figure 2.1(a) is an illustration of topology based routing. Typically,
all-to-all shortest path are maintained either reactively, or proactively. When the
source node u wants to send a message to the destination node d, it starts a scoped
flood, that is a flood with a limited hop count, and if a node is reached that has
a valid entry for the destination, that nodes replies to the source. The source can
then forward the packet on the reverse path and routing tables can be updated.
If no such node exists, the flooding radius is increased. In the worst case, the
entire network is flooded and the destination itself answers to the source to setup
the route. Figure 2.1(b) is an illustration of greedy geographic routing. Here, the
source node u, at position x(u), first greedily routes a packet to the position where
the location x(d) of the destination d is stored. There are different ways to obtain
such a location service, one way being to use a universally known hash function to
map the identifier of the destination to a position in the network area. Obviously,
this implies that d must regularly send updates to the node closest to this location
in order to for the location service to be up-to-date. The node that stores d’s
location replies to the source by forwarding the packet back greedily. Knowing
x(d), the source can now start forwarding packets greedily to the destination.
Note that the presence of inhomogeneities such as walls can lead to dead-ends,
which in turn lead to additional signaling traffic. Further, if the nodes are mobile,
the location service must be updated at a sufficiently high frequency.

12 Virtual Coordinates for Routing in Dynamic Ad hoc Networks

Desirable properties of such a coordinate system are that it allows efficient
greedy routing, is robust to mobility and channel uncertainty, and is cheap to
maintain.

Embeddings of general graphs (roughly speaking a distance preserving map-
ping of a graph metric to another metric) is a well studied topic, but few al-
gorithms specifically for wireless graphs exist. Furthermore, ad hoc networks
require an efficient distributed implementation of the embedding algorithm.
Indeed, computing such an embedding in a centralized way would be highly in-
efficient in mobile networks and would lead to a high amount of signaling traffic
and bottlenecks. Our main objective is to create embeddings which provide
efficient routes when combined with greedy routing. This also reflects on the
choice of the metric with which the wireless graph is embedded. The intuition
which drives the techniques used for our embedding algorithm is the following.
We believe that geometry plays an important role for long paths, whereas short
paths are more subject to local perturbations. In other words, we expect that
on the large scale, the hop distance in the graph must be roughly proportional
to the Euclidean distance, while locally the behavior of the channel can be
highly unpredictable.

2.1 Relationship to Published Works

Graph embeddings are an active area of research with many different applica-
tions [IM04]. Some of the concepts of this chapter, for example, are based on
embedding algorithms used for the analysis of molecular similarities [AX03].

For networking, embeddings have been studied mainly in the context of
mapping network distances in the Internet to Euclidian space [TC03,DCKM04],
and relatively few embeddings exist that are specifically designed for routing
in wireless ad hoc networks. The two schemes most closely related to the algo-
rithms proposed in this chapter are the pioneering work presented in [RRP+03]
and the beacon vector routing (BVR) introduced in [FRZ+05].

In [RRP+03], a routing scheme (NoGeo) with a distributed relaxation al-
gorithm is presented. It iteratively builds a virtual coordinate system. The
algorithm assumes that a number of so-called perimeter nodes (located on
the border of the network) know their real coordinates in advance. Starting
from random virtual coordinates, at every iteration, non-perimeter nodes up-
date their coordinates by averaging the coordinates of their neighbors, while
the coordinates of perimeter nodes remain fixed. The scheme also includes
a flooding-based mechanism to determine identity and/or coordinates of the
perimeter nodes if they are not known in advance. The protocol performs
well in terms of success rate of greedy routing, but the overhead to maintain
perimeter nodes is very high when the topology is dynamic. The overhead also
grows superlinearly with the size of the network due to the increased length of
the perimeter. The algorithm critically depends on correct perimeter node in-
formation and at lower overhead may lead to a completely distorted coordinate
system.

2.2. Low-Dimensional Embeddings 13

BVR [FRZ+05] is intended for routing in sensor networks. Here, the hop
distances to beacon nodes directly form the virtual coordinates of a node,
and the dimensionality of the coordinate space corresponds to the number of
beacons. The set of beacons is randomly chosen and does not change unless a
beacon fails. As in [RRP+03], greedy forwarding over the virtual coordinates
is used as routing scheme. A distance metric is defined to take into account
the observation that greedy routing in the direction of a beacon is more likely
to lead to the destination than routing away from a beacon (explained in more
detail in Section 2.5). In case of a dead-end, a small scope flooding is initiated
to find a node that again provides greedy progress. The scheme is very sensitive
to a bad initial choice of beacons. It also does not cope well with mobility of
beacons or an uncertain channel environment, both of which lead to large shifts
in the virtual coordinates. This not only results in unstable routes, but also
incurs a high cost for updating a location service with the changing positions
of the nodes.

There are a number of further embedding algorithms for routing in sensor
networks. In [NS03], a ringed tree graph is built for data-centric informa-
tion processing with coordinates that are similar to polar coordinates. Both
MAP [BGJ05] and Glider [FGG+05] build a virtual coordinate system based on
a tiling of the network area. The former builds a backbone structure adapted
to the shape of the network topology and connects sensor nodes to the nearest
backbone node through shortest paths. The latter uses Delaunay triangulation
to form Voronoi cells and routes toward a so-called landmark node of the ad-
jacent Voronoi cell that lies in the right direction. Finally, some schemes use
multidimensional scaling techniques to build a coordinate system from connec-
tivity information (e.g., [SRZF04]). All of these systems have in common that
they are not designed to cope well with mobility or varying channel conditions.
While the former may be less important for sensor systems (but is very impor-
tant for example for vehicular ad hoc communication), the latter is an inherent
property of all wireless networks.

2.2 Low-Dimensional Embeddings

In this section, we review recent results in embedding theory that motivate the
beacon-based embedding algorithm presented in the next section, and provide
some intuition for its design. Over the past decade, significant progress has
been made in both algorithms and bounds for embeddings of (finite) metric
spaces (see for example [IM04] and references therein). Given the distances
D(·, ·) between n points in a metric space (X,D), the goal of the embedding
is to find a mapping x

′
= f(x), x ∈ X,x′ ∈ X ′

from X to another space X
′

such that for the metric D
′
(·, ·) in X

′
, for all points x, y ∈ X , the distances

D
′
(f(x), f(y)) do not distortD(x, y) very much. More precisely, the embedding

f(·) is said to have distortion at most c if there is a r ∈ (0,∞) such that for all
x, y ∈ X , rD(x, y) ≤ D

′
(f(x), f(y)) ≤ crD(x, y). For c = 1, the embedding is

called non-contracting. Also, typically the target space X
′
is a Euclidean space

14 Virtual Coordinates for Routing in Dynamic Ad hoc Networks

with D
′

being the l2 norm. In such cases we can talk about the dimension of
the embedding to be the dimension of X

′
.

In the aforementioned framework, many graphs1 do not admit low-distortion
and low-dimensional embeddings simultaneously. There has been a significant
amount of effort in classifying the distortion and dimension of specific classes
of graphs (see Table 8.5.1 in [IM04]). This leads to the notion that in general
graphs are not “embeddable” i.e., do not admit low-distortion embeddings
in low-dimensional spaces. More recently, an alternate question was posed
in [KSW04], which introduced the notion of slack in embeddings. Slack allows
a small fraction of the distances to be arbitrarily distorted, while the others are
guaranteed to have a much smaller distortion. In particular, [ABC+05] showed
that every finite metric space can be embedded into a lp space with constant
dimension O(log2(1

ǫ)) with constant distortion O(log(1
ǫ)), if a fraction ǫ of the

distances in the original space can be arbitrarily distorted. However, the dis-
tortion may not be uniform across nodes. Therefore we need a stronger notion
of slack called uniform slack which means that for every point u ∈ X , at most
fraction ǫ of its pairwise distances can be arbitrarily distorted. Embeddings
with uniform slack is also explored in [ABC+05].

One of the main techniques in embeddings with slack is the use of a con-
stant number of beacons for the embedding. Such an embedding is based on
triangulation i.e., reconstructing the distance between two non-beacon points
from their known distances to a set of beacons. Clearly, for points that are
close to each other, this can cause arbitrarily large distortion. Hence, these
pairs of points are counted towards the uniform ǫ slack.

The notion of slack is inherently useful for embeddings of wireless network
graphs. This is because a small number of edges suffice to transform a graph
admitting a low-dimensional embedding into a graph that does not. The ran-
domness in node locations as well as mobility and channel uncertainty (fading)
can easily perturb the original geometry enough to make the graph difficult
to embed completely. However, our intuition is that for wireless graphs, even
though local geometry is easily perturbed through these sources of random-
ness, at large scales this would matter much less. Therefore, slack eliminates
some of the local behavior, and allows to embed the larger-scale distances into
a low-dimensional space with low-distortion. We also use this principle of slack
in Section 2.4, where we develop routing algorithms.

We also note that graphs that do not possess low-dimensional embeddings
can arise even without channel uncertainty. Specifically, it is possible to con-
struct unit-disk graphs (UDG), where an edge between two nodes u and v exists
if and only if ||x(u)− x(v)|| < 1, for which no low-distortion, low-dimensional
embeddings exist [MOWW04]. However, these require specific node constella-
tions that occur only with very low probability in a random realization of node
locations. Hence, these constructions are mostly of theoretical interest.

1We interchangeably use the term graph for a finite metric space.

2.2. Low-Dimensional Embeddings 15

2.2.1 Stable Dynamic Embedding of Connectivity Graph

We have discussed above the classical embedding problem of a metric space
(X,D) into another (usually normed) space (X ′, D′) through an embedding
function f : X → X ′, and the associated metrics for the quality of the em-
bedding (stretch, slack).2 We now introduce a novel aspect of the embedding
problem discussed in this chapter: maintaining a stable embeddings of a dy-
namic graph.

Indeed, the connectivity graph of a mobile wireless network changes over
time because of node mobility and channel uncertainty. We can view this
as a dynamic metric space (X,D(t)), for which we would like to maintain an
embedding f (t)(.). We define the embedded distance between x1 and x2 at
time t as D′(t) = D′(f (t)(x1), f

(t)(x2)).
What is a good dynamic embedding? For obvious reasons, we would like

the dynamic embedding f (t)(.) to be a faithful representation of (X,D(t)) for
every time t. However, this is not sufficient for our purposes, because it does
not say anything about the evolution of the embedding over time. For example,
even if the metric space (X,D(t)) were fixed over time, the embedded coordi-
nates might fluctuate, provided the distances D′(t)(., .) remain stable. This is
undesirable, for the following reason.

In our setting, although the graph changes over time, it tends to change
slowly. For example, two nodes that are far apart at time t are unlikely to
be very close a short time after t, and vice versa. This is a result of physical
constraints on node mobility processes (nodes cannot jump from one place
to another), and the fact that channels between nodes strongly depend on
geography, as explained above.

Therefore, the distances D(t) change slowly over time, with the largest rel-
ative changes concentrated on short distances. The stable embedding problem
amounts to maintaining a dynamic embedding such that (a) the instantaneous
distances D′(t)(., .) are close to the real distances D(t)(., .) for every t, and (b)
the coordinates f (t)(.) of the embedded space changes as slowly as possible.

A stable embedding in our context is important for the following reasons.
A geo-routing algorithm has to be paired with a location service in order to be
able to deliver messages to particular nodes (or information items), rather than
to particular locations. A location service is essentially a distributed database
that maintains the location of every node in the network. The database has
to be updated when the location of a node changes. Suppose we have a node
x that does not move, but whose coordinates in the embedding f(x) change
over time; then updates would have to be generated continually for this node,
resulting in overhead. A stable embedding minimizes this overhead.

A slightly different approach eliminates the need for location updates by
merging the location service into the routing protocol. In this approach, a
message starts out with an imprecise estimate of the destination’s location.
It then refines this estimate as it travels through the network. It has been
shown that it is sufficient (depending on the mobility process) that each node

2We discuss other metrics from the field of multidimensional scaling in [TDGW07b].

16 Virtual Coordinates for Routing in Dynamic Ad hoc Networks

remembers when and at what location it was last a neighbor of every other
node. This approach, called Last Encounter Routing (LER) [GV06], amounts
to the message traveling towards past locations of the destination. If LER
operates on embedded coordinates, then a stable embedding ensures that these
past locations are close to the current location of the destination. Even though
there is no need for location updates in LER, an unstable embedding would
manifest itself through increased route cost, as the message would frequently
move “in the wrong direction”.

This illustrates that stable embeddings are important to minimize overhead
in the context of geo-routing. Therefore, in this chapter, our goal is to develop a
distributed algorithm that computes faithful and stable embeddings for slowly
changing graphs.

In summary, the results on graph embeddings provide important insights
for the design of the algorithms in 2.3 and 2.4. In the presence of mobility,
designing a beacon management method that produces stable embeddings is
challenging. Slack is an important concept for embeddings of wireless graphs
since there are low probability events that can significantly deteriorate embed-
ding performance. In Section 2.3 we explore methods that do local operations
to account for such inaccuracies. There is always some degree of distortion in
embeddings and routing protocols need to take this into account. To this end,
we propose a randomized algorithm scheme in Section 2.4.

2.2.2 Observations on Wireless Connectivity Graph

We believe that connectivity graphs that arise from wireless networks are spe-
cial, because there is some underlying geometry associated with such graphs.
On the one hand, channel fading might destroy some local geometry associated
with connectivity. On the other hand, nodes originate from a 2-dimensional
world, and connectivity is mostly local. Hence, we suspect that geometry will
play a large role in connectivity over larger distances. That is, nodes posi-
tioned far apart in the real world are bound to communicate over multiple
hops. Therefore, even though one could still construct wireless connectivity
graphs which do not have such properties, our experiments and intuition sug-
gest that such configurations occur relatively rarely.

In order to understand some of these issues, we examine the problem using
multi-dimensional scaling (MDS) which is another technique for extracting co-
ordinates from pairwise distances widely used in statistics literature (see for
instance [BG05]). Classical scaling, [BG05], is a technique used in statistics to
obtain (embedded) coordinates X in Euclidean space of n points given only a
matrix of pairwise distances3. Coordinates obtained with this approach mini-
mize the sum of squared errors between the original distances and the Euclidean

3Note that the algorithm is centralized and requires knowledge of all pairwise distances.
Hence, it is not suited for a distributed implementation in wireless networks. Nevertheless,
it can help us get additonal insight

2.2. Low-Dimensional Embeddings 17

distances between points (which is also called the stress function [BG05]) i.e.,

min
f

n∑

i=1

n∑

j=i+1

[

D(vi, vj)−D
′
(f(vi), f(vj))

]2

.

Therefore, the criterion used to evaluate the embedding in MDS is different
from that of the relative distortion criterion introduced earlier. The stretch
criterion used in computer science [IM04] is a worst case distortion, in contrast
to the average distortion used in MDS.

A nice property of X is that it is a principal axes solution i.e., the variance
along axes is maximized [BG05]. We are interested in this variance as we want
to show that the error incurred by representing wireless connectivity graphs in
low-dimensional Euclidean space is small. In other words, in an optimal least
square embedding in Euclidean space, only a small number of dimensions are
necessary to capture most of the variance.

Given a n × n matrix D(2) where the (i, j)-th entry in D(2) is given by
D2(vi, vj), for vi, vj ∈ V , we define a matrix B as,

B = −1

2
JD(2)J, (2.1)

where J = I − n−111T and 1 = [1, . . . , 1]T . The m-dimensional coordinate

matrix of classical scaling is given by X = Q+Λ
1
2
+, where Λ+ is the matrix

containing the m largest eigenvalues and Q+ the corresponding eigenvectors.
Note that dimensions are nested so that the m − 1 first dimensions of a m-
dimensional embedding are the same as the m − 1 dimensions of an m − 1-
dimensional embedding

In Figure 2.2 we show how geometry plays a role in the dimensionality of
connectivity graphs. We generate several G(2000, r, p)4 with varying average
node degrees and for p = 0.6 and p = 1 (see Fig. 2.2(a) and 2.2(b) respec-
tively). Note that since the node density is N

1 = N , the average node degree is
p(N − 1)πr2. We then use (2.1) to find the m-dimensional coordinate matrix
associated with this topology. Assume that the eigenvalues [θ1, θ2, ...] in Λ are
in decreasing order. In particular, we are interested in the spectrum of the
re-centered squared distance matrix B and how variance is distributed in the

different dimensions. In Fig. 2.2, we plot v(d) =
Pd

i=1 θi
PD

i=1 θi
, where D is such that

θD is the smallest positive eigenvalue. This random experiment is repeated,
and the cumulative results are presented in Figure 2.2. It can be observed
that there is a considerable gap between the first and second dimensions, while

4we define a connectivity graph G(N, r, p), where N is the number of nodes, r is the com-
munication radius, and p is a connection probability. First, every node i is placed uniformly
at random at a position x(i) on the unit square. Then, we add an edge between nodes i and j
with probability p if ||x(i)−x(j)|| ≤ r for all i, j. In this model the underlying assumption is
that nodes can only communicate directly if they are located physically close to each other,
and that even in this case, some losses can occur because of the random nature of wireless
communications.

18 Virtual Coordinates for Routing in Dynamic Ad hoc Networks

there are only small increments for subsequent dimensions. This indicates that
most of the variance is captured by the two first dimensions. Further, this gap
diminishes as we increase the communication radius. These experiments seem
to suggest that wireless connectivity graphs are well representable using a small
number of dimensions. Not surprisingly, when we increase the average degree
and consequently the communication radius, geometry progressively plays a
smaller role and the fraction of the total variance in the two first dimensions
is reduced. For a very large average degree, the variance appears to be equally
distributed in all dimensions. Interestingly, when we make connectivity ran-
dom by setting p = 0.6, we reduce the variance in the two first dimensions.
Intuitively, adding complexity to the channel also decreases the embeddability
of the connectivity graph in a low dimensional space.

In Fig. 2.3, we show that remarkably this low dimensionality is always
present, independently of the size of the network. This suggests that a smart
design for a distributed embedding algorithm should exploit this property and
be highly scalable. In other words, it seems that the communication overhead
necessary to capture this low dimensional structure should be of O(1) per node,
as adding new nodes does not change the properties of the connectivity graph.

2.3 Embedding Algorithm

In this section, we describe our distributed probabilistic beaconing (PB) algo-
rithm. We first provide some intuition on the design of the algorithm, moti-
vated by the discussion in the previous section. We then formally define the
algorithm and explain its operation through an example.

2.3.1 Embedding Heuristic

The basic idea of our algorithm is to use random beacons as anchors of an
embedding. The algorithm is specifically designed to maintain a stable embed-
ding when the graph changes over time, and to combine global beaconing with
local correction operations to restore local geometry as far as possible.

We now describe the heuristic for a node i to compute its current embedded
position x(i) for an embedding in M dimensions. We assume that a node i has
information from a set B of beacons for which it knows both its graph distance
hBl

, Bl ∈ B and x(Bl), the embedded coordinates of the beacon Bl ∈ B.
From this, the node attempts to find its embedded coordinates x(i) using the
following criterion.

min
x(i)

∑

Bl∈B
[hBl

− ||x(i)− x(Bl)||]2 def
= min

x(i)
h(x(i)). (2.2)

We use a heuristic to solve this optimization problem because h(·) is a non-
convex function. Suppose node i knows its graph distance to a set of beacon
nodes B = {B1, . . . , Bb}. An iterative heuristic to solve (2.2) will update the

2.3. Embedding Algorithm 19

10
0

10
1

10
2

10
30

0.2

0.4

0.6

0.8

1

dimension

%
 o

f v
ar

ia
nc

e
in

 d
im

en
si

on
s

≤
d

E[degree] 16
E[degree] 64
E[degree] 256
E[degree]1024
E[degree]4096

(a) Spectrum with p = 0.6

10
0

10
1

10
2

10
30

0.2

0.4

0.6

0.8

1

dimension

%
 o

f v
ar

ia
nc

e
in

 d
im

en
si

on
s

≤
d

E[degree] 16
E[degree] 64
E[degree] 256
E[degree]1024
E[degree]4096

(b) Spectrum with p = 1

Figure 2.2: Cumulative distribution of variance in dimensions for G(2000, r, p) for
various average degree and probability p = 0.6 and p = 1 of link connectivity.

position x(i) of node i by moving it towards or away from the beacons. This
is reminiscent of stochastic proximity embedding (SPE) [Dim03].

If the wireless connectivity graph G were perfectly embeddable in two di-
mensions i.e., if there existed a placement of the node in ℜ2 such that all
Euclidean distances between the nodes were exactly equal to the hop distance
in the graph, then, given the positions and the shortest path distances to at
least three beacons, the positions of all other nodes would be uniquely deter-
mined. In reality, we expect G to be low dimensional only within some slack ǫ.

20 Virtual Coordinates for Routing in Dynamic Ad hoc Networks

0
2

4
6

8
10

0

1000

2000

3000

4000
0

0.2

0.4

0.6

0.8

1

dimension dsize of network

%
 o

f v
ar

ia
nc

e
in

 d
im

.≤
 d

Figure 2.3: Cumulative distribution of variance in dimensions for G(N, r, 1). The

average degree (deg) is 16 (r =
√

deg
p(N−1)π) and probability p = 1 of link connec-

tivity. We vary the networks size N . One can observe that the low dimensional
structure of wireless connectivity graphs is independent of N

Figure 2.4: Nodes a and b are neighbors, while node c is far away from both.
The two optimal positions of node a and b are close. In the worst case, a and b
are placed on opposite sides of the plane and the relative error is approximately 1
over the distance between these optimal positions. c being placed further apart,
the relative error in the distance is small. B1,B2 and B3 are beacons.

2.3. Embedding Algorithm 21

Therefore, G requires an embedding dimension of at least M = 2, with a small
incremental benefit for higher-dimensional embeddings (M > 2). Conceptu-
ally, in the PB algorithm, randomly selected beacons flood the network one by
one. All nodes, as soon as they get the message from a new beacon, recompute
their virtual position taking into account the virtual position of the beacon,
and the hop distance to the beacon. Hence, after the flooding of the third
beacon, this manifests itself by the nodes clustering close to a two-dimensional
hyperplane in the M -dimensional space. The relative error in the distances
between non-beacon nodes is bounded by the variance in higher dimensions
for nearby nodes, and becomes negligible for nodes far apart. An illustrative
example where G is inherently 2-dimensional with low variance in the third
dimension is shown in Figure 2.4.

2.3.2 Dealing with Dynamic Graphs

Under mobility and channel uncertainty, large scale distances remain relatively
unaffected over short time scales. We exploit this slow evolution by updating
the embedding in a lazy manner, but giving up on short distances. Specifically,
we propose to use a sliding window mechanism to update the embedding in the
face of graph dynamics. Every time the distance to a new beacon is learned,
the oldest distance is thrown away. By only changing one of the beacons at
a time, the coordinate system cannot change drastically as the other beacons
remain fixed. Always choosing new random beacons ensures that we are not
dependent on the initial choice of beacons. A new random choice at every
iteration guarantees a good performance on average.

We include an additional mechanism to stabilize the embedding. To make
the embedding locally consistent, nodes estimate their distances to the beacons
as the average of their observed distance and the observed distances of their
one-hop neighbors. The underlying idea is that when a node moves into a new
neighborhood, its distance estimate should be close to the distance estimates
of its new neighbors. Local coherence is especially important for geographic
routing, where all forwarding decisions are local.

2.3.3 Formal Description of PB Algorithm

At every time step k, a new beacon node is randomly selected. This beacon
floods the network with a control message, through which each node learns its
shortest-path distance in G to the new beacon.

Our heuristic updates node i’s embedded position x(i), by iteratively min-
imizing the criterion given in (2.2) using a gradient-descent technique. Nodes
know their (virtual) Euclidean distance and graph distance to beacons and
consequently new beacons can be chosen with a higher probability if they are
well embedded with respect to already existing beacons. Adding new beacons
will push nodes out of local minima. To increase the probability that neighbors
have similar coordinates (e.g., to move to the same side of the plane in Figure
2.4), the input hop-distance to the algorithm is the average of a node’s and its

22 Virtual Coordinates for Routing in Dynamic Ad hoc Networks

neighbors’ hop-distances. More precisely, at every time k, a randomly selected
beacon Bk floods the network with its virtual position x(k)(Bk), where the
superscript indicates the time-index of the coordinate. All other nodes i in the
network obtain their hop distance, or proximity, Pi(k) to Bk in this way. We
initialize x(0)(B0) with a random M -dimensional vector.

Nodes have a buffer in which they store their proximities (hop-distances)
to the b last beacons as well as the virtual positions of these beacons at the
time they flooded. Let us call B(k) the set of the b last beacons at time k,
and Pi(k − l) the proximity of node i and beacon Bk−l at time k − l. Let
Eij = ||x(i)−x(j)|| denote the Euclidean distance between nodes i and j with
positions x(i) and x(j) (in the virtual/embedded space) and Ni the one-hop
neighbors of i. The probabilistic beaconing algorithm is shown in Algorithm
1. This algorithm is executed by all nodes at every time step k i.e., every time
a new beacon is elected and floods the network. Nodes temporarily store a
vector containing the average of their distances to the beacons and the distance
of their one-hop neighbors to the beacons. Then, nodes iteratively project
their position on a hypersphere around every beacon of radius equivalent to
the previously estimated distance ĥ to that beacon. The input to the next
iteration is the average of the projections. Figure 2.5 illustrates two iterations
of the algorithm in a two dimensional space with three beacons. In practice,
given the average hop-count ĥu(k) of its neighborhood, node vi attempts to
minimize the criterion h(~x) given in Equation 2.2. The gradient of h(~x) with

respect to ~x is 2
∑B

u=1
~x−bu

||~x−bu|| [||~x−bu||− ĥu]. The iterative method proposed in

Algorithm 1 is a gradient-descent method, which can be shown to go to a local
minimum and therefore converge. Instead of stopping after a fixed number of
steps W , we can also choose a stopping criterion such that the gradient is small
enough.

2.4 Routing Algorithm

As we have explained, geometry plays a role for large distances, such that
a small number of beacons are sufficient to embed at a low distortion and
roughly place nodes at the correct location. To accurately embed short dis-
tances, practically every node would have to be a beacon and the dimension of
the embedding would be much higher, which is not a desirable property for an
embedding algorithm. We propose two local mechanisms to cope with these
inconsistencies in the coordinate system.

The first mechanism is based on the principle of slack introduced in Section
2.2, which showed that the largest distortion of the distances occured in the
local neighborhood. To overcome these errors, the idea is that every node
can build a local routing table that is sufficiently large to overcome this local
inaccuracy of the coordinate system. Therefore, the size of the slack is related
to the size of such a local routing table.

Alternatively one can use Biased Random Walk (BRWalk) explained below.
BRWalk is designed for coordinate system which are slightly inaccurate, such

2.4. Routing Algorithm 23

input : At time k, a vertex vi obtains distance Pi(k) to beacon Bk

output: Adjusted virtual position

for u = 0 to b− 1 do1.1

ĥu(k)← 1
|Ni|+1

(
∑

j∈Ni
Pj(k − u) + Pi(k − u)

)

;
1.2

/* Adjust distances to beacons, averaged over

neighborhood */

end1.3

x := 1
|Ni|+1

(
∑

j∈Ni
x(k)(j) + x(k)(i)

)

;
1.4

/* Starting point is center of mass of node i + neighbors

*/

repeat1.5

x := x+ 1
b

∑b−1
u=0

(

ĥu(k)− ||x− x(k−u)(Bk−u)||
)

x−x(k−u)(Bk−u)

||x−x(k−u)(Bk−u)||1.6

/* Gradient descent */

until the maximum number of iterations W is reached ;1.7

x(k+1)(i) := x;1.8

/* Update position */

Algorithm 1: Probabilistic Beaconing (PB) Algorithm

as the one obtained with PB or noisy samples of real coordinates in a dense
network (without large voids). It trades off path length for robustness by
not trusting the coordinate system completely. In BRWalk, the next hop is
chosen randomly among all neighbors. By introducing randomness into the
routing decisions, we tolerate some “wrong” forwarding decisions which on one
hand increase the path length but on the other hand allow to transparently
avoid getting stuck in a dead-end. Nodes which are geographically closer to the
destination than the current node have a higher probability of being selected as
next hop, but going “backward” and loops are not excluded. In order to reduce
the probability of visiting the same node several times, one can store a constant
size list of the last visited nodes and reduce the probability of returning to these
nodes.

Assume a source s has a packet for a destination t. For every node j ∈ Ns,
s computes the difference between its Euclidean distance to the destination
and the Euclidean distance of node j to the destination ∆j = Est−Ejt. Then,

the probability of choosing node j as a next hop is given as pj =
f(∆j)

P

k∈Ns
f(∆k) .

Additionally, if the packet can hold the identifier of the last n hops in a variable
path, one can modify the probability of visiting a node which occurs several
times in the path i.e.,

pj =
f(∆j , path)

∑

k∈Ns
f(∆k, path)

(2.3)

One possibility is to set f(∆j , path) = eα∆

2m where α is a parameter determining

24 Virtual Coordinates for Routing in Dynamic Ad hoc Networks

Figure 2.5: Two iterations of the PB algorithm in 2 dimensions. The node projects
itself on a hypersphere of radius hu around every beacon Bu. The input to the next
iteration is the average of these projections. This implements a gradient-descent
minimization of h(·) defined in Equation 2.2.

the “greediness” of the routing and m is the number of times node j appears in
path. Note that when α→ 0, the routing algorithm simply performs a random
walk and that when α becomes large enough, BRWalk routing is equivalent to
greedy routing (in this case the path is not taken into account). The next hop is
a sample drawn according to the distribution given in Equation 2.3. Note that
in this routing algorithm, packets need to have a time to live (TTL) field, as
in the worst case, with low probability they might never reach the destination.
We consider that a small percentage of lost packets is acceptable if it allows us
to considerably reduce the overhead.

2.5 Simulation Results

In this section we evaluate our algorithms through a series of simulations using a
custom discrete time simulator. In every round, nodes first move, then update
their positions, and then communicate. A node can communicate with any
other node in the network during such a round, potentially over multiple hops.
We assume for simplicity that there is no packet loss at the MAC layer.

2.5. Simulation Results 25

2.5.1 Experiment Design

Our embedding algorithm is designed to cope with long term fading rather than
with short term fading. Consequently, we consider that nodes can move but
that the channels, which are determined by the environment, do not change over
time. The network model we use therefore consists of an S×S grid of locations.
Every location can be occupied by none, one or several nodes. The channel
existing between the locations is drawn a priori. Hence, if a node i occupies a
location l1 and another node j occupies a location l2, these nodes will be directly
connected through an edge (i, j) if a link exists between the two locations l1 and
l2. In our simulation we consider that every location picks λ other locations
according to an exponential distribution with mean r for the distance and at
angles chosen uniformly at random around itself to connect to.5 Note that this
is not a unit disk graph model (UDG)6, and consequently routing algorithms
tailored for this particular class of graph are not applicable (e.g., planarization
in [BMSU99,KK00,KWZZ03]). To simulate node mobility, we use the random
walk (RW) model and the random waypoint (RWP) model. When a node
moves, its coordinates are rounded to the closest grid location. We compare
our approach with BVR [FRZ+05] and with the averaging (NoGeo) approach
proposed in [RRP+03]. For NoGeo, unless stated otherwise, we consider that
the perimeter nodes as well as their positions are known. We made that choice
as applying the “perimeter node” criteria described in [RRP+03] led to a very
large amount of falsely detected perimeter nodes and in turn to very poor
performance with the random channel model, especially in mobile scenarios. By
default, we consider 20 perimeter nodes. Unless stated otherwise, we consider
a network of size S = 30 with N = 1500 nodes with λ = 10 and an expected
communication range of r = 1.5. As a general rule, we allow an overhead of 10
messages per node to build the embeddings per round (10 averaging steps for
NoGeo, 10 beacons can flood for BVR and PB). In BVR the dimension of the
embedding is equivalent to the number of beacons. To make the comparison
with PB meaningful, we use the same dimension of embedding for PB and BVR
and 2 for NoGeo. We also use b = 20 for PB. The dimension of embedding M
can be considered low if it is constant and M ≪ N , where N is the number of
nodes. The dimension M set to 20 by default for PB and BVR.

2.5.2 Performance Metrics

We evaluate embedding algorithms according to the following criteria:

5Channels are considered to be bidirectional, so that a location which is “chosen” by
another node can have a degree higher than λ, while a node that randomly picks several times
the same location might have a degree lower than λ. We bound connectivity to λ locations
for simplicity, and verified that the results are equivalent to an exponential distribution over
all points.

6In a UDG model, nodes i and j with positions x(i) and x(j) respectively are connected
if and only if ||x(i) − x(j)|| ≤ r, for a fixed communication radius r.

26 Virtual Coordinates for Routing in Dynamic Ad hoc Networks

Distortion

Given two nodes i and j with virtual coordinates x(i) and x(j), we define

the multiplicative distortion as ||x(i)−x(j)||
rij

where rij denotes the shortest path

distance in the connectivity graph between i and j.

Greedy Routing Success Rate (GSR)

The fraction of packets that reach their destination by making only local for-
warding decisions based on the coordinates of the nodes in the neighborhood
and the position of the destination. For PB and NoGeo, we use classic greedy
routing which forwards a packet to the neighbor closest in Euclidean distance
to the destination. For BVR, we use both greedy routing and the routing
algorithm proposed in [FRZ+05], here called “BVR greedy” and “BVR”, re-
spectively. For the latter, the distance between two nodes p and d is given by
Aδ++δ−, where δ+(p, d) =

∑
max(pi−di, 0) and δ−(p, d) =

∑
max(di−pi, 0).

Index i corresponds to the ist coordinate. As in [FRZ+05], we set weightA = 10
and take all beacons into account. The neighbor that minimizes this distance
function is chosen as a next hop.

Path Stretch

The path stretch is the ratio between the actual number of hops a data packet
traveled from a source to the destination and the shortest path distance in hops
between these two nodes. We only consider successful communication.

Communication Overhead

We consider as overhead all packets that are not data packets. This includes
the packets flooded by beacon nodes as well as the packets used to build local
routing tables and the packets used in ring search.

Virtual speed

This metric captures how fast nodes move in the virtual coordinate space, i.e.,
the average Euclidean distance between the virtual coordinates of nodes from
one round to the next.

2.5.3 Static Networks

In this section, we investigate the performance of PB in static networks both
in terms of embedding quality and routing efficiency.

Quality of Embedding

In Figure 2.6(a), we show the empirical cumulative distribution function (ecdf)
of the multiplicative distortion in a fixed network size. It can be seen that it is

2.5. Simulation Results 27

low with PB. This indicates that PB can efficiently capture the inherently low
dimensional structure of wireless connectivity graphs. Further, a small number
of beacons suffice to this end. One can also point out the fact that the slope
of the cumulative distortion curve with PB is almost vertical which indicates a
lower variance. It is interesting to note that the distortion of BVR is high, since
nodes are spread out in all dimensions. Due to the randomness of the channel,
there can also be highly distorted distances with the real coordinate system
(e.g., if nodes located in neighboring locations are not connected directly).
With NoGeo, the averaging procedure can place nodes arbitrarily close or far
apart so that a fraction of distances are highly distorted. As shown in Fig.
2.6(b), the mean multiplicative distortion does not appear to grow considerably
with the size of the network. In addition, it stays very close to 1 with PB,
which tends to indicate that even the additive distortion is small. A direct
consequence will be that geographic routing performs well on top of a virtual
coordinate system built with PB, independently of the size of the network.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

x

P
(m

ul
tip

lic
at

iv
e

di
st

or
tio

n<
x)

PB

NoGeo
BVR

REAL

(a) Multiplicative distortion

0 1000 2000 3000 4000 5000
0.5

1

1.5

2

2.5

3

3.5

Number of nodes

M
ul

tip
lic

at
iv

e
D

is
to

rt
io

n

PB
NoGeo
BVR
real

(b) Mean multiplicative distortion versus net-
work size

Figure 2.6: Cumulative distribution function of multiplicative distortion for 2000
nodes and mean distortion as a function of number of nodes. When we increase
the number of nodes, we maintain a constant density of 2 nodes per grid location.

0.5 1 1.5 2
x 10

4

0

0.2

0.4

0.6

0.8

1

network size in nodes

su
cc

es
s

ra
te

 o
f g

re
ed

y
ro

ut
in

g

PB
NoGeo
BVR greedy
BVR
real

(a) Scalability

10
1

10
20

0.2

0.4

0.6

0.8

1

Average degree

su
cc

es
s

ra
te

 o
f g

re
ed

y
ro

ut
in

g

PB
NoGeo
BVR greedy
BVR
real

(b) Density

0 5 10 15 20
0.2

0.4

0.6

0.8

1

number of randomy placed walls

su
cc

es
s

ra
te

 o
f g

re
ed

y
ro

ut
in

g

PB
AVG
BVR greedy
BVR
real

(c) Inhomogeneity

Figure 2.7: GSR as a function of network size, node density and number of
obstacles (randomly placed straight walls of length 6). The overhead allowed to
build the embedding is set to 20 messages per node.

28 Virtual Coordinates for Routing in Dynamic Ad hoc Networks

Quality of Routing

We will first investigate the performance of greedy routing on top of virtual
coordinate systems in a static setting. In particular, we will focus on the
performance of the algorithms in networks of increasing size, networks of in-
creasing node density and in inhomogeneous network topologies. We will also
investigate local optimization mechanisms to improve the quality of routing.

Scalability, Density, and Inhomogeneity Increasing the size of the net-
work while maintaining a constant density of 2 nodes per grid location has
the effect of introducing larger distances in the topology. The overhead per
node allowed to build the embedding is kept constant. A consequence is that
in PB and BVR, the beacons are spread out. We show in Figure 2.7(a) that
this affects the GSR of PB only marginally. On the other hand, a clear ef-
fect can be seen with NoGeo as the node positions depend on the position of
perimeter nodes and the averaging takes more time to reach the center of the
network. A direct consequence of the way the BVR embedding is built is that
is is easier to route toward beacons. Indeed, one can observe that the GSR
decreases remarkably with this approach when we increase the network size.
A similar phenomenon can be observed when the network area is reduced and
the number of nodes is kept constant. Figure 2.7(b) shows that NoGeo and
also BVR are severely affected by changes in the network diameter, while PB
is relatively unaffected.

Increasing the network size also creates voids in the topology as not all grid
locations are occupied anymore, which reduces the GSR of real coordinates.
This effect can also be seen in topologies with obstacles (see Figure 2.7(c)).

Note that the GSRs of NoGeo and BVR are fairly low since we limit all
approaches to the same overhead to build the embedding and the convergence
speed of PB is higher. Our simulations have shown that in order to reach the
same GSR as PB, NoGeo and BVR need an overhead of up to 100 messages
per node in this setting.

Local Optimizations As explained in 2.2, small distances are hard to em-
bed.

As explained in Section 2.4, allowing nodes to build local routing table of
growing scope can increase the GSR and reduce the path stretch remarkably as
shown in Fig. 2.8(b) and 2.8(a), but the overhead to build the routing tables
increases likewise.

BRWalk allows to trade path length for overhead. In Figure 2.8, we show
that for a sufficiently high value of the parameter α (see Section 2.4), the stretch
can be as low as 2 while the GSR reaches 100%, which is similar to the one
obtained with local routing tables at no cost in terms of overhead. This shows
that when a good next hop is available that is much closer to the destination
than the current node, this node should be chosen. In other words, if we make a
big progress in Euclidean space, we should trust the embedding. On the other
hand, when no such node exists, a next hop should be chosen randomly. This

2.5. Simulation Results 29

result also suggests that there are small errors in the embedding. The ordering
with respect to a target node of nodes embedded nearby can be perturbed. In
turn, this phenomenon leads to wrong forwarding decision. Introducing ran-
domness in the forwarding decisions appears to be an efficient way to mitigate
the effects of such disorderings.

1 1.5 2 2.5 3 3.5 4
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

radius of routing table

pa
th

 s
tr

et
ch

PB
NoGeo
BVR
BVR greedy
real

(a) Path stretch

1 1.5 2 2.5 3 3.5 4
0.2

0.4

0.6

0.8

1

radius of routing table
G

re
ed

y
R

ou
tin

g
S

uc
ce

ss
 R

at
e

PB
NoGeo
BVR
BVR greedy
real

(b) Greedy success rate

0 2 4 6 8
0

5

10

15

20

alpha

pa
th

 s
tr

et
ch

PB
NoGeo
BVR
real

(c) Path stretch

0 2 4 6 8
0.4

0.5

0.6

0.7

0.8

0.9

1

alpha

G
re

ed
y

R
ou

tin
g

S
uc

ce
ss

 R
at

e

PB
NoGeo
BVR
real

(d) Greedy success rate

Figure 2.8: GSR and path stretch for BRWalk routing and forwarding with local
routing tables. α captures the randomness of the forwarding in BRWalk. A greater
value for α means less randomness. In this experiment, packets have a memory of
20 hops, as explained in Section 2.4.

2.5.4 Mobile Networks

Here, we study the behavior of embedding algorithms when the wireless con-
nectivity graph is dynamic because of node mobility.

Quality of Embedding

In mobile networks, we measure the quality of embedding by looking at the
average virtual speed of nodes in the virtual coordinate system. Only a certain
amount of “fresh” distance information is injected per round. In this case,
the embedding is partly built based on outdated distance information. The
virtual speed with PB is of the same order as the real speed of the nodes. The
sliding window mechanism mitigates the effect of injecting new distances while

30 Virtual Coordinates for Routing in Dynamic Ad hoc Networks

the averaging mechanism mitigates the local incoherence in the coordinate
system. Again, we assume that for NoGeo perimeter nodes are given, since
the perimeter node detection procedure in [RRP+03] (a node is a perimeter
node if it is further away from a beacon node than all of its two hop neighbors)
leads to a large number of false positives and ultimately to the collapse of the
coordinate system. In Figure 2.9(a), we show the average virtual speed of nodes
when the nodes move according to the RW and RWP model with a speed of 1.

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

iterations

vi
rt

ua
l s

pe
ed

PB RW
NoGeo RW
BVR RW
PB RWP
NoGeo RWP
BVR RWP

(a) Virtual Speed

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

iterations

In
st

an
te

ne
ou

s
G

S
R

PB RWP
NoGeo RWP
BVR greedy RWP
BVR RWP
real RWP

(b) Greedy Success Rate

Figure 2.9: Virtual Speed and GSR under mobility as a function of the allowed
number of iterations to update the coordinate system between every move

Quality of Routing

Second, we analyze the quality of routing in a dynamic setting.

Instantaneous GSR We investigate the performance of PB when we limit
the number of iterations to update the algorithm in every round. Figure 2.9(b)
shows that as few as 5 iterations are sufficient to obtain a high GSR. For the
sake of clarity we only show the results for the RWP as the RW results are
very close. It is remarkable that even under mobility a higher GSR than with
real coordinates can be obtained. There is an interesting trade-off between
stability and GSR. The more fresh information is added to the embedding, the
more it moves but the better the GSR. In a static environment, BVR is more
stable since the beacon nodes never change, but the GSR of PB can still be up
to two to three times higher than that of BVR, depending on the number of
beacons. In a mobile environment, however, PB is both more stable and more
efficient in terms of GSR. Note that the GSR of NoGeo decreases because new
perimeter nodes are selected continuously, and the coordinate averaging does
not manage to propagate through the network sufficiently fast to keep up with
the new information.

Reliable routing We now investigate reliable routing under mobility. When
a packet is stuck with greedy forwarding, a ring search is started until a node

2.5. Simulation Results 31

0 2000 4000 6000 8000 10000
0

2000

4000

6000

8000

10000

12000

Number of nodes

O
ve

rh
ea

d/
m

es
sa

ge

PB
NoGeo
BVR greedy
BVR
real

(a) Overhead per packet

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

2.5

3

3.5

Number of nodes

de
ad

−
en

ds
/m

es
sa

ge

PB
NoGeo
BVR greedy
BVR
real

(b) Dead-ends per packet

0 2000 4000 6000 8000 10000
2

2.5

3

3.5

4

4.5

5

5.5

Number of nodes

flo
od

in
g

ra
di

us
/d

ea
d−

en
d

PB
NoGeo
BVR greedy
BVR
real

(c) Flooding radius per dead-end

0 2000 4000 6000 8000 10000
1

1.5

2

2.5

Number of nodes

pa
th

 s
tr

et
ch

PB
NoGeo
BVR greedy
BVR
real

(d) Path stretch

Figure 2.10: Reliable routing under mobility. Nodes move according to the RWP
model with speed 1 and pause time 0. The are on average 2 nodes per grid location
and we maintain this density fixed while we increase the number of nodes. Nodes
are allowed an overhead of 5 messages to update the embedding before they move
again (5 iterations). The dimension of embedding is 20 for BVR and PB and 2 for
NoGeo

closer to the destination is found for NoGeo and PB. For BVR, we use the
recovery strategy proposed in [FRZ+05] which routes a packet toward the bea-
con closest to the destination. If along the way, the packet reaches a node
which is closer to the destination than the dead-end, greedy mode is resumed.
Otherwise, a ring search is started from the beacon. In Fig. 2.10, we are inter-
ested in how the communication overhead to achieve reliable communication
scales with the size of the network. We allow only a fixed overhead per node to
update the embedding in every round, and consequently the embeddings will
be based on outdated distance information. In Fig. 2.10(a), it can be seen that
reliable communications are less costly in terms of overhead with PB than with
the other approaches. Note that the overhead with real coordinates remains
low as there is no additional cost to update the real coordinate system. The
gap between the different schemes grows as the size of the network increases.
Fig. 2.10(b) and Fig. 2.10(c) give us some insight. In the former, it can be

32 Virtual Coordinates for Routing in Dynamic Ad hoc Networks

seen that the number of dead-ends per packet sent remains very low with PB.
In the latter, it is shown that when such a dead-end occurs recovery is cheap.
Indeed, on average a node only needs to search its two hop neighborhood to
find a suitable next hop. With the other approaches, the number of dead-ends
per packet increases with network size as well as the search radius necessary
to find a next hop. It is also worthwhile to note that the path stretch with
PB remains more or less constant. These are indicators that the quality of the
embedding and its stability do only scale well with PB.

Location service Overall, our simulations show that the embeddings built
with PB are sufficiently stable to be used with Last Encounter Routing (LER)
[GV06], resulting in a complete solution for routing in dynamic wireless ad hoc
networks with low overhead. As expected, PB is particularly efficient compared
to real coordinates in inhomogeneous topologies. Indeed, our experiments have
shown that in settings with obstacles the overhead to route a packet with a PB
embedding and LER (including the overhead to build the embedding) remains
lower than the overhead necessary to route a packet with LER on top of real
coordinates. This remains true when we increase the network size. We refer
the reader to [TDGW07b] for a more in depth explanation of LER on top of
PB. Note that when the topology is fixed, all embeddings oscillate very little
and are consequently also adapted for classical location services (LS). Indeed,
location services updates are in general triggered when a node has moved a
certain distance.

2.6 Concluding Remarks

In this work we present a novel embedding algorithm for greedy routing on
virtual coordinates that is robust to network dynamics and random channel
conditions. Its key feature is the intricate combination of local information
(averaging) and global information (probabilistic beaconing) in an iterative,
distributed manner. We give some intuition why these connectivity graphs are
inherently well embeddable even in the face of mobility. The proposed algo-
rithm significantly outperforms existing embeddings in terms of success rate of
greedy routing, convergence and distortion of the embedding, and overhead in
static as well as dynamic environments. We further show that some degree of
randomness in the routing decisions alleviates the effects of local inaccuracies
in the positions of the nodes. In Chapter 3, we will formalize the intuition
developed in this chapter.

Hierarchical Routing in

Dynamic Ad hoc Networks 3
As we have seen in the previous chapter, a major challenge in the design of
wireless ad hoc networks is the need for distributed routing algorithms that
consume a minimal amount of network resources. Clearly, this is particularly
important in dynamic networks, where the topology can change over time,
and therefore routing tables must be updated frequently. Such updates incur
control traffic, which consumes bandwidth and power. Hence, we concluded
that it was natural to ask whether there exist low-overhead schemes for dynamic
wireless networks that could produce and maintain efficient routes. In this
chapter, we again consider dynamically changing connectivity graphs that arise
in wireless networks. Our performance metric for the algorithms is the average
signaling overhead incurred over a long time-scale when the topology changes
continuously. Our goal is again to design a routing algorithm which can cope
with such variations in topology. We intend to maintain efficient routes from
any source to any destination node, for each instantiation1 of the connectivity
graph. By efficient, we mean that we want to guarantee that the route is
within a (small) constant factor, called stretch of the shortest path length.
However, in this chapter, we attack the problem in a different way. Recall that
in Chapter 2, we embedded the network in a low-dimensional space, so that
we could perform greedy routing on top of the virtual coordinate system. In
this chapter, we try and get rid of the need for a separate location service. In
order to route to a destination, we need only the identity of the destination and
not its address i.e., the control traffic to maintain the mapping between node
identity and address/location is incorporated into the overhead. Therefore, in
the wireless routing terminology, we have included the “location service” in the
control signaling requirement, and therefore hope to characterize the complete

1We assume inherently that the round-trip time (RTT) of a packet from source to desti-
nation is much smaller than the time-scale of topology change.

33

34 Hierarchical Routing in Dynamic Ad hoc Networks

overhead needed to maintain efficient routes. In contrast to the approach in
Chapter 2 that mapped the network to a low dimensional space independently
of its intrinsic dimension, we try here to develop an approach that adapts
to this intrinsic dimension. The results presented in Chapter 2 were based
on simulations of heuristic routing and embedding algorithms. While these
approaches appear to be very promising and gave us an intuition about how to
deal with dynamic wireless networks, the difficulty to analyze the performance
formally is somewhat limiting. On the other hand, the new approach presented
in this chapter, as well as the theoretical analysis of the properties of wireless
networks, allows us to derive asymptotic bounds on the signaling overhead and
the stretch. Further, the results presented in this chapter can also give us
insights about why the embedding algorithms of Chapter 2 performed so well.

In order to develop and analyze the routing algorithms we utilize the un-
derlying geometric properties of the connectivity graphs which arise in wireless
networks. This geometric property is captured by the doubling dimension of
the connectivity graph. A graph induces a metric space by considering the
shortest path distance between nodes as the metric distance. The doubling
dimension of a metric space is the number of balls of radius R needed to cover
a ball of radius 2R. For example a low-dimensional Euclidean space has a
low doubling dimension as will be illustrated in Section 3.2. A metric space
having a low (constant independent of the cardinality of the metric space) dou-
bling dimension is called “doubling”. We show that several wireless network
graphs (under conditions given in Section 3.2) are doubling and therefore en-
able the design and analysis of hierarchical routing strategies. In particular,
it is not necessary to have uniformly distributed nodes with geometric connec-
tivity for the doubling property to hold, as illustrated in Figure 3.2 in Section
3.2. Therefore, the doubling property has the potential to enable us to design
and analyze algorithms for a general class of wireless networks. Moreover, for
a large class of mobility models, the sequence of graphs arising due to topology
changes are all doubling (for specific wireless network models). Since there are
only “local” connectivity changes due to mobility, there is a smooth transition
between these doubling graphs. We can utilize the locality of topology changes
to develop lazy updates methods to reduce signaling overhead.

We show that several important wireless network models produce connec-
tivity graphs that are doubling. In particular, we show that the geometric
random graph with connectivity radius growing as

√
logn with network size

n, the fully connected regime of the dense or extended wireless network with
signal-to-interference-plus-noise ratio (SINR) threshold connectivity, and some
examples of networks with obstacles and non-homogeneous node distribution
are doubling. We define a sequence of wireless connectivity graphs to be smooth
if each of the graphs is doubling and the shortest path distance between two
nodes in the graph changes smoothly (defined in Section 3.2). This defines
mild regularity conditions on the mobility model.

Our main results in this chapter are the following. (i) For smooth geometric
sequence of connectivity graphs, we develop a routing strategy based on a
hierarchical set of beacons with scoped flooding. We also maintain cluster

3.1. Relationship to Published Works 35

membership for these beacons in a lazy manner adapted to the mobility model
and doubling dimension. (ii) We develop a worst-case analysis of the routing
algorithm in terms of total routing overhead and route quality (stretch). We
show that we can maintain constant stretch routes while having an average
network-wide traffic overhead of O(n log2 n) bits per mobility time step. The
load-balanced algorithm would require O(log3 n) bits per node, per mobility
time. Through numerics we show that the theoretically obtained worst-case
constants are conservative.

3.1 Relationship to Published Works

Routing in wireless networks has been a rich area of inquiry over the past
decade or more. In the introduction of Chapter 2, we gave an overview of the
two main paradigms for routing in wireless ad hoc networks: geographic rout-
ing and topology based routing. In summary, geographic routing algorithms
(see for instance [KK00] and references therein) exploit the inherent geome-
try of wireless networks, and base routing decisions directly on the Euclidean
coordinates of nodes. Their performance depends on how well the Euclidean co-
ordinate system captures the actual connectivity graph, and these approaches
can therefore fail in the presence of node or channel inhomogeneity (like in
Figure 3.2 in Section 3.2). Another important, but often overlooked, issue
with geo-routing is that geographical positions of the nodes need to be stored
and continuously updated in a distributed database in the network, to allow
sources of messages to determine the current position of the destination. This
database is called a location service (see for instance [LJDC+00]) and must be
regularly updated so that source nodes can query it. Location services typically
rely on some a-priori knowledge of the geographical boundaries of the network.
This is necessary because these approaches typically establish a correspondence
(for example, through a hash function) between a node identifier and one or
several geographical locations where location information about that node is
maintained. An important feature of our work is that we consider the total
overhead incurred by the update and lookup operations of the location service,
and the overhead of the routing algorithm itself.

Topology based routing schemes (see [PR97] and [JMB01a]) do not utilize
the underlying geometry of wireless connectivity graphs, but instead compute
routes based directly on that graph. As explained in Chapter 2, to reduce
overhead, most of these schemes only establish routes on demand through a
route discovery operation, rather than continuously maintaining a route be-
tween every pair of destinations; in this respect, they differ significantly from
their counterparts for the wired Internet (such as OSPF, IS-IS, and RIP). Re-
cently established routes are cached in order to allow their reuse by future
messages. In distance-vector based approaches (e.g., [PR97]), this cached state
resides in the intermediate nodes that are part of a route, whereas in source-
routing approaches (e.g., [JMB01a]), the cached state resides in the source of
a route. Despite such optimizations, topology-based approaches suffer from

36 Hierarchical Routing in Dynamic Ad hoc Networks

the large overhead of frequent route discovery operations in large and dynamic
networks. This issue was, in fact, the reason why geo-routing approaches have
reached prominence.

Two schemes that utilize the underlying geometry of graphs are the works
presented in [RRP+03] (referred to as “NoGeo” in Chapter 2), and the beacon
vector routing (BVR) introduced in [FRZ+05]. We used those two schemes
as performance benchmarks in Chapter 2. These schemes were designed for
static wireless networks2. Both these schemes are heuristics which build a
virtual coordinate system. Geographic routing on top of these schemes was
shown to work well through numerics, when compared to routing on top of
real coordinates. However, they utilize an external addressing scheme to make
a correspondence between addresses and names. In [TDGW07a] (the work
presented in Chapter 2), we studied routing on dynamic networks using a
virtual coordinate system. For large scale dynamic wireless networks, these
heuristics pointed to significant advantages to using some geometric properties
for routing and addressing. These results motivated the questions studied in
this chapter.

There has been a vast amount of theoretical research on efficient routing
schemes in wired (i.e., static) networks (see for example [Gav01]). Most of
this work has been focused on the trade-off of memory (routing table size) and
routing stretch. There are two main variants of such routing schemes (i) labeled
(or addressed) routing schemes, where the nodes can be assigned addresses so
as to reflect topological information; (ii) named routing, where nodes have
arbitrary names, and as part of the routing, the location (or address) of the
destination needs to be obtained (similar to a location service). This examines
the important question of how the node addresses need to be published in the
network. Routing in graphs with finite doubling dimension has been of recent
interest (see [KRX06], and references therein). In particular [Tal04] showed
that one could get constant stretch routing with small routing table sizes for
doubling metric spaces, when we use labeled routing. This result was improved
to make routing table sizes smaller in [CGMZ05]. The problem of named
routing over graphs with small doubling dimension has been studied in [KRX06]
and [AGGM06], and references therein. To the best of our knowledge, there
has been no prior work on dynamic graphs over doubling metric spaces and
on control traffic overhead. It is worth pointing out that there is no direct
correspondence between control traffic and memory. Bounds on memory do not
take into account the amount of information which needs to be sent around
in the network in order to build routing tables. A good illustration is the
computation of the shortest path between two nodes u and v in a graph. While
it is sufficient for every node on the path between these two nodes to have one
entry for v (of roughly logn bits i.e., the name of the next hop), computing
that shortest path requires a breadth first search of the communication graph
and leads to a control traffic overhead of O(n logn) bits.

2Our simulations (see Chapter 2, Figure 2.10) confirmed that their performance degrades
substantially under mobility

3.2. Models and Definitions 37

3.2 Models and Definitions

A wireless network consists of a set of n nodes spread across a geographic area
in the two-dimensional plane. We model the network region as the square area
[0,
√
n) × [0,

√
n) . The n nodes move randomly in this area and we denote by

x(t)(u) the position of node u at time t. The connectivity between two nodes is

represented by an edge on the connectivity graph G(t)
n if they can communicate

directly over the wireless channel. The connectivity between two nodes depends
on the distance between the two nodes (and could also depend on the presence
of other nodes, see Section 3.2.2). We consider that when a node u transmits
on the wireless channel, it broadcasts to all its neighbors in the connectivity

graph G(t)
n . Consequently, one transmission of a packet is sufficient for all direct

neighbors to receive that packet. To make the notation lighter, we will only
add the dependence on time if it is necessary to avoid confusion. The distance
d(t)(u, v) between nodes u and v is the shortest path distance between these

nodes in G(t)
n . Note that d(., .) is a metric on G(t)

n , i.e., the distance between
a node and itself is zero, the distance function is symmetric and the triangle
inequality applies. We will now define a ball of radius R around a node u. It
is simply the set of nodes within distance R of u. More formally, we can define
it more generally for any metric space as follows:

Definition 3.1. A Ball B(t)
R (u) around node u at time t in a metric space X

is the set
{
v ∈ X|d(t)(u, v) ≤ R

}
.

In order to bound the control traffic overhead, we will recursively subdivide
the connectivity graph into balls. It will be crucial for us to bound the number
of balls of radius R necessary to cover a ball of radius 2R around some node
u. In other words, we want to find the smallest number of nodes vi such that
all nodes within 2R of u are also within R of some node vi. The notion of
doubling dimension of a metric space captures this idea.

Definition 3.2. The doubling dimension of a metric space X is the smallest
α such that any ball of radius 2R can be covered by at most α balls of radius
R, for all R ≥ min(u,v) d(u, v) i.e., ∀u ∈ X ∃ Su ⊆ X , |Su| ≤ α and

B(t)
2R(u) ⊆

⋃

j∈Su

B(t)
R (j)

Moreover, if α is a constant, we have the following definition:

Definition 3.3 (Doubling metric space). We say a metric space X is doubling
if its doubling dimension is a constant.

A good way to illustrate and understand the concept of doubling dimension
and doubling metric space is to look at the metric space defined by a set of
points X in R

2 with the Euclidean distance. A ball of radius 2R around a
point x will simply be a disc of radius 2R around this point. To cover this

38 Hierarchical Routing in Dynamic Ad hoc Networks

disc, we will select a set of points such that all the surface is covered by the
corresponding set of discs of radius R. Note that the number of discs required
will not depend on R, and consequently this metric space would be doubling
(see Figure 3.1).

Figure 3.1: The metric space defined by a set of points in R
2 and the Euclidean

distance is doubling. Indeed, we can cover a disc of radius 2R by a constant (8 in
this case) number of discs of radius R, whatever the value of R. The number of
small balls required to cover the large ball depends on the “volume” of the balls,
and not on their cardinality.

In Section 3.2.1, we describe the geometric random graph model, which
will be the canonical model we will use to illustrate the ideas of the chapter.
We also give an example of a non-homogeneous network to which our results
can be applied. In Section 3.2.2, we will develop the model where connectivity
is determined by the SINR, and we have uniform transmit power and full
connectivity. We give the requirements for the mobility model to result in a
smooth sequence of wireless network graphs in Section 3.2.3. We state the
underlying assumptions and give a table of notations in Section 3.2.4.

3.2.1 Geometric random graph

We denote the geometric random graph by G(n, rn) and define its connectivity
as follows.

Definition 3.4. A random geometric graph G(n, rn) has an unweighted edge
between nodes u and v if and only if ||x(u) − x(v)|| < rn, where {x(u)} are
chosen independently and uniformly in [0,

√
n) × [0,

√
n) .

In this chapter we will be interested in fully connected geometric random
graphs, and therefore focus on the case rn >

√
logn [GK98]. As a natural

extension, we can also define a sequence of random graphs G(t)(n, rn) with an
unweighted edge between u and v at time t if ||x(t)(u)−x(t)(v)|| < rn. Whether
each graph in the sequence G(t)(n, rn) corresponds to a random geometric graph
as in Definition 3.4, depends on the mobility model for the nodes. We discuss
this in more detail in Section 3.2.3.

3.2. Models and Definitions 39

In Figure 3.2, we illustrate a non-homogeneous random network where con-
nectivity is not completely geometric as in Definition 3.4. An obstacle prevents
communication between neighboring nodes, and therefore illustrates the com-
plexities of wireless network connectivity. This example is revisited in Section
3.3, where we show that though this connectivity graph is more complicated
than G(n, rn), it is still doubling, and therefore the algorithms developed in
this chapter are applicable. This illustrates the advantage of our approach to
network modeling.

Figure 3.2: n nodes are distributed uniformly at random on a square area of side√
n. A wall of width rn/c is added, which only has a small hole in the middle.

Again, we assume rn >
√

logn. Nodes cannot communicate through the wall.
Finally, we remove the nodes below the wall, which leads to an inhomogeneous
node distribution.

3.2.2 SINR full connectivity

Since the wireless channel is a shared medium, the transmissions between nodes
interfere with each other. However, the signal strength decays as a function of
the distance traveled, and therefore we can define the SINR for transmission
from node u to v as,

SINR =
Pn||x(u)− x(v)||−β

N0 +
∑

w 6=u,v P ||x(w) − x(v)||−β
, (3.1)

where β is a distance loss (decay) parameter depending on the propagation
environment, Pn is the common transmit power of the nodes andN0 is the noise
power. We can of course easily adapt this to have power control for the nodes.
A transmission is successful if the SINR is above some constant threshold value
ς. For static nodes, just as in the case of geometric random graph, we assume
that the node locations {x(u)} are chosen independently and uniformly in
[0,
√
n)×[0,

√
n) . This model for wireless networks has been extensively studied

in the literature (see [GK00, KV02]). The authors base their analysis of the
capacity of wireless networks on a TDMA scheme for the SINR connectivity
model of (3.1). We argue here that the structure of the resulting connectivity
graph is identical to that of G(n, rn), for rn >

√
logn. Therefore, the results

we prove for G(n, rn), would also be applicable to such graphs. In practice,

40 Hierarchical Routing in Dynamic Ad hoc Networks

it is a non-trivial task to design a distributed scheduling protocol (MAC layer
protocol) that mimics the behavior of this TDMA scheduler. However, these
MAC layer implementation issues are beyond the scope of this document (see
for instance [MSZ06]). We only make the argument here that the connectivity
graph resulting from such a TDMA scheme would yield the same behavior as
a G(n, rn).

We will subdivide the network into small squares of side sn = rn

c . We
need to show that if two nodes u and v are in neighboring small squares (and
so have the guarantee that they can communicate under the G(n, rn) model
as we will see in the sequel), then there exists a TDMA scheme that allows
them to communicate under the SINR connectivity model of (3.1). If this is
the case, then we can apply the same proof techniques for both models. We
let the maximum transmission power grow in the same way as we did for the
G(n, rn) model3 i.e. Pn ≤ (Noςrn)β . Additionally, we want to design a TDMA
scheme such that the capacity of all links is at least O(1

log n) [bits/sec]. It

can be shown (see [RS98]) that every small square contains at most O(log n)
nodes with high probability. Hence, we ask that the traffic can flow at constant
rate independent of n between neighboring small squares, and that each node
is treated equally. Note that this requirement is very similar to the scheme
proposed in [GK00] in which one node per small square can transmit at constant
rate to any neighboring square4.

Theorem 3.1. There exists a TDMA scheme such that all nodes can com-
municate with any node located in a neighboring small square at a rate of
O(1

log(n)) [bits/sec]. Hence, the aggregate traffic can flow between neighbor-

ing small squares at a constant rate independent of n.

Proof. We take a coordinate system, and label each square with two integer
coordinates. Then we take an integer k, and consider the subset of squares
whose two coordinates are a multiple of k (see Figure 3.3). By translation,
we can construct k2 disjoint equivalent subsets. This allows us to build the
following TDMA scheme: we define k2 time slots, during which all nodes from
a particular subset are allowed to transmit for the same duration of O(1

log n)

seconds. Each small square contains at least one and at most O(log n) nodes
w.h.p. (see [RS98] and the proof of Theorem 3.3). We assume also that at most
one node per square transmits at the same time, and that they all transmit
with the same power Pn. Let us consider one particular square. We suppose
that the transmitter in this square transmits towards a destination located in
a square at distance at most 1. We compute the signal-to-interference ratio at
the receiver. First, we choose the number of time slots k2 as follows: k = 4. To

3Note that the G(n, rn) model corresponds to the SNIR model without interferences.

Indeed, if we remove interferences, two nodes can communicate whenever
Pn||x(u)−x(v)||−β

N0
>

ς for some threshold value ς. Hence, two nodes can communicate whenever ||x(u)− x(v)|| <

(Pn
Noς

)1/β . In particular, we let Pn = (Noςrn)β .
4The throughput achieved by this scheme is O(1√

n log n
) [bits/second/node] when n

source destination pairs are chosen uniformly at random.

3.2. Models and Definitions 41

Figure 3.3: Illustration of the TDMA scheduling scheme.

find an upper bound to the interferences, we observe that with this choice, the
transmitters in the 8 first closest squares are located at a distance at least 3 (in
small squares) from the receiver (see left-hand side of Figure 3.3). This means
that the Euclidean distance between the receiver and the 8 closest interferers
is at least 2sn. The 16 next closest squares are at distance at least 7 (in small
squares), and the Euclidean distance between the receiver and the 16 next
interferers is therefore at least 6sn, and so on. The sum of the interferences I
can be bounded as follows:

I ≤∑∞
i=1 8iPn [2sn(2i− 1)]

−β

= Pn [2sn]
−β ∑∞

i=1 8i [(2i− 1)]
−β

= (Noςrn)β
[
2 rn

c

]−β ∑∞
i=1 8i [(2i− 1)]

−β

This term clearly converges if β > 2. Now we want to bound from below the
strength of the signal received from the transmitter. We observe first that the
distance between the transmitter and the receiver is at most

√

2(s2n) ≤ 2sn.
The strength S of the signal at the receiver can thus be bounded by

S ≥ Pn min
{
1, 2s−β

n

}

= O(1)

Finally, we obtain the following bound on the SINR: SINR ≥ S
No+I . As the

above expression does not depend on n, the theorem is proved.

3.2.3 Uniform speed-limited (USL) mobility

Nodes are mobile and move according to the uniform speed-limited (USL)
model, a fairly general mobility model defined next. The USL model essentially
embodies two conditions: (i) the node distribution at every time step is uniform

42 Hierarchical Routing in Dynamic Ad hoc Networks

over the network domain, and (ii) the distance a node can travel over a time
step is bounded. We restrict ourselves to the case in which the maximum speed
is not dependent on n. In practice, of course, such an assumption is realistic
since the maximum speed of the nodes will not increase when new nodes join
the network.

Definition 3.5. A collection of n nodes satisfy the uniform speed-limited (USL)
mobility model if the following two conditions are satisfied:

1. At every time t, the distribution of nodes over the network domain is
uniform.

2. For every node u and time t, the distance traveled in the next time step
is bounded, i.e., ||x(t+1)(u)− x(t)(u)|| < S.

The USL mobility model is quite general. For example, it includes the fol-
lowing cases: (i) The nodes perform independent random walks with bounded
one-step displacement. The random walks can be biased, and the displace-
ment distribution does not need to be homogeneous over the node population.
We have to assume that the nodes operate in the stationary regime. (ii) The
nodes follow the random waypoint model on a torus (RWP). The system has
to be in the stationary regime. (iii) The generalized random direction models
from [SMS06], which interpolate between the random walk and the random
waypoint cases, through a control parameter that can be viewed as the ”local-
ity” of the mobility process. (iv) We can also allow for models where nodes do
not move independently. As an illustrative example, assume we uniformly place
nodes on the square; the nodes then move in lockstep according to any speed-
limited mobility process, maintaining their relative positions to each other.
Observe that the uniform distribution is maintained for all time steps5, and
that the speed-limited property is true by definition.

We see that the USL class of mobility models is fairly general, and includes
many of the models that have been proposed in the literature. For simplicity,
we consider that time is discrete. In other words, we look at a snapshot of the
network every ∆T seconds. At every time step, the connectivity between nodes
will be modified. Hence, we will work with a sequence of connectivity graphs.
In order to design a routing algorithm with a low control traffic overhead, we
will need to understand how fast the graph distances between nodes can evolve
over time. In particular, consider two nodes u and v at distance d = dt(u, v)
at time t. We want to bound the multiplicative factor by which this distance
can change in κ time steps. Formally, we define κ(τ, d) as follows:

Definition 3.6. We say that a communication network is κ(τ, d)-smooth if the
shortest path distance between any two nodes u an v at shortest path distance
d cannot change by more than a factor κ(τ, d) in τ time steps i.e., ∀u, v, we
have:

max

{
d(t)(u, v)

d(t+τ)(u, v)
,
d(t+τ)(u, v)

d(t)(u, v)

}

≤ κ(τ, d)

5note that we move on a torus

3.3. Network Properties 43

Additionally, we simply say that the network is κ-smooth if there exists a
constant ν such that κ(νd, d) ≤ κ(ν) = κ independently of d. In this case, the
distances grow at the same speed at all scales. In the sequel, we will bound κ
and ν for our model. This USL property holds for a general class of random
trip mobility models studied in [BV05], where it is shown that the stationary
distribution of such mobility models is uniform and ergodic. We restate this
theorem without proof.

Theorem 3.2 (Le Boudec and Vojnovic, see [BV05]). The random-trip mo-
bility model has uniform stationary distribution on [0, a)× [0, a).

3.2.4 Assumptions

We consider that a time step ∆T is much larger than the round trip time (RTT)
through the network i.e., the time scale for mobility is much larger than the
time scale for communications. For clarity and in order to simplify the analysis,
we will make the assumption that nodes can communicate instantaneously
through the network. We also make the assumption that there is a random
permutation π on the nodes, and that all nodes in the network know their
rank in the permutation. In Section 3.6 we will then drop these assumptions
and consider practical aspects of the implementation. Finally, we say that a
result holds with high probability (w.h.p.) if it holds with probability at least
(1−O(1

nρ)), for some constant ρ > 0. In Table 3.1, we summarize the notations
used in this chapter.

x(t)(u) Position of node u at time t
d(t)(u, v) Shortest path distance from u to v at time t

rn Wireless communication radius
G(n, rn) Random geometric graph

B(t)
R (u) Ball of radius R around u

κ(τ, d) max
{

d(t)(u,v)

d(t+τ)(u,v)
, d(t+τ)(u,v)

d(t)(u,v)

}

≤ κ(τ, d)

Table 3.1: Table of notations

3.3 Network Properties

In this section, we prove some properties of the network models presented
in Section 3.2, which are necessary to analyze the performance of our al-
gorithm. We focus our attention on the geometric random graph G(n, rn),
but all the arguments can be extended to the SINR full connectivity model
with TDMA scheduling, discussed in Section 3.2.2. In particular, for G(n, rn),
we now consider the case in which the communication radius rn is such that
rn =

√

(1 + ǫ) logn > log1/2 n, where ǫ > 0.
For uniform speed-limited (USL) mobility models discussed in Section 3.2.3,

at each time, the node locations {x(t)(u)} have a distribution that is uniform

44 Hierarchical Routing in Dynamic Ad hoc Networks

over [0,
√
n) × [0,

√
n) . Therefore, we now discuss the property of a sequence

of geometric random graphs, G(t)(n, rn), under USL mobility model. We sub-
divide the network area on which the nodes live into smaller squares of side
rn

c , where c is a constant chosen such that nodes in neighboring squares are
connected (see Fig. 3.4) and that an integer number of squares fit into the
network area. We arbitrarily set c =

√
5. We number the small squares from

Figure 3.4: Nodes in neighboring squares are connected

1 to m = n
(rn/c)2 = nc2

(1+ǫ) log n and denote by Ei the event that small square i

does not contain any node, in a sequence of geometric random graphs under
USL dynamics over nρ time steps, for some constant ρ. In the next theorem,
we show that when nodes move according to USL mobility model, all small
squares will be populated w.h.p.

Theorem 3.3. There exists a constant ρ such that if we divide the network
into small square of side rn

c (with rn >
√

logn, c =
√

5), at every time step in
a sequence of length nρ, every small square contains at least one node w.h.p.

Proof. Consider a sequence of geometric random graphs over Z = nρ time

steps. Denote by E
(j)
i the event the small square i is empty at time j. Let

3.3. Network Properties 45

m = n
(rn/c)2 . We can compute:

P
[
⋃Z

j=1

⋃m
i=1E

(j)
i

]

≤ Z∑m
i=1 P

[

E
(j)
i

]

(a)
= Z

∑m
i=1(1 − 1

m)n

(b)
≤ Z

∑m
i=1 e

− n
m

= Zme−
n
m

= Z nc2

(1+ǫ) log ne
−nc2(1+ǫ) log n

n

≤ Z nc2

(1+ǫ) log n
1

n(1+ǫ)c2

(c)
≤ Z c2

(1+ǫ)nǫc2 log n

≤ O(nρ

nǫc2
)

= O(1
nǫc2−ρ

)

where (a) uses the USL model which implies, due to uniform (marginal) dis-

tribution of nodes P
[

E
(j)
1

]

= (1 − 1
m)n, (b) follows because (1 − 1

m)n ≤ e−
n
m

(see [MR95], page 434), and (c) follows because c =
√

5 > 1. We can now
choose ρ such that ǫc2 − ρ > 0 and the result follows.

It is immediate that in a single instantiation of the connectivity graph (i.e.,
at a given time slot), every small square is populated w.h.p.

Corollary 3.1. With probability at least (1−O(1
nǫ)), there is no empty small

square in a sequence of length 1.

We are now ready to show that at every time step in a sequence of nρ

connectivity graphs, the connectivity graph is doubling w.h.p. Since we have a
USL mobility model, any graph G(t)(n, rn) is statistically identical to G(n, rn).

Theorem 3.4. G(n,
√

(1 + ǫ) logn) are doubling w.h.p.

Proof. By Corollary 3.1, all small squares of side rn

c contain at least one node
w.h.p. Consequently, neighboring squares (vertically and horizontally) have at
least one communication link. Denote by Ln the grid having the small squares
as vertices, and with edges between vertical and horizontal neighbors. Consider
a ball Bupper = BG

2R(u) (i.e., a ball of radius 2R in the communication graph
G(n, rn)) centered around some node u. Clearly, all nodes in Bupper must be

contained in a square which is part of BLn
4Rc (u) i.e., Bupper ⊆ BLn

4Rc (u). This
follows from the fact that no node in Bupper can be further away from u than
2Rrn in Euclidean distance, that the grid Ln is fully connected w.h.p., and

that one link in the grid has length rn

c . Similarly, one can see that BLn
R (u) ⊆

Blower = BG
R(u). This is a consequence of the fact that Ln is a subgraph of

G, i.e., two nodes in small squares R hops a part in Ln cannot be more than

46 Hierarchical Routing in Dynamic Ad hoc Networks

R hops apart in G (see Fig. 3.5). For an appropriately chosen constant α, we
have:

Bupper ⊆ BLn
4Rc (u) ⊆

α⋃

j=1

BLn
R (vj) ⊆

α⋃

j=1

BG
R(vj) (3.2)

and G(n,
√

(1 + ǫ) logn) is doubling (i.e., any ball of radius 2R can be covered
by a constant number of balls of radius R).

Figure 3.5: Any ball of radius 2R can be covered by a constant number of balls
of radius R. In order to show this result, one can work with balls in the underlying
lattice.

Note that the close relationship of the geometric random graph and the
corresponding grid (lattice) is the basic insight behind this result. Addition-
ally, note that it is possible to build a deterministic geometric graph for which
this property does not hold. We present such a construction in Appendix A-1.
Further, one can show that G(n, rn) are not doubling w.h.p when rn <

√
logn.

We prove this result in Appendix A-2. At this point, we would like to empha-
size that even though we analyze networks in which the nodes are uniformly
distributed on a square area, the doubling property is a much more powerful
tool. Indeed, our results and algorithms depend only on the doubling constant.
Consequently, the algorithms and the bounds can be applied to any other type
of networks or node configuration which lead to a doubling connectivity graph.
For instance, one can consider the network shown in Figure 3.2, described in
Section 3.2.1. It can easily be shown by using a technique similar to the one

3.3. Network Properties 47

Figure 3.6: Graphs Gn , Ln and Hn . The network area is divided into squarelets
of side rn

c such that nodes in horizontally and vertically adjacent squarelets are
guaranteed to be within communication range.

used in Theorem 3.4 that this network is doubling. While we can seamlessly
apply our routing algorithm to such a network, any classical geographic rout-
ing algorithm would fail or require a high control traffic overhead to get out
of dead-ends. This is because packets would get stuck against the wall when
routed from the lower to the upper part of the network. In turn, this would
considerably degrade the performance in terms of stretch and control traffic
overhead with respect to the same network without a wall. In the next sub-
section we prove a set of sufficient conditions for a wireless networks to have a
constant doubling dimension.

3.3.1 Inhomogeneous Topologies

In the first part of this subsection, we show that under certain conditions,
the presence of topological holes (obstacles) in the network does not change
the doubling property. In particular, we are interested in how we can alter the
topology of a fully connected random geometric graph by removing nodes while
still preserving the doubling property. In the second part, we will generalize
this idea to arbitrary metric spaces. Consider a G(n, rn) with rn >

√
logn, such

that full connectivity is guaranteed. The network area is divided into squarelets
of side rn

c , where c is chosen such that nodes in horizontally and vertically
adjacent squarelets are guaranteed to be within communication range. We now
arbitrarily select squarelets and remove all nodes they contain. We denote the
new graph we obtain by Gn . We denote by Ln the full grid where the squarelets
are vertices and by Hn the corresponding grid in Gn i.e., the thinned out grid
obtained by selecting only non-empty squarelets in Gn . In Ln , we add an edge
between horizontally and vertically adjacent squarelets (see Fig. 3.6). In Hn ,
we first add a an edge between horizontally and vertically adjacent squarelets
containing at least one node. Then, for every pair of squarelets containing
nodes that can communicate directly, we add an edge of weight corresponding
to the distance between those two squarelets in Ln . We add the edges from

48 Hierarchical Routing in Dynamic Ad hoc Networks

the shortest to the longest one, and only if no path of the same length already
exists in Hn . We can now define a topological hole as follows:

Definition 3.7 (Topological Hole). A set of horizontally, vertically and hori-
zontally adjacent empty squarelets in the graph Hn is called a hole if adding a
(virtual) vertex in all of the squarlets in that set modifies the distance between
at least two vertices in Hn .

Let us denote by Vk the kth hole (k = 1, 2, 3, ...). We define the perimeter
p(Vk) of Vk as 2 times the maximum distance between any two vertices on the
border of the hole i.e, in squarelets adjacent to the empty squarelets defining

the hole. Note that for all u, v, we have dHn (su, sv) ≥ dGn (u, v).

Figure 3.7: A network with holes

Theorem 3.5. Let P = maxk p(Vk). Then, the doubling dimension is upper
bounded by O(P 2).

Proof. Consider a ball BGn
2R (u) centered at u in Gn . First, observe that

BGn
2R (u) ⊆ BoxLn

2Rc (u), where BoxLn
2Rc (u) is the box centered at the squarelet

containing u in Ln which contains all nodes at “maximum norm” 2Rc (i.e.,
l∞-norm) from this squarelet. In other words, all nodes within 2R hops from u
in Gn must be in a squarelet contained in this box. We will now cover this box

with smaller boxes BoxLn
max{1,⌈ R

4γ ⌉}(svi). We need
⌈

16R2c24γ2

R2

⌉

= 64c2γ2 such

boxes at most. Consider the same small boxes in Hn . Pick one non-empty
squarelet svi in each such small boxes. Note that the maximum hop distances
between two squarelets in such a small box in Ln is at most R

γ . For each of
these hops, we might have to make a detour of at most P steps. Consequently,

3.3. Network Properties 49

the same two squarelets could be at distance at most PR
γ in Hn . Observe now

that for any two nodes v and w contained in squarelets sv and sw respectively,

we have dHn (sv, sw) ≥ dGn (u,w). For each squarelet svi , we pick one node
vi contained in this squarelet. Hence, for all nodes w contained in this small

box, we have dGn (vi, w) ≤ dHn (svi , sw) ≤ PR
γ . By setting γ = P , we obtain

the claim. The proof is illustrated in Figure 3.8.

Figure 3.8: All nodes in a ball of radius 2R in Gn are contained in a box of radius
2Rc squarelets in Ln . This large box in Ln can be covered by O(γ2) smaller
boxes of radius R/(4γ) squarelets. Any two nodes (say v and w) inside the same
small box must be in squarelets at distance at most R/γ in Ln . By hypothesis,
the perimeter of any hole is at most P . Consequently, the distance in Hn between
v and w is at most R squarelets. All nodes within R squarelets are also within
distance R in Gn , as the graph distance in Hn is always larger or equal to the
graph distance in Gn . Hence, if we select one node in each of the small boxes, we
are guaranteed to cover all nodes in the ball of radius 2R.

We can extend this result to the case where the network can be divided into
convex sets. We define a convex set in Gn with slack as follows:

Definition 3.8. Let Ψ be a set of nodes in Gn . Let Hn
(Ψ) be the squarelets

in Hn containing at least one node in Ψ. We say that the set Ψ is convex if

∀u, v ∈ Ψ, dHn
(Ψ)

(su, sv) = dLn (su, sv), where su and sv are the squarelets
containing u and v i.e., there must be at least one shortest path inside the

convex set. We say that the set Ψ is convex with slack ̟ if dHn
(Ψ)

(su, sv) ≤
̟dLn (su, sv).

50 Hierarchical Routing in Dynamic Ad hoc Networks

The perimeter of a convex set is defined the same way as the perimeter of
a holes i.e., as two times the largest distance in the set. We can now state the
following theorem

Theorem 3.6. Let ζ1, ζ2, ..., ζq be a partition of the network into q convex
sets with slack ̟1, ̟2, ..., ̟q respectively. Let ϑ1, ϑ2, ..., ϑq denote the perime-
ter of the convex sets. The doubling dimension is then upper bounded by

maxu,ρ 64c2
∑

ζi:ζi∩Box
Ln
ρ (su) 6=∅

(

⌈

ϑi
ρ

̟i

⌉

)2.

Proof. In the proof of Theorem 3.5, we have shown that any ball of radius

2R around some node u is contained in a box BoxLn
ρ (su), where ρ = 2Rc

(implying R = ρ
2c). We can cover each convex set ζi intersecting this box with

at most 16 ϑ2

R2

̟2
i

small boxes of side R/4̟i, as shown in Theorem 3.5. Indeed,

a convex area of perimeter ϑ can always be included in a square area of side
ϑ. If a convex set has slack ̟i, and is covered by small boxes of side R/4̟i,
then by selecting one node in each of the small boxes, we guarantee that all
nodes in the convex set are within R hops in Gn of one of the aforementioned

selected nodes. If the box BoxLn
ρ (su) is partitioned into several convex sets,

selecting 64c2(

⌈

ϑi
ρ

̟i

⌉

)2 nodes in each convex set ζi intersecting this box will in

turn guarantee that all nodes in the box are covered. Hence, the total number
of balls of radius R needed to cover any ball of radius 2R is upper bounded by
the maximum over all boxes (all centers and radii), of the sum of the number
of small boxes required to cover all the convex sets that intersect it.

In practice, this result implies that if we are given a decomposition of the
network into convex sets, we can bound the overall doubling dimension given
the doubling dimension of each set separately. Further, this result implies that
networks that consist of a small number of convex areas, which can each con-
tain arbitrarily many small holes, have a low complexity in terms of doubling
dimension. We will now relate the “shapes” of a topological hole to the dou-
bling dimension. In particular, we will show that one can relate the doubling
dimension to the maximum number of connected components in any square
subarea.

Theorem 3.7. For any γ ≥ 2, the doubling dimension α is such that

α ≤ 4γ2c2 max

Box
Ln
R/γ (u)

{

of convex components with slack γ in BoxLn
R/γ (u)

}

Proof. In the proof of Theorem 3.5, we have shown that any ball of radius

2R around some node u is contained in a box BoxLn
ρ (su), where ρ = 2Rc.

In turn, we showed that by dividing this box into smaller boxes of side R/γ,
and by selecting one node in each box, we could cover the larger ball of radius

3.3. Network Properties 51

2R. Now, in each small box of side R/γ, the presence of holes might create
several disconnected components. However, we know that inside each such
component, we can cover any convex subset with slack γ with one nodes. The
result follows.

This last result gives us a characterization of the alterations we can make to
a fully connected G(n, rn) network, while only affecting the doubling dimension
by a constant factor. In particular, we can remove nodes as long as we do not
create too many convex and disconnected components in any square subarea.
Note that we can still remove arbitrarily many nodes as long as we only create
small holes. Theorems 3.5 imply that topologies such as the one shown in Fig.
3.9 have a constant doubling dimension. The results stated above are special

Figure 3.9: A network with topological holes and a constant doubling dimension.
The size of the large holes grow with n, but the network can be divided into a
constant number of areas, each being convex with slack O(1) i.e., each of the
convex areas contains only obstacles with a constant perimeter or that can only
increase the distance between nodes by a constant factor. Note that even though
the doubling dimension is low, greedy geographic forwarding of packets would fail
as packets would get stuck in dead-ends against the holes. Hatched regions are
holes.

cases of the more general result detailed in the sequel. Indeed, we can relate
the doubling dimension in a metric space to the doubling dimension in another

52 Hierarchical Routing in Dynamic Ad hoc Networks

metric space if we know the distortion of the embedding that maps the points
in one metric space to the points in the other metric space. The example above
is a special case of that setup where we map the nodes of a graph to points in
Euclidean space. Consider two metric spaces (X, d) and (X ′, d′), where d and d′

are distance functions which define a metric on the sets of point X and X ′. We
could for instance consider the two metric spaces (X , ||.||) and (H, d(., .)) i.e.,
the points in the plane with the Euclidean distance and the nodes in the graph
with the shortest path distance. A metric embedding is a bijective function
φ : X → X ′ which associates to a point in one metric space a point in another
metric space. We have already defined the notion of embedding in Section 2.2,
but we repeat it here for the convenience of the reader.

Definition 3.9 (Distortion of an Embedding). A mapping φ : X → X ′ where
(X, d) and (X, d′) are metric spaces, is said to have distortion at most D, or to
be a D-embedding, where D ≥ 1, if there is a K ∈ (0,∞) such that ∀x, y ∈ X,

Kd(x, y) ≤ d′(φ(x), φ(y)) ≤ KDd(x, y)

if X ′ is a normed space, we typically require K = 1 or K = 1
D . An embedding

has distortion D with slack ǫ if all but an ǫ fraction of node pairs have distortion
D under φ. Additionally, one can loosen this definition by allowing slack. The
slack is said to be uniform if each node has distortion at most D to a 1 − ǫ
fraction of the other nodes. Finally, an embedding with distortion D and slack
ǫ is coarse if for every node u the distortion is bounded to a node a distance
greater than rǫ = inf

{
rs.t |BX

r (u)| > ǫn
}
.

The doubling dimension of a metric space embedded into another metric
space can be bounded as follows:

Theorem 3.8 (Bounding the Doubling Dimension). Consider a metric space
(H, d) embedded in another metric space (E , d′) by a function φ. Let the dou-
bling dimension of E be β. Let the distortion of this embedding be D. Then, H
has doubling dimension α with α ≤ O((2D)log β).

Proof. Choose any node u ∈ H. If the above condition is fulfilled, the im-
ages of all nodes in BH

2R(u) can be at distance d′ at most 2KDR from u at
φ(u). Hence, φ(BH

2R(u)) ⊂ BE
2KDR(φ(u)). We will now try to cover φ(BH

2R(u))
by as few balls BE

RK(φ(v)) as possible (see Fig. 3.10, which illustrates this
setup in the case when H is a graph and E the Euclidean space). To do
so, let us cover BE

2KDR(φ(u)) by small balls of radius KR in E . Covering
BE

2KDR(φ(u)) will require at most βlog 2D balls of radius KR in E , given that
E has doubling dimension β. We know that d(u, v) ≤ d′(u, v)/K, by defi-
nition 3.9. Consequently, φ−1(BE

RK(φ(v))) ⊂ BH
R (v). We can conclude that

BH
2R(u) ⊂ ⋃βlog 2D

j=1 BH
R (vj).

The presence of large obstacles in the network does not necessarily imply
that the network is not doubling. In particular,

3.3. Network Properties 53

Figure 3.10: Effect of embedding on doubling dimension

Theorem 3.9. Consider a metric space E with doubling dimension β. A met-
ric space H that can be divided in k sets S1, S2, ..., Sk, such that each set em-
beds individually with distortion Di into E has doubling dimension at most
∑k

j=1 β
2 log 2Dj .

Proof. Consider any ball of radius 2R in H, such that the nodes in the ball
belong to at least two different sets (otherwise the theorem is clearly true).
Note that the radius of each of these subsets can be at most 4R. Consequently,
we now that the part of the ball that belongs to Si can be covered by at most
β2 log 2Di (by applying Theorem 3.8 to cover a ball of radius 4R by balls of
radius R). The theorem follows.

We can now broaden the class of communication networks that have low
doubling dimension. In particular, if we can subdivide the communication
graph into a constant number of subsets, such that each one embeds with
constant distortion into the Euclidean plane, the whole network is doubling.
Consequently, topologies such as the one shown in Figure 3.11 are doubling. In
this example, we embed an unweighted graph into the Euclidean plane. Note
that the minimal Euclidean distance between nodes should be ρrn (for some
constant ρ), such that ρrnd(u, v) ≤ ||x(u)− x(v)|| ≤ O(1)ρrn. If this equation
is true for all pairs of nodes, then the distortion is O(1). There is an issue
when the nodes are neighbors in the communication graph, as the above rule
implies that the Euclidean distance between such pairs of nodes should then
be at least O(rn). However, we can ignore the distances below 2 as we will not
cover balls of radius 1 (since we have a broadcast medium, the degree of a node
does not impact the communication overhead). In such cases, it is obvious
that geographic routing would fail, even though the inherent complexity of the
network is low. Indeed, packets would get stuck against walls. Remarkably,

54 Hierarchical Routing in Dynamic Ad hoc Networks

our routing algorithm is oblivious to the topology and only depends on the
doubling dimension. Hence, there is absolutely no need to detect or identify
obstacles. The communication overhead will simply depend on the doubling
dimension.

Figure 3.11: A set of doubling network topologies. The network is dense, and
made inhomogeneous by the walls, which do no allow transmissions to go through.
Note that the walls stretch when n grows, such that the network wide distortion
also grows with n. Dashed lines indicate the separation into sets.

3.3.2 Sequences of Communication Graphs

In this subsection we study the behavior of a sequence of communication
graphs, without any obstacles. We show that a sequence of G(t)(n, rn) of length
nρ, for some constant ρ, with the USL mobility model is κ-smooth. As already
seen in Theorem 3.4, such a sequence of graphs is doubling at every time in-
stant.

Theorem 3.10. A sequence of G(t)(n, rn) of length ≤ nρ, where nodes move
according to the USL mobility model with maximum constant speed S is

max

rnd
(t)

rnd(t)√
5
√

2
− 2
√

5
√

2τS
,
√

5
√

2(1 +
2τS
√

5
√

2

rnd(t)
)

smooth w.h.p.

Proof. Consider two nodes u and v at Euclidean distance q
(t)
2 = ||xu − xv||2

at time t. Let q
(t)
1 = ||xu − xv||1 =

∑2
m=1 |xm(u) − xm(v)|. Further, denote

by d(t) = d(t)(u, v) their shortest path distance at time t. One can see that
q
(t)
2

rn
≤ d(t) ≤

√
5
√

2q
(t)
2

rn
. Indeed, the shortest possible path will follow a straight

line between u and v. The length of this line is q
(t)
2 and one hop can be of

length at most rn. In the worst case, the shortest path from u to v will follow
the shortest path in the grid formed by the small squares of side rn

c = rn√
5
,

which exists w.h.p. Recall that we can only guarantee horizontal and vertical
connectivity between small squares. The number of small squares in this path

3.3. Network Properties 55

will be at most
√

5q
(t)
1

rn
. One can easily show that q

(t)
1 ≤

√
2q

(t)
2 . Let x =

(
x1

x2

)

=

(
x1

sx1

)

= (xu − xv). We have

q
(t)
2 =

√

x2
1 + x2

2 = x1

√
1 + s2

= (1 + s)x1

√
1+s2

1+s = q
(t)
1

√
1+s2

1+s .

Since, we have
q
(t)
2

q
(t)
1

=
√

1+s2

1+s , the term is maximized when s = 1. In Figure

3.12, we illustrate this point. Similarly, at time t+τ , the shortest path distance

Figure 3.12: Upper and lower bounds for the shortest path

will be bounded by
q
(t+τ)
2

rn
≤ d(t+τ) ≤

√
5
√

2q
(t+τ)
2

rn
. However, we know that the

Euclidean distance can change by at most 2τS in τ time steps6. Consequently,

q
(t)
2 − 2τS

rn
≤ d(t+τ) ≤

√
5
√

2(q
(t)
2 + 2τS)

rn
(3.3)

We can now bound the multiplicative stretch as follows: Hence,

max

{

(1√
5
√

2
− 2τS√

5
√

2q
(t)
2

)−1,
√

5
√

2(1 + 2τS)

q
(t)
2

)

}

= max

{√
5
√

2
q
(t)
2

q
(t)
2 −2τS

,
√

5
√

2(1 + 2τS

q
(t)
2

)

}

= max

rnd(t)

rnd(t)
√

5
√

2
−2

√
5
√

2τS

,
√

5
√

2(1 + 2τS
√

5
√

2

rnd(t))

= κ(τ, d)

6One can show that this remains true even if the nodes are reflected on the borders of
the network

56 Hierarchical Routing in Dynamic Ad hoc Networks

One can now observe that the time it takes to multiply the shortest path
distance between two nodes at distance d is proportional to d. Note that the
larger the communication radius rn, the smaller κ. Hence, the distance grows
at most linearly with time. In particular, we have:

Corollary 3.2. There exist constants ν and κ defined in the proof such that a
sequence of nρ connectivity graphs, under the USL mobility model with maxi-
mum constant speed S, is κ-smooth w.h.p.

Proof. By theorem 3.10, we know that the sequence is

max

rnd
(t)

rnd(t)
√

5
√

2
− 2
√

5
√

2τS
,
√

5
√

2(1 +
2τS
√

5
√

2

rnd
(t)

)

-smooth w.h.p. Note that both terms decrease as a function of the communica-
tion radius rn. Hence, we can set rn = 1 without decreasing κ(τ, d). Similarly,
both terms go down when the distance d(t) goes up. We can therefore also
set d(t) = 1, which is the smallest possible distance in an unweighted graph.
Consequently, if we set τ = νd(t) = ν, we can now write

κ(τ, d) ≤ max
{

1
1√
5
√

2
− 2
√

5
√

2νS
,
√

5
√

2(1 + 2νS
√

5
√

2)

}

which is constant for ν constant.

3.4 Routing Algorithm

We develop the routing algorithm and its performance analysis for a general
class of dynamic networks which produce a sequence of doubling and smooth
connectivity graphs. We have seen in Sections 3.2 and 3.3 that this applies
to a class of wireless connectivity models with USL mobility. For notational
convenience we illustrate the ideas for a sequence G(t)(n, rn) geometric random
graphs with USL mobility.

Node identifier distance [hops] level next hop
...

...
...

...

Table 3.2: Routing Table RT

We decompose a time step into two phases: a beaconing phase and a for-
warding phase. In the former phase, a set of routes are established by letting
all or a subset of nodes flood the network at geometrically decreasing radii and
nodes register with beacon nodes. In the latter phase, this subset of routes is

3.4. Routing Algorithm 57

then utilized by source nodes to efficiently search for the destination. Every
node is equipped with a routing table as shown in Table 3.2. We first describe
two procedures used in the beaconing and the routing phase.

flood(R,level) procedure :

When a node u initiates the flood(R, level) procedure, it broadcasts a flood
packet as shown in Table 3.3 to its direct neighbors in G(n, rn). The hop count
field is initialized to 0 and the content of the Level field is set to the level
of the beacon. How the level of the beacon is determined will be specified in
the sequel. All nodes can compute the maximum hop count given the value
of the level field in the packet. The neighbors which receive this packet, after
increasing the hop count by 1, add an entry to their routing table for node
u if no entry for the same node and level with lower or equal hop count is
present in the RT. The next hop field is set to the identifier of the node from
which the packet was received. The level field in the routing table is set to
the level given in the packet. In turn, the nodes which got the packet from u
broadcast this packet to their neighbors. The latter follow the same procedure
and update the routing table if necessary. The packet is discarded when the
hop count reaches the maximum hop count (which is a function of the level).
Note that with this procedure, every node forwards the packet at most once
and the distance added to the routing table is the shortest path distance in
G(n, rn). This procedure also allows us to establish a reverse path from all
nodes that get the packet back to u. Indeed, it suffices for all these nodes to
store the identifier of the node from which they received the packet7. Further,
for any node v, that reverse path is a shortest path to u.

Pkt. Type Node Id. Hop Count Level
O(1) bits O(log n) bits O(log n) bits O(log ∆) bits

Table 3.3: Flood Packet

probe(relay,destination) procedure :

This procedure consists in sending a probe packet (see Table 3.4) to a “relay”
node for which the source has an entry in its routing table. The relay node will
set the success bit to 1 if it has an entry for the destination and 0 otherwise. We
will make sure that all nodes on the path between the source and the relay node
have an entry for the relay node in their routing table. Additionally, nodes on
the path add a temporary entry for the source in the routing table. They set
the next hop field to the identifier of the node from which they received the
packet and leave the level and distance field empty. Upon receiving the packet,
the relay node can either answer to the source on the reverse path we just
created if the answer is negative. Alternatively, it can take action as explained
in the sequel if it has an entry for the destination.

7The packet for which they modified their routing table

58 Hierarchical Routing in Dynamic Ad hoc Networks

Pkt. Type Relay Id. Dest. Id. Success
O(1) bits O(log n) bits O(log n) bits 1 bit

Table 3.4: Probe Packet

We now separately detail the beaconing and the routing algorithms under-
lying our routing protocol

3.4.1 Beaconing Algorithm

In this subsection, we start by describing the first time step, when nodes have
not yet moved and no information has been exchanged (the full algorithm is
described in Algorithm 2). In a static network, the information exchanged in
this first step would be sufficient to setup a complete routing infrastructure.
On the other hand, in a mobile environment, we would need to cope with
the dynamic topology and constantly update the routing tables. How we deal
with a dynamic environment is explained at the end of the subsection. Let
the cover radius at level i, for i = 1, ..., log ∆ (∆ being the diameter of the
network), be defined as ri = 2i and the flooding radius at level i be defined as
fi = κ(ri+1 + ri), where κ is a constant chosen such that κ(νd, d) ≤ κd, ∀d. In
order for the routing algorithm to work properly, it is crucial that beacons at
level i are within the flooding radius of the beacons at level i+ 1, if they have
common nodes inside their cover radii (see Fig. 3.13). This is why we define
the flooding radius above. Note that if the network is static, we can set κ to
1. Else, the value of κ depends on how mobile the nodes are (see Def. 3.6).

The idea of the algorithm is to build a hierarchical cover of the network
i.e., we would like every node in the network to be within ri hops of a beacon
node at every level i. We say that when a node is within ri of a beacon b at
level i, it is covered and a member of b’s cluster at level i. It can only be in one
cluster at every level. To achieve this, we let the nodes flood in a random order
which can change at every time step. Before explaining how we can implement
this algorithm with only one scoped flood per node, we first explain how the
algorithm works conceptually. Given the random permutation π on the nodes,
we build the routing structure level by level, top-down. Hence, we start at level
i = log ∆, with node π(1) (i.e., the first node in the random permutation). No
message has been sent so far, and consequently this node is not covered on
this level i (actually, on no level at all). Thus, node π(1) start a flood with
a hop count set to fi. All nodes that receive this packet and are within ri
hops from node π(1) will not flood on this level i anymore, as they are covered
and become members of π(1)’s cluster. However, all nodes that receive the
packet will remember the fact that node π(1) is a beacon at level i. Then, we
go through the nodes in the order given by the random permutation, and let
the nodes flood fi hops which were not covered before their turn comes. Once
we are done with level i, we repeat the same process at level i − 1. That is,
node π(1) floods the network with hop count fi−1, and nodes within ri−1 hops

3.4. Routing Algorithm 59

Figure 3.13: The flooding radius is chosen in such a way that beacons at level i
hear the floods of beacons at level i+ 1. In static networks, this is ri + ri+1.

will not be elected beacons (i.e., will not flood) at this level. Then, again, we
go through the random permutation and let nodes flood fi−1 hops which were
not covered before their turn comes. We continue this process until we reach
level 1. Note that many floods are redundant, as for instance node π(1) always
floods first when we start the process on a new level. We can implement this
process in a much more efficient way by letting all nodes flood only once. We
explain this process below

When we do a single pass through the random permutation, every node u
is a beacon at a given level h(u). The flooding radius, however, will depend
on the highest level at which a node is not covered. Let us denote by h(u)
the highest level at which node u is not covered. When node u’s turn to flood
comes, it will determine the value of h(u) and call flood(fh(u), h(u)). A node v
which receives this flood will determine the lowest level at which it could be a
member of u’s cluster, say l(v). That is, it will determine the lowest value j for
l(v) such that d(u, v) ≤ 2j. This distance d(u, v) is known since v just received
a flood packet from u. It will then become a member of u’s cluster for all levels
above l(v) for which it has no membership yet and are below h(u). If a node
becomes a member of u’s cluster, it sends a membership packet (see Table 3.5)
back to u. In this way, u learns the identifier of all nodes in its cluster. Note
that u also applies this procedure to itself, and consequently could be a beacon
at level i but not at level j < i. To summarize:

60 Hierarchical Routing in Dynamic Ad hoc Networks

Pkt. Type Node Id. Beacon Id. Level
O(1) bits O(log n) bits O(log n) bits O(log ∆) bits

Table 3.5: Membership Packet

• Nodes start a scoped flood of the network with flood packets in a random
order. The radius of the flood of a node u is determined by the highest
level h(u) at which this node has not yet been “covered” (or equivalently
is not member of a cluster). This information is included in the packet.

• A node v that receives such a flood packet becomes a member of the
sender’s (say node u) cluster at level i (this concerns potentially more
than one level) if the following conditions are met:

– If node v joins u’s cluster on level i, it is within ri hops of u.

– If node v joins u’s cluster on level i, it is not already member of
another cluster at this level.

– i is lower than or equal to h(u).

– If node v joins u’s cluster on level i, a membership packet is sent
back to node u to confirm the membership.

In practice, this optimized scheme is equivalent to electing node π(1) as a
beacon on all levels as soon as it floods. Then, node π(2) is elected as a beacon
on all levels on which it was not covered by node π(1), and so on. The other
nodes infer from the hop count whether they consider a node that floods as a
beacon on a given level.

The control traffic will be dominated by the messages sent back by nodes
to beacons when they become members of a cluster, so should be rare. In
other words, the election of new beacons, and consequently the transmission
of membership packets, should be rare. However, we do not want the distance
between nodes and beacons to grow by more than a constant factor. Since
we assume that the maximum speed of the node is constant, the higher the
level of a beacon, the more time it will take for nodes to double their distance
to this beacon. We want to elect new beacons and update memberships only
for levels at which the distances from beacons to cluster members could have
been multiplied by a constant factor. Recall that the network is κ-constrained
(see Definition 3.6). Consequently, the distance d(t)(u, v) between two nodes
u and v cannot change by a factor κ in less than νd time steps (see Corollary
3.2). In particular, if a node is at distance 2i of a beacon at the time it

becomes a member of its cluster, then we have dt+ν2i ≤ κ2i. Hence, we can
update the memberships at level i only every ν2i time steps8 (see Figure 3.14),
and still have guarantees on distances to beacons. Finally, note that when
new beacons are elected at level i, nodes which were previously beacons at

3.4. Routing Algorithm 61

Figure 3.14: The memberships up to level i are updated every ν2i time steps. At
the levels above, beacons elected at earlier time steps simply flood again.

this level loose this status. This will lead to a routing scheme in which the
distances can be distorted by at most a constant factor to be calculated in
the sequel. Additionally, in a dynamic environment, routes can break. This is
why we let the beacons (i.e., the beacons elected in previous time steps) at all
levels flood at every time step. Levels at which no membership updates take
place simply use the floods of the beacons to update their routes toward theses
beacons. This will ensure that a route always exists for all pair of nodes. We
prove in Section 3.5 that our choice of flooding and cover radius guarantees
that a route always exists for any pairs of nodes, and that the length of this
route is within a constant factor of the shortest path. In Figure 3.15, we give
a simple with three levels. The beaconing algorithm is presented in Algorithm
2. It is important to note that the routes are updated at every time step and
consequently routing toward a beacon will always be successful. Further, when
the membership at a given level i is updated, all the memberships at the levels
j < i will also be updated, and all memberships at these levels canceled.

3.4.2 Forwarding Algorithm

The forwarding algorithms works as follows: a source node u with a message
for a target node v searches for v by first probing (see description of probing
procedure at the beginning of the section) all the level 1 beacon it knows of. To

8Note that if a time step is a multiple of ν2i, it is also a multiple of ν2j , for j < i. Thus,
we can again let every node up to level i flood exactly once at the appropriate level.

62 Hierarchical Routing in Dynamic Ad hoc Networks

Figure 3.15: The example start with empty routing tables. First, on the left, node
u1 floods at level 3. We focus on nodes u2 and u3. Node u2 is within 8 hops from
u1 but further away than 4 hops. Consequently, it can only had an entry for node
u1 at level 3. At the same time, node u3 can add an entry for node u1 at the levels
2 and 3, since it is at distance 4 of u1. Next, on the right, u2’s turn to flood comes
(right after u1’s turn). This node is already covered at level 3. Consequently, it
will flood at level 2. The node u3 could potentially add an entry for this node at
levels 1 and 2. However, it is already covered at level 2 and so adds only an entry
for level 1. We do not show the entries beacons add for themselves.

input : Routing Table at node u, Time t
output: -

Let Γ = max
{
0 ≤ j ≤ log ∆|t mod(ν2j) = 0

}
;2.1

Clear routing table entries with level ≤ Γ;2.2

Let h(u) be the level at which u is a beacon;2.3

if π(ℓ) = u then2.4

if h(u) ≤ Γ then2.5

Let h(u) be the highest level at which u is not covered;2.6

h(u) = h(u);2.7

end2.8

flood(fh(u), h(u));2.9

end2.10

Algorithm 2: Beaconing Algorithm at node u

3.4. Routing Algorithm 63

do so, it looks at its routing table and selects all nodes it knows of at level 1. If
all answers are negative, that is all the level 1 beacons within range reply with a
success bit set to 0, node u probes all level 2 beacons it knows of. The procedure
is repeated as long as all beacons answer negatively. A beacon at level i with
an entry for the destination in its routing table does not answer directly to the
source. Rather, this node will search downwards in the hierarchy by probing all
the level i−1 beacons it knows of. We show in the next section that one of these
beacons must have an entry for the destination. That beacon in turn probes
all the beacons in knows of at level i−2. Meanwhile, the other beacons at level
i− 1 will answer negatively to the beacon at level i. The procedure is repeated
recursively until the target itself is reached. The target will then answer to the
source on the reverse path which will later be used for communication between
the source and the destination. To summarize, the forwarding algorithm starts
with an “upstream” phase during which the source node probes beacons level
by level until a beacon is found which has the destination in its cluster. That
beacon then starts a “downstream” phase, during which we go down in the
hierarchy. We illustrate the forwarding procedure conceptually in Figure 3.16.

3.4.3 Load-balancing

This approach above guarantees a low network wide control traffic overhead.
Over a long period of time all nodes will get approximately the same aver-
age overhead. Yet, beacons at the highest levels might get overloaded by the
membership packets of the nodes in their cluster when a membership update
takes place. Therefore, on rare occasions, these nodes will be hot spots in the
network for a short period of time. To work around this problem, member-
ships can be distributed in the cluster instead of stored at the beacon itself.
First, we now set the flooding radius to be f ′

i = κ(2ri+1 + ri). Additionally,
whenever a beacon floods at level i, it includes its membership at level i + 1
in the packet. This information is stored by all nodes that receive this flood
packet. This will guarantee that all nodes that are members of a cluster at
level i, know how to reach all beacons at level i− 1 inside that cluster. Now,
assume that a node u becomes a member of the cluster of a beacon bi(u) at
level i. Instead of sending the membership packet directly back to bi(u), it will
now send its membership packet directly toward the beacon ψi−1(u) at level
i− 1 inside this cluster, where ψi−1(u) denotes the beacon inside bi(u)’s clus-
ter with the identifier closest to u’s identifier. In turn, as soon as the packet
reaches a node which is a member of ψi−1(u)’s cluster at level i− 1, the mem-
bership packet is redirected toward the beacon ψi−2(u) which is a member of
ψi−1(u)’s cluster at level i − 1 (i.e, the beacon inside ψi−1(u)’s cluster which
has the identifier closest to node u’s identifier). The process is repeated until
we reach a single node, which will store u’s identifier on behalf of bi(u). Note
that the membership can only be registered at a single location in the cluster
reachable through a unique sequence of clusters. This remains true even when
nodes move. Indeed, the nodes in the cluster of bi(u) will only forward the

64 Hierarchical Routing in Dynamic Ad hoc Networks

Figure 3.16: Node u has a packet for node v. It searches in its routing table
for all beacons it knows of at level 1 and sends them a probe packet containing
v’s identifier. None of the beacons at level 1 has an entry for this node and
consequently they all answer negatively to node u. Next, node u repeats the same
procedure with all the beacons it knows of at level 2. Again, all beacons answer
negatively. On the third level, now, a beacon has an entry for node v. This beacon
will probe all the beacons it knows of at level 2, while the other beacons at level
three will answer negatively to u. A beacon at level 2 must have an entry for v.
This beacon again probes all the beacons it knows of at level 1 among which one
must have an entry for v itself. Meanwhile, the other beacons reply negatively as
they do not have any entry for v.

packet to beacons at level i − 1 which were in the same cluster at the time
the membership for this level got updated. Of course, whenever level j < i is
updated, we do now not only need to send u’s identifier toward its new beacon
at that level. Additionally, the node that holds u’s identifier at level j might
not be reachable anymore through a path of clusters with identifiers closest
to u’s. Consequently, this node will need to forward u’s identifier toward the
beacon at level j with the identifier closest to u’s. Again the process will be
repeated recursively until a single node is reached. As we will see, the cost of
avoiding hot spots is a factor log n in the total control traffic. Finally and most
importantly, with this procedure beacons no longer get overloaded. Rather,
the traffic is be distributed in its cluster.

The data forwarding process remains the same except that the source node
will not probe the beacon itself, but rather search for the node in the beacon’s
cluster that should hold the destination’s identifier. If this node holds the

3.5. Performance Analysis 65

identifier, it will then probe the beacons one level below in the same way.
Recall that the nodes which potentially hold u’s membership can be reached at
any given instant in time through a unique sequence of clusters. The procedure
is repeated until the destination is reached.

3.5 Performance Analysis

In this section, we analyze the performance of our algorithm analytically both
in terms of control traffic and of route stretch. As in Section 3.4, we do this for
a sequence of doubling and smooth connectivity graphs, and will use G(t)(n, rn)
with USL mobility for illustration.

The bounds derived in this section hold w.h.p. when we are in a sequence
of length nρ of α-doubling connectivity graphs. In the sequel, α, κ and ν are
the constants derived in Section 3.3. Let us denote by ∆ = O(

√

(n
log(n))) the

diameter of the network. To bound the control traffic necessary for beaconing,
we will rely on the α-doubling property of the metric space to show that a
node can only hear a constant number of beacons at every layer. We will first
show that a ball of radius 2R around any node u can only contain at constant
number of balls (clusters) of radius R, when we select the centers of the balls
of radius R in an arbitrary order and ensure that two centers cannot be closer
than R. We will later use this result to show that a node can hear at most a
constant number of beacons at any given level.

Theorem 3.11 (Random Cover). Let BX
2R(u) be a ball of radius 2R centered

at u in a graph metric (X, d) with doubling constant α. Then, there exist at

most k ≤ α2 nodes vi, (i = 1, 2, .., k) such that BX
2R(u) ⊆ ⋃k

i BX
R (vi) and

min(i,j)d(vi, vk) > R.

Proof. By definition of an α-doubling metric space, there must exist a cover of
a ball of radius 2R consisting of at most α balls of radius R. Recursively, there
must also exist an R

2 -cover consisting of α2 points. One can select at most one
center vi in each ball of radius R/2, as any other point inside this ball is within
R of vi. Hence, one can select at most α2 such centers.

Corollary 3.3. Let B be a ball of radius R > R′ in an α-doubling metric space
(X, d). Then, one can select at most k ≤ (R

R′)
2log(α) nodes vi, (i = 1, 2, .., k)

such that BX
R (u) ⊆ ⋃k

i BX
R′(vi) and min(i,j)d(vi, vj) > R′. In particular, if R =

ηR′ for some constant R, then k is at most a constant (η)2log(α) independent
of n.

Proof. Let R = 2iR′. Hence, R′ is doubled log R
R′ times to obtain R. By

Theorem 3.11, B can be covered by α2log R
R′ = (R

R′)
2log(α) balls of radius R′.

Here, one can think of the radius R of the large balls as the flooding radius,
and of the radius R′ of the small balls as the cover radius. Indeed, we use
this result to show that a node u can hear the floods of all beacons within a

66 Hierarchical Routing in Dynamic Ad hoc Networks

given radius R. Moreover, this ball of radius R can contain at most (R
R′)

2log(α)

beacons, since beacons must be at least R′ apart.

3.5.1 Control Traffic

Theorem 3.12. The average control traffic overhead per time step for beacon-
ing is at most O(n log2 n) bits.

Proof. We will analyze the control traffic at level i. Recall that a beacon at
level i floods a distance fi = κ(2i+1 + 2i) at every time step. Further, at the
time the memberships are updated at level i, a beacon node at this level cannot
be within ri = 2i of another beacon at that level. If it were the case, this node
would not elect itself as a beacon at this level. Level i is updated every ν2i

time steps. Consider a node u. By Corollary 3.10, no nodes that are further
away than κfi hops at the time the memberships are updated at level i could
move within fi of u in less than ν2i time steps. However, that is before this
level is updated again. Consequently, the number of beacons whose flood can
reach u at any given time step is at most the number of level i beacons in a
ball of radius κfi at the time the membership is updated. In turn, node u will
broadcast9 the flood packets of at most that many beacons for this level i. By
Corollary 3.3, this number is a constant10 given by (κfi

2i)2log(α) = (3κ2)2 log α.
Given that there are O(log n) levels, that there are n nodes and that a flood
packet has size O(log n) bits, the average control traffic overhead per time step
for beaconing is at most O(n log2 n) bits.

We now compute the control traffic overhead necessary for nodes to update
their memberships with beacons. Recall that level i and all levels below are
updated every ν2i times steps and that a node can only be a member of one
cluster at every level. Furthermore, a node only becomes a member of a cluster
if it is within 2i of the corresponding beacon.

Theorem 3.13 (Membership Update Overhead). The average control traffic
overhead per time step to update memberships without load-balancing is at most

n log ∆ logn

ν
= O(n log2 n)

bits.

Proof. Consider a sequence of T time steps. The memberships will be updated
up to level i every ν2i time steps, so T

ν2i times in a sequence of length T . At
the time of the update, a node can be at distance at most 2i from a beacon at
level i. Consequently, the overhead in bits generated by a node in a sequence
of T time steps is upper bounded by

∑log ∆
i=1

T
ν2i 2

i logn = log ∆
ν logn.

9recall that when a node broadcasts a packet it is received by all direct neighbors in the
connectivity graph. Consequently, there is one packet transmission per beacon of which a
flood packet is received.

10In the load-balanced scheme, this constant is (5κ2)2 log α.

3.5. Performance Analysis 67

Finally, we will show that the average control traffic overhead when load-
balancing is used is increased by at most a factor logn.

Theorem 3.14 (Membership Update Overhead). The average control traffic
overhead per time step to update memberships with load-balancing is at most

n log2 ∆logn

ν
= O(n log3 n)

bits.

Proof. Consider a sequence of T time steps. The memberships will be updated
up to level i every ν2i time steps, so T

ν2i times in a sequence of length T . At
the time of the update, a node can be at distance at most 2i+1 from a beacon
at level i − 1 inside its cluster at level i. Similarly, a node can be at distance
at most 2i from a beacon at level i− 2 inside its cluster at level i− 1. In the
load balanced scheme, we have to count the overhead to go down the hierarchy
of beacons. For a beacon at level i, this is at most 2i × 2. Consequently, the
overhead in bits generated by a node in a sequence of T time steps is upper
bounded by 4

∑log ∆
i=1

T
ν2i 2

i logn = 4 log ∆
ν logn. However, node u is a member of

a cluster at all log ∆ levels. Recall that the node that holds u’s identifier must
always be reachable through a path by choosing the beacon (cluster) with the
identifier closest to u’s. Hence, whenever level i gets updated, all log ∆ nodes
that hold u’s identity must follow the same procedure as u itself. We conclude
that the overhead is upper bounded by log ∆4 log ∆

ν logn bits.

3.5.2 Route Stretch

In this section we will show that the route found with the forwarding algorithm
is only a constant factor longer than the shortest path. Additionally we show
that the destination location discovery takes a negligible fraction of a flow
throughput.

Theorem 3.15 (Routing Stretch). The worst case multiplicative routing stretch
is O(1).

Proof. We first analyze the stretch without load balancing. Consider that we
want to route from a node u to a node v, and that we had 2k ≤ d(u, v) ≤ 2k+1,
the last time level k was updated before the route search takes place. Let
us denote by bi(v) the beacon to which node v had registered the last time
level i ≤ k was updated before the route search takes place. Clearly, we have
d(u, bv(k)) ≤ κ(2k+1 + 2k), and d(bi(v), bi−1(v)) ≤ κ(2i + 2i−1). This is true
since the membership of node v at level i must have been updated at most ν2i

time steps before the routing takes place, and that at the time the time level i
gets updated, we have d(bi(v), bi−1(v))) ≤ d(bi(v), v)+d(v, bi−1(v)) by triangle
inequality. Note that d(bi(v), bi−1(v)) ≤ fi−1 and that d(u, bv(k)) ≤ fk. Hence,

68 Hierarchical Routing in Dynamic Ad hoc Networks

a route must exist between u and v and the length r(t+τ)(u, v) of the route at
time t is at most:

r(t)(u, v) ≤∑k
i=1 fk = κ

∑k
i=1(2

i+1 + 2i)

= 3κ
∑k

i=1 2i = 3κ 2k+1−1
2−1 ≤ 6κd(t)(u, v)

In the worst cast, nodes u and v have moved closer together (by a factor κ)
while the beacons have moved further apart. Indeed, we have d(t+τ)(u, v) ≤
κd(t)(u, v) for τ ≤ ν2k as our network is κ-constrained. Note that if we waited
longer that ν2k, memberships would be updated again at level k and we could
find another beacon at distance 2k at most from v at level k. Hence, the worst

case stretch is r(t+ν2k)(u,v)

d(t+ν2k)
≤ 6κ2 = O(1).

Every node can only hear floods from a constant number (µ = (3κ2)2 log α,
see Theorem 3.12) of beacons at every level. Recall that the source will first
probe all beacons at level 1, then all beacons at level 2 and so on. The procedure
is repeated up to level k at which the source u will send a packet to bk(v). Note
that the distance from u to this beacon can be at most κ2k+1 + 2k = fk and
so it must hear its floods. In turn, when routing down the hierarchy, beacon
bj(v) will probe at most a constant number ((3κ2)2 log α of beacons at level
j − 1. Finally, the distance between a node u and a beacon at level i can be
at most fi and a probe packet will traverse at most 2fi packets when a beacon
at level i is probed (back and forth). This means that for discovery of the
location of the destination, we need a probe overhead of at most µ6κd(u, v)
packet transmissions. Therefore, this is a negligible part of the throughput
of a flow since it consumes roughly the equivalent of a few packet headers of
a flow from source to destination. A similar statement can be made for the
load-balanced case.

3.6 Implementation Issues

In Section 3.5, we have computed worst case bounds which may be conservative
in terms of constants. In this section, we explore this aspect by looking at
simulation results for the control traffic and for the stretch. Recall that we had
computed that for each of the O(log n) levels, a node has to retransmit a packet
of at most (3κ2)2 log α beacons. Even if we set the maximum speed as well as
the parameter ν to 1, this is still

√
10+20 and consequently the constant in the

bound on the overhead at least as high as (3(
√

10+20)2)2 ≈ 2.5 ·106! In Figure
3.17, however, we show that in practice this constant is approximately 30. This
simulation was run with 50 up to 10000 nodes moving at a maximum speed of 1.
One can observe that the experimental scaling behavior corresponds extremely
well to the theoretical behavior. To stress this fact, we also plot 100 logn as a
benchmark. Note that the overhead is expressed in number of packets rather
than bits (a packet being of size O(log n)).

Similarly, in Figure 3.18 we show that for a network of 1000 nodes, the
stretch is at most 1.5 for all node pairs. If we compute the maximum theoretical

3.6. Implementation Issues 69

0 2000 4000 6000 8000 10000
0

200

400

600

800

1000

1200

1400

1600

Network size [nodes]

A
ve

ra
ge

 o
ve

rh
ea

d
pe

r
no

de
 [p

ac
ke

ts
]

overhead(n)
100*log(n)

Figure 3.17: Average control traffic overhead per node in packets as a function of
the network size. Nodes move at a speed of maximum speed of 1. The confidence
interval is given by the 95% and 5% percentiles. The size of a packet is O(log n)
bits. We also plot 100 logn to show that our analytical predictions match the
simulation results.

stretch, we can show that it is again considerably larger and hence a pessimistic
bound. These small constants could make a practical implementation realistic.

We have made a certain number of assumptions in our models, which we now
clarify. In practice, the random permutations on the nodes, which determines
the order in which the flooding occurs, could be implemented by using random
timers; more precisely, by letting all nodes draw a random delay independently
of each other every ∆T seconds. Obviously, the interval from which nodes draw
this delay should be made sufficiently large so that we can avoid collisions.
However, a level in the hierarchy will be rapidly covered, and in a practical
implementation the covers at different levels could be built in parallel. Further,
different parts of the network are independent except at the highest level, and
we could exploit this spatial diversity to parallelize the beaconing process.
Hence, we speculate that it is possible to reduce the length of the beaconing
phase to a small constant times the maximum round-trip time. Note that one
could apply the algorithms to underlying networks that are not doubling. In
this case, we would not be able to give provable bounds on the control overhead
and the stretch as we did for doubling networks.

70 Hierarchical Routing in Dynamic Ad hoc Networks

1 1.1 1.2 1.3 1.4
0

0.2

0.4

0.6

0.8

1

Stretch

E
m

pi
ric

al
 C

D
F

Figure 3.18: Empirical cumulative distribution of stretch (route length/shortest
path) for a network with 1000 nodes moving at a maximum speed of 1.

3.7 Concluding Remarks

In this chapter, we showed that a large class of wireless network models belong
to a larger class of networks, the doubling networks, in which efficient routing
can be achieved. Hence, we have formalized the intuition developed in Chapter
2, that the structure of wireless networks was intrinsically low-dimensional.
To design an efficient routing scheme, one can hierarchically decompose the
network by relying on the doubling property to prove that the control traffic
overhead and the stretch will remain low, even for dynamic doubling networks.
This holds for a fairly broad class of uniform speed-limited (USL) mobility
models. One advantage of the proposed routing algorithm is that it is robust,
in that it works well in certain situations in which other existing algorithms
cannot work well. This was illustrated in Section 3.2.1 for an example network
with obstacles. We believe that many more such examples can be created where
the use of the doubling rather than geographic properties would be crucial. To
the best of our knowledge, our results are the first provable bounds for routing
quality and costs for dynamic wireless networks. These techniques might give
us insight into algorithm design for more sophisticated wireless network models.

Comparison-based Nearest

Neighbor Search 4
We now move on to the second main topic of this thesis, namely comparison-
based search in databases. In this chapter, we address this search problem
from a formal theoretical point of view. In particular, we investigate methods
to search a database of objects that do not necessarily live in a metric space.
Recall that we consider the situation where we want to search and navigate
a database, but we do not know the underlying relationships between the ob-
jects. This implies, in particular, that distances may be difficult to discern,
or may not be well-defined. As mentioned in Chapter 1, such situations are
common with objects where human perception may be involved. A collection
of pictures of faces, taken from different angles and distances is an illustra-
tion of such a dataset. Indeed, the distances between feature vectors might
be far from the similarity perceived by humans. Notwithstanding, either with
human-assistance or approximate classification, we may be able to determine
the relative proximity of an object with respect to a small number of other ob-
jects1. More precisely, Humans have the ability to compare objects and make
statements about which are the most similar ones, though they can probably
not assign a meaningful numerical value to similarity. This led to the question
of how to design search algorithms based on binary similarity decisions of the
type “A looks more like B than C”.

More formally, we aim to design an algorithm that given a query object
(e.g., the face of a person we are looking for), efficiently returns an object
that is similar to that object among the objects in a database. To do so,
we have access to a similarity oracle which, given two reference objects and a
query object, can tell which of the two reference objects is most similar to the
query object. We measure the performance of all our algorithms in terms of

1We provide the architecture for a practical implementation of such a system in Chapter
5.

71

72 Comparison-based Nearest Neighbor Search

the number of questions that we need to ask the oracle. This is motivated by
the fact that we consider that it is very costly to ask human users to answer
questions. Hence, we aim at minimizing the number of such questions. We
can pre-process the database during a learning phase, and use the resulting
answers to facilitate the search process.

One way to understand this setup is to consider that the objects live in a
hidden space, which can only be accessed through the aforementioned oracle.
We do not make the assumption that the “hidden” space in which the database
objects live needs to be a metric space. Using the aforementioned oracle, one
can retrieve for every object u in the database a sorted list of the other objects
according to their distance to u. We call the position of object v in this list the
rank of v with respect to u, and denote it by ru(v). Clearly, this relationship
can be asymmetric i.e., ru(v) 6= rv(u) in general. This setup raises several new
questions and issues, as any space can be described by its ranks relationships.
How much does the fact that the rank of some object v w.r.t. some other object
u is k, and the rank of w w.r.t. u is k′ tell us about the rank of w w.r.t. v? In
this chapter, we introduce the notion of rank distortion (see Section 4.2 for a
rigorous definition). The rank distortion captures how closely rv(w) is related
to the average 1

n

∑

u |ru(v) − ru(w)|. The framework introduced in [GLS08],
defines approximate triangle inequalities on the ranks, another way to capture
these relationships. Those inequalities roughly tell us how “transitive” the sim-
ilarity relationship is and give us a notion of combinatorial disorder. If we have
this information, we can use partial rank information to estimate, or infer the
other ranks. In this chapter, we will first investigate the case where we can use
such a characterization of the hidden space as an input to our algorithms. We
develop a randomized hierarchical scheme that improves the existing bounds
for nearest neighbor search based on a similarity oracle (see Section 4.1). We
also prove, as far as we know, the first lower bound on the average number of
questions to be asked for randomized nearest-neighbor search in this setup (see
Section 4.4). Then, in Section 4.5, we ask what can be done if no characteriza-
tion of the hidden space is known and therefore cannot be used as an input to
the algorithms. In that case, we cannot estimate, or limit, ranks anymore if we
have partial rank information. Nevertheless, we develop algorithms that can
decompose the space such that dissimilar objects are likely to get separated,
and similar objects have the tendency to stay together. This generalizes the
notion of randomized k-d-trees (see [DF08]) to our setup. Building on this
intuition, we introduce the notion of rank-sensitive hashing (RSH) in Section
4.5.3. Similarly to locality-sensitive hashing, we can retrieve one of the R near-
est neighbors of a query point very efficiently. The hash function itself does
not require any characterization of the subjacent space as an input. However,
the smallest value of R we can choose depends on the rank distortion. In gen-
eral, both the criteria (combinatorial disorder and rank distortion) we use to
characterize the hidden space seem to capture how “homogeneous” that space
is. It appears that the less homogeneous it is, the more difficult it becomes
to search. In particular, if the rank relationship is very asymmetric, and some
objects are far from every other object, the information contained about those

4.1. Relationship to Published Works 73

objects in the ranks matrix is very sparse and hard to capture. We apply this
idea of RSH to NN search, but we believe that this might be useful in other
scenarios as well. We investigate the implications of RSH for objects randomly
placed in ℜd.

4.1 Relationship to Published Works

The nearest neighbor (NN) problem, and many variations thereof, have been
extensively studied in the literature (see for instance [Cla06] and [Ind04] for sur-
veys). In particular, very efficient algorithms have been developed for specific
classes of metric spaces, such as metric spaces with a low intrinsic dimension
or a bounded growth factor. In [KL04], the authors introduce ǫ-nets, a very
simple data structure for nearest neighbor search (and many other applica-
tions). The complexity of those nets depends on the doubling dimension (see
definition 3.2, in Section 3.2) of the underlying space. In [KR02], the authors
present a random sampling algorithm to produce a data structure for search
in growth restricted metrics. The restricted growth guarantees that a random
sample will have some nice properties. In particular, by randomly selecting a
small number of representatives at different scales for every object in a learning
phase, one can zoom in on the nearest neighbor of a query point during the
search phase. On the other hand, search when the underlying space is not nec-
essarily a metric space appears to have very little prior work. In some sense,
it is a generalization of the above problem, as any dataset can be represented
by its rank relationships.

The problem of searching with a similarity oracle was first studied in [GLS08]2,
where a random walk algorithm is presented. The main limitation of this algo-
rithm is the fact that all rank relationships need to be known in advance, which
amounts to asking the oracle O(n2 log n) questions, in a database of n objects.
The authors of [LZ09] and [GLS08] work with a combinatorial framework for
nearest neighbor search, which defines approximates inequalities for ranks anal-
ogous to the triangle inequality for distances. Their bounds depend crucially
on the combinatorial disorder, represented by the disorder constant D of the
database (a notion to be defined more formally in Section 4.2, which captures
to what extent the triangle inequality on ranks can be violated). In [LZ09], a
data structure similar in spirit to ǫ-nets of [KL04] is introduced. It is shown
that a learning phase with complexity O(D7n log2 n) questions and a space
complexity of O(D5n + Dn logn) allows to retrieve the nearest neighbor in
O(D4 logn) questions, in a database of n objects. The learning phase builds
a hierarchical structure based on coverings of exponentially decreasing radii3.
We will show (see Section 4.3) that we can improve those bounds by a factor
polynomial in D, if we are willing to accept a negligible (smaller than 1

n) prob-
ability of failure. Our algorithm is based on random sampling, and hence can

2Our interest in this formulation arose from an applied viewpoint in the implementation
of the facebrowser system (see Chapter 5).

3the radius of a ball is defined as the cardinality of that ball.

74 Comparison-based Nearest Neighbor Search

be seen as a form of metric skip list (as introduced in [KR02]), but applied
to a combinatorial (non-metric) framework. However, the fact that we do not
have access to distances forces us to use new techniques in order to minimize
the number of questions we need to ask (or ranks we need to compute). In
particular, we sample the database at different densities, and infer the ranks
from the density of the sampling, which we believe is a new technique. We
also need to relate samples to each other when building the data structure top
down. We also present what we believe is the first lower bound for our problem
of searching through comparisons.

A natural question to ask is whether one can develop data structures for NN
when a characterization of the underlying space is unknown. This has been
addressed in the case when the underlying metric space has low ”intrinsic”
dimension and one has access to metric distances in [KL04,DF08]. In [DF08],
it is shown that one can build a binary tree decomposition of a dataset of points
in ℜd, such that the diameter of the sets in the tree is reduced by a constant
after a number of level that only depends on the intrinsic dimension of the data,
and not d. The term intrinsic dimension either refers to the doubling dimension
(also referred to as Assouad dimension) or the local covariance dimension4.
Therefore, one can similarly ask such a natural question in our framework
where we do not have access to metric distances (or they do not exist). We
develop a binary tree (hierarchical) decomposition, when the characteristics of
the underlying space (disorder constant) is unknown. This extends the result
of [DF08] to our framework, where we only have access to the underlying space
through comparisons.

The approximate nearest neighbor problem consists in finding an element
that is at distance at most (1 + ǫ)dmin from the query point q, where dmin =
mini d(i, q). In [IM98], Indyk and Motwani present two algorithms for this
problem. In particular, locality sensitive hashing, through which they obtain an
algorithm with polynomial learning and query time polynomial in d and logn.
For binary vectors, it is remarkable that the performance of the algorithm
does not depend on the dimension. A survey of results for LSH can be found
in [AI08]. In [Pan06], Panigrahy shows that instead of using a large number
of hash tables as it is the case in the approach above, only a few can be used.
These are then hashed to several randomly chosen objects in the neighborhood
of the query point, and it is shown shows that at least one of them will fall into
the same bucket as the nearest neighbor. The authors of [MNP06] prove a lower

bound on the parameter ρ = log 1/p
log p/P for (r, cr, p, P)-locality sensitive hashing

schemes. We present a new hashing scheme that is rank-sensitive (RSH). How
efficient the scheme is depends on another property of the hidden space, its
rank-distortion. The rank-distortion need not be an input to the algorithm,
however, the performance will depend on it. We give sufficient conditions for
RSH to work and demonstrate its application to NN search. We also evaluate
its performance for randomly placed points in ℜd and show that its performance

4Set S ⊂ ℜD has local covariance dimension (d, ǫ, r) if its restriction to any ball of radius

r has covariance matrix whose largest d eigenvalues satisfy σ2
1 + ... + σ2

d ≥ (1 − ǫ)
PD

i=1 σ2
i .

4.2. Definitions and Problem Statement 75

improves with d.
To the best of our knowledge, the notion of rank-sensitive hashing and ap-

proximate (and randomized) nearest neighbor search using similarity oracle
is studied for the first time in this thesis. Moreover, the hierarchical search
scheme proposed is more efficient than earlier schemes. The lower bound pre-
sented appears to be new and demonstrates that our schemes are (almost)
efficient.

4.2 Definitions and Problem Statement

In this section, we define formally the notions that we use in the rest of the
chapter. We consider a hidden space K with distance function d(., .), and a
database of objects T ⊂ K, with |T | = n. We do not have access to the
distances between the objects in K directly. We can only access this space
through a similarity oracle which for any point q ∈ K, and objects u, v ∈ T
returns:

O(q, u, v) =

{
u if d(u, q) ≤ d(v, q)
v else

(4.1)

For the sake of simplicity, we consider that all distances in K are different.
Note that the objects do not need to be in an underlying metric space for this
similarity oracle. We now define the notion of rank.

Definition 4.1. The rank of u in a set S with respect to v, rv(u,S) is equal
to c, if u is the cth nearest object to v in S.

To simplify the notation, we only indicate the set if it is unclear from the
context i.e., we write rv(u) instead of rv(u,S) unless there is an ambiguity.
Note that rank need not be a symmetric relationship between objects i.e.,
ru(v) 6= rv(u) in general. Further, note that we can rank m objects w.r.t.
an object o by asking the oracle O(m logm) questions. To do so, create the
ranking w.r.t. o by adding one object at a time. Observe that in order to add
the (i+ 1)th object to the list, we need to ask log(i) questions. More precisely,
we need to ask whether the (i + 1)th object is closer to o than the object
currently at position i/2. Then, we can recurse on the set new set of objects
(e.g., if the object to insert is closer than the i/2th object, select the i/4th

object as the new “pivot”). Summing over i, the total number of questions to
be asked to sort m objects is O(m log(m)).

Our first characterization of the space of objects is through a form of ap-
proximate triangle inequalities first introduced in [LZ09] and [GLS08]5. Instead
of defining a relationship between distances, these triangle inequalities define
a relationship between ranks. These relationships depend on a property of
the space called the disorder constant D. In [LZ09] and [GLS08], four such
inequalities are defined, all implying the others with D′ = D2.

5We have another characterization called rank distortion in Definition 4.3.

76 Comparison-based Nearest Neighbor Search

Definition 4.2. The rank disorder of a set of objects S is the smallest D such
that ∀x, y, z ∈ S, we have the following approximate triangle inequalities:

1. rx(y, S) ≤ D(rz(x, S) + rz(y, S))

2. rx(y, S) ≤ D(rx(z, S) + ry(z, S))

3. rx(y, S) ≤ D(rx(z, S) + rz(y, S))

4. rx(y, S) ≤ D(rz(x, S) + ry(z, S))

In particular, rx(x, S) = 0 and rx(y, S) ≤ Dry(x, S).

A rank-ball around some point x is defined as βx(r) = {i ∈ S|rx(i) ≤ r}.
Recall that a “distance” ball is defined as Bu(r) = {i ∈ S|d(u, i) ≤ r}. Hence,
if rx(v) = r and o ∈ βx(r), then o ∈ Bx(d(x, v)).

We further define the rank matrix R where rij = ri(j), and the matrix
W = R+R′ (note that the matrix W is symmetric). For a subset S ∈ K, we
define its diameter ∆S = maxi,j∈S wij . Let ρi denote the ith column of R i.e.,
we associate to every object o ∈ T a vector ρo ∈ {0, ..., n− 1}n, such that the
jth coordinate of o is given by rj(o).

We now define the rank-distortion of a set S as follows:

Definition 4.3. We say of a set of objects S that its rank distortion function
is f : N+ → ℜ+, if f is monotonically increasing and if there exists γ > 0 (the
rank-distortion) such that ∀u, v ∈ S:

f(ru(v)) ≤ ||ρv − ρu||1 ≤ γf(ru(v))

Lemma 4.1. If the function f is linear i.e., f = cru(v), then the four approx-
imate triangle inequalities are implied with D ≤ γ.

For example, for the first inequality, we have rx(y,K) ≤ ||ρx − ρy||1/c ≤
(||ρx − ρz||1 + ||ρz − ρy||1)/c ≤ γ(rz(x,K) + rz(y,K)). The proof for the other
inequalities is similar.

We can define the nearest neighbor problem as follows:

Definition 4.4 (R-nearest neighbor problem). Given a set of objects T and
a query point q, return one of the R objects in T closest to q. In particular, if
R = 1, return the closest object to q in T .

We say that a hashing scheme is (r,R, p, P)-sensitive if

Definition 4.5. We call a hashing scheme h, ”(r,R, p, P)-rank-sensitive” if
∀q ∈ K, u ∈ T ,

P [h(q) = h(u)|rq(u, T) < r] > p and P [h(q) = h(u)|rq(u, T) > R] < P

Note that we should have P < p.
Finally, we say that a result holds with high probability (w.h.p.) if it

hold with probability higher than 1− 1
n .

4.3. Contributions 77

4.3 Contributions

One of the difficulty of searching a hidden space arises from the fact that
we cannot know how transitive the rank relationship is i.e., we cannot know
whether the fact that A is similar to B, and B is similar to C implies that A
is similar to C. This is problematic in the sense that even if the oracle tells us
that A is closer to our query point than B, it does not necessarily imply that
points close to A are better candidates than points close to B. In metric spaces,
such a guarantee is provided by the triangle inequality. A way to characterize
the hidden space is to limit the extent to which the triangle inequality on ranks
can be violated. The combinatorial framework, introduced in [LZ09,GLS08],
(see definition of approximate triangle inequalities) does exactly that. In this
chapter, we improve on their results in two ways. We provide more efficient
algorithms using randomization and also provide a new lower bound for such
randomized algorithms. More precisely, we show that if we only require success
with high probability for nearest neighbor search, we can exploit the fact that
a sample of randomly chosen points will have nice properties. In particular, it
will be very likely that every object in the database will have an object sampled
that is similar to itself. By sampling more and more densely at every level of
a hierarchy, we will ultimately sample all objects. The key observation is that
in order to find the sample closest to a particular object, we will only need to
look at objects for which the closest sample at the level above in the hierarchy
was also close to that object. We introduce a conceptually simple randomized
hierarchical scheme that allows us to reduce the learning compared to the
existing algorithm (see [LZ09,GLS08]) by a factor D4, memory consumption

by a factor D5/ log2 n, and a factor D/ logn log lognD3

for search (see Section
4.1). This algorithm’s performance is best when the disorder constant is small.

Theorem 4.1. There exists a data structure, which for a given query point q,
can retrieve its nearest neighbor with high probability in O(D3 log2 n log log nD3

)

questions. The learning requires asking O(nD3 log2 n log lognD3

) questions in
total. We need to store O(n log2 n/ log(2D)) bits in total.

We then prove a lower bound on the average search time to retrieve the
nearest neighbor of a query point for randomized algorithms. Our result con-
firms the intuition we have developed so far. Indeed, the higher the disorder
constant, the more difficult it becomes to search. One way to interpret this re-
sult is that the higher the disorder constant D, the less information the answer
to a question to the Oracle provides us.

Theorem 4.2. There exists a space, a configuration of a database of n objects
in that space and a distribution over placements of the query point q such that
no randomized search algorithm, even if O(n3) questions can be asked in the
learning phase, can find q’s nearest neighbor in the database for sure (with a
probability of error of 0) by asking less than an expected Ω(D log(n

D2) + D2)
questions.

78 Comparison-based Nearest Neighbor Search

Consequently, our schemes are asymptotically (for n) within a factor Õ(D)
of the optimal scheme (i.e., within Dpolylog(n) questions of the optimal search
algorithm). The proofs of those two theorems are provided in Section 4.4.

Clearly, one of the limitations of the schemes above is that we need to
know the disorder constant. It might be possible to estimate the value of the
disorder constant based on a sample of objects in the database. Limitations of
this approach are the fact that we might considerably degrade the performance
of the algorithms if the estimator is inaccurate, and that we might run into
trouble if the query point does not come from the same distribution as the
database points T . We therefore extend, in Theorem 4.6, the idea of k-d-trees
to our setup. We provide an algorithm to build a binary tree that adapts to
the disorder of the hidden space (see [DF08] for an analogous result for ℜd).
In Section 4.5.3, we present a new rank-sensitive hash function with many
potential applications. The idea of rank-sensitive hashing is that by computing
many times a hash function drawn at random, similar objects will be assigned
the same hash value more frequently than dissimilar objects. The performance
of the rank-sensitive hashing scheme depends on the rank-distortion of the
hidden space. Instead of capturing how “transitive” the rank relationship is,
the rank disorder captures how the rank ru(v) relates to the average rank i.e.,
E [|rj(v)− rj(u)|]. In other words, if we picked an object x at random, and
sorted all other objects w.r.t. this object, how would |rx(v) − rx(u)| relate to
ru(v)? If ru(v) can be approximated by a function f of E [|rj(v)− rj(u)|]),
then we can exploit this fact to separate points close to q and points far from
q.

Theorem 4.3. Given a set of objects S with rank-distortion function f , and

rank distortion γ, there exists a function h which is (r, (1 + ǫ)r, 1 − f(r)
n2 , 1 −

f((1+ǫ)r)
n2γ)-rank-sensitive.

A special case is when the function f is constant. Then, the behavior of the
function is similar to the one observed with locality-sensitive hashing for binary
vectors. One of the consequences is that we can retrieve one of the R = (1+ǫ)r
nearest neighbors of a query point q in nO(γ

ǫ) questions. By using the output
of the hash function in a different way, we can compute an overall ranking of
the objects. We can then retrieve ”popular” objects i.e., those which are close
to many other objects. This idea is discussed in Section 4.5.2.

4.4 Searching with Known Disorder Constant

In this section, we make the assumption that the disorder constantD, of T ∪{q}
is known, and that we can consequently use it as an input to our algorithms.
Knowing D is an advantage, as it allows one to rapidly exclude some candidate
objects during the search phase. In other words, we can take advantage of
the fact that if we found an object close to the query point q, then objects
which are far from that object cannot be the nearest neighbor of q. We first
present an algorithm for nearest-neighbor search. The algorithms builds a

4.4. Searching with Known Disorder Constant 79

hierarchical decomposition of the test set T . The construction succeeds with
high probability i.e., for a fixed query point q, the data structure is such that
it will return q’s nearest neighbor w.h.p. Then, we present a lower bound on
the search complexity.

4.4.1 Hierarchical Data Structure For Nearest-Neighbor Search

The learning phase is described in Algorithm 3. The algorithm builds a hierar-
chical decomposition level by level, top-down. At each level, we sample objects
from the database. The set of samples at level i is denoted by Si, and we have
|Si| = mi = a(2D)i logn, where a is a constant independent of n and D. At
each level i, every object in T is put in the “bin” of the sample in Si closest to
it. To find this sample at level i, for every object o we rank the samples in Si

w.r.t. o (by using the oracle to make pairwise comparisons). However, we will
show that given that we know D, we only need to rank those samples that fell
in the bin of one of the at most 4aD logn nearest samples to o at level i− 1.
This is a consequence of the fact that we carefully chose the density of the
samples at each level. Further, the fact that we build the hierarchy top-down,
allows us to use the answers to the questions asked at level i, to reduce the
number of questions we need to ask at level i + 1. This way, the number of
questions per object does not increase as we go down in the hierarchy, even
though the number of samples increases. The search process is described in
Algorithm 4. The key idea is that the sample closest to the query point on the
lowest level will be its nearest neighbor. Hence, by repeating the same process
as for inserting objects in the database, we can retrieve the nearest neighbor
w.h.p.

We will now show that Algorithm 3 succeeds with probability higher than
1 − 1

n (w.h.p.) and that it requires asking less than O(D3 log2 n log log nD3

)
questions w.h.p.

Theorem 4.4. Algorithm 3 succeeds with probability higher than 1− 1
n (w.h.p.)

and it requires asking less than O(nD3 log2 n log lognD3

) questions w.h.p.

We first prove two technical lemmas that we will need to prove Theorem
4.4.

Lemma 4.2. If we throw m = ab logn balls into b bins, each chosen uniformly
at random, then the first bin will contain at least one ball with probability 1− 1

na

Proof. The probability that a bin contains no ball is

P [a bin contains no ball] = (1− 1
b)ab log n

≤ e−a log n

= 1
na

80 Comparison-based Nearest Neighbor Search

input : A database with n objects z1, ..., zn and disorder D
output: For each object u, a vector φu of length logn/ log(2D). The

list of all samples ∪iSi

for i← 1 to L = log n
log 2D do3.1

Let Si be a set of a(2D)i logn objects chosen u.a.r. in the3.2

database T ;
for j ← 1 to n do3.3

if i = 1 then3.4

cj(1)← S13.5

else3.6

cj(i)←3.7
{
v ∈ Si|rank of φv(i− 1) in c′j(i− 1) less than 4aD logn

}
;

/* cj(i) is the set of samples in Si, for which

the closest sample in Si−1 was one of the (at

most) 4aD log(n) closest sample to zj in Si−1

*/
end3.8

if |cj(i)| = 0 then3.9

Report Failure3.10

else3.11

c′j(i)← sort cj(i) according to rzj (v, Si), ∀v ∈ cj(i);3.12

φj(i)← first object in c′j(i);3.13

/* φj(i) is the sample in Si closest to zj */

end3.14

end3.15

end3.16

Algorithm 3: Learning Algorithm

input : A database with n objects and disorder D, the list of
samples, the vectors φ, a query point q

output: The nearest neighbor of q in the database

c′q(1) = S1;4.1

for i← 2 to L = log n
log 2D do4.2

cq(i)←4.3
{
v ∈ Si|position of φv(i− 1) in c′q(i− 1) smaller than 4aD logn

}
;

c′q(i)← sort cq(i) according to rq(v, Si), ∀v ∈ cq(i);4.4

end4.5

return first object in c′q(
log n

log 2D)4.6

Algorithm 4: Search Algorithm

4.4. Searching with Known Disorder Constant 81

Lemma 4.3. We throw m balls into n bins, each chosen uniformly at random.
We number the bins from 1 to n. Then, the probability that the bins 1 to n

c

contain more than (1+τ)m/c or less than (1−τ)m/c balls is at most 2e−τ2m/3c.

Proof. We throw the balls one after the other into the bins. Let Xi = 1
if the ith ball falls in one of the n

c first bins, and 0 else. Let X =
∑

i Xi.
Clearly, we have E [X] = m/c, as P [Xi = 1] = 1/c and all Xi’s are indepen-
dent. By the Chernoff Bound (see for instance [MU05], page 67), we have

P [|X − E [X]| > τm/c] < 2e−τ2m/3c.

We are now ready to prove Theorem 4.4.

Proof of Theorem 4.4. Let mi = a(2D)i logn denote the number of objects we
sample at level i, and let Si be the set of samples at level i i.e., |Si| = mi.
Here, a is an appropriately chosen constant, independent of D and n. Further,
let λi = n

(2D)i−1 . We will first show the for every object o ∈ T ∪ {q}, where q

is the query point, the following four properties of the data structure are true
w.h.p.

1. |Si ∩ βo(λi+1)| ≥ 1

2. |Si ∩ βo(λi)| ≤ 4aD logn

3. |Si+1 ∩ βo(λi−1)| ≤ 16aD3 logn

4. |Si ∩ βo(4λi)| ≥ 4aD logn

5. |Si+1 ∩ βo(4λi−1)| ≤ 64aD3 log n

Fix an object o and a level i. To visualize the proof, place all objects in the
database on a line, such that the object u with rank ro(u, T) = r is located
at distance r from o (see figure 4.1). Property 1 tells us that at least one
of the samples at level i will be such that its rank w.r.t. o is smaller than
λi+1 i.e., ∃s ∈ Si s.t. ro(s) ≤ λi+1. Clearly, by Lemma 4.2, this is true
with probability at least 1 − 1

na (set m = mi and b = (2D)i = n
λi+1

in the

lemma). Property 2 tells us that not too many objects can have rank less
than λi at level i w.r.t. o. Let c = n

λi
= (2D)i−1. Now, by lemma 4.3

(set m = mi = a(2D)i logn and τ = 1), the probability that more than
2a(2D)i logn/(2D)i−1 = 4aD logn samples are among the λi = n

c closest

samples to o is less than 2e−2aD log n/3 = 1
nΩ(a) . The proof of Property 3 is

identical, except that we replace λi by λi−1. Then, we have c = (2D)i−2,
2mi+1

c = 16aD3 logn, and the probability that |Si+1 ∩ βo(λi−1)| > 16aD3 logn
is smaller than 1

nΩ(a) , as before. For Property 4, we expect 8aD logn objects
to be sampled at level i among the 4λi closest objects to o. Again, by lemma
4.3, the probability that less than half that many objects get sampled is at
most 1

nΩ(a) . Finally, the proof of Property 5 is almost identical to the proof
of Property 2. By choosing a large enough, we can make sure that the five

82 Comparison-based Nearest Neighbor Search

Figure 4.1: We place all objects on the line such that the object u with rank
ro(u, T) = r is located at distance r from o.

properties are true for all objects and all levels w.h.p. (take the union bound
over the n objects and the L = log n

log 2D levels).

From now on, we assume that we are in the situation where Properties (1)
to (5) are true for all objects (which is the case w.h.p.). Again, fix an object
o. Consider a sample s ∈ Si+1 such that ro(s) ≤ λi+1 (note that Property 1
guarantees that there is a least one such sample). Further, let s′ ∈ Si be the
sample at level i closest to s i.e., s′ = minx∈Si rs(s

′). Again, by Property 1,
we know that rs(s

′) ≤ λi+1. Hence, by the approximate triangle inequality 3
(see Section 4.2), we have:

ro(s, T) ≤ λi+1 and rs(s
′), T) ≤ λi+1 ⇒ ro(s

′), T) ≤ 2Dλi+1 = λi

Consequently, we know that the sample that is closest to o at level i + 1 will
be in the bin of a sample s′ ∈ Si that has rank ro(s

′, T) ≤ λi. The algorithm
associates every object o to the closest sample on each level. Hence, to find
that sample for object o at level i + 1, it would be sufficient to rank (w.r.t.
o) all sample in Si+1 that fell in the bin of a sample at level i that has rank
less than λi. Property 2 tells us that |Si ∩ βo(λi)| ≤ 4aD logn. Hence, by
inspecting the bins of the at most 4aD logn closest samples to o at level i, and
ranking the samples at level i + 1 that fall in those bins, we are guaranteed
to find the closest sample (that is what we do on Line 3.7 of Algorithm 3).
Property 4 tells us that all of the 4aD logn closest samples to o at level i have
rank less than 8λi. Consider a sample s ∈ Si such that ro(s, T) ≤ 8λi and
a sample s′′ ∈ Si+1 that falls in the bin of s. By property 1, we must have
rs′′ (s, T) ≤ λi + 1. Thus, by inequality 2, we have:

rs′′ (s, T) ≤ λi+1 and ro(s, T) ≤ 8λi ⇒ ro(s
′′, T) < D(8λi + λi+1) ≤ 4λi−1

4.4. Searching with Known Disorder Constant 83

By property 5, there are at most O(D3 logn) such samples at level i+ 1. This
is the maximum cardinality of cj(i) on line 3.7 of the Algorithm 3.

To summarize, at every level in the hierarchy, and for every object, we need
to rank at most O(D3 logn) samples (which is what we do on Line 3.12 of

Algorithm 3). Consequently, we need to ask at most O(nD3 log2 n log log nD3

)
questions in total to rank at most O(D3 log(n)) objects for every object and
level. The algorithm only fails with negligible (smaller than 1

n) probability if
an object has no sample that falls within λi at any level i.

The proof of Theorem 4.1 is then immediate.

Proof of Theorem 4.1. The upper bound on the number of questions to be
asked in the learning phase is immediate from Theorem 4.4. For each object,
we need to store one identifier (the identifier of the closest object) at every level
i in the hierarchy, and one bit to mark it as a member of Si or not. Hence, the
total memory requirements6 do not exceed O(n log2 n/ log(2D) bits. Finally,
the properties 1-5 shown in the proof of Theorem 4.4 are also true for an
external query object q. Hence, to find the closest object to q on every level,
we need to ask at most O(D3 log2 n log lognD3

) questions. In particular, the
closest object at level L = log2D(n) will be q’s nearest neighbor w.h.p.

Note that this scheme can be easily modified for R-nearest neighbor search.
At the ith level of the hierarchy, the closest sample to q will, w.h.p., be one of
its n

(2D)i nearest neighbors. If we are only interested in the level of precision,

we can consequently stop the construction of the hierarchy at the desired level.

4.4.2 Lower Bound

In this section, we first construct a configuration of n objects, and define a
distribution over query points, such that the disorder constant is D. Then, we
show that no search algorithm can be guaranteed to find the nearest neighbor
of the query point in less than expected Ω(D log n

D2 +D2) questions. We make
the assumptions that all possible questions related to the n database objects
can be asked during the learning phase, and even that the structure of the
database is known. Then, we attach a query point to the database constellation
in a random way. Consider the graph shown in Fig. 4.2. It is a star with α
branches, each composed of n/α2 supernodes. All edges in this part of the graph
have weight 1. Inside each supernode, there are α database objects. A root
node that connects the supernode to the other supernodes, and α objects, each
connected to the root with a different edge. The weights of these edges range
from 1/4α to α/4α. Finally, the query point will be connected to one object on
every branch of the star. Hence, the query point has α direct neighbors (one on
each branch of the star). The edges connecting the query point to the graph
have weights ranging from 1 to 1 + ǫ, where ǫ ≪ 1/4α. Note that we cannot
know which are the direct neighbors of the query point, nor what the weights

6Making the assumption that every object can be uniquely identified with log n bits.

84 Comparison-based Nearest Neighbor Search

of the corresponding edges are. Thus, given the n database objects and the
answers to all possible questions we can ask about the database, we need to
find the nearest neighbor of the query point. First, we show that this structure
has disorder Θ(α).

Lemma 4.4. The graph shown in Fig. 4.2 with the shortest path distance has
disorder constant D = Θ(α).

Proof. Consider the configuration given in Figure 4.2. We need to show that
for all triples x, y, z, where x, y, z ∈ T ∪{q}, we have rx(y) ≤ D(rz(x)+ rz(y)).
First, let us consider two nodes x and y such that d(x, y) = d, with d > 1.
Clearly, these two nodes must be in two different supernodes as the maximum
distance inside a supernode is is strictly smaller than 1. Further, we have
|βx(d)| ≤ 4α2d, ∀x ∈ T ∪ {q}. Indeed, even if x is in the supernode at the
center of the star, there are at most αd other supernodes within distance d.
Each supernode can contain at most α nodes. Further, the query point could
be within distance d of x, in that case there could be at most 2dα2 additional
objects in the balls. On the other hand, we have |βz(d/2)| ≥ dα/2, ∀z ∈
T ∪ {q}. Indeed, even if z is placed at the end of a branch, there are at least
dα supernodes within distance d, each containing α nodes. Hence, we have
rx(y) ≤ 4α2d ≤ 2Dαd ≤ D(rz(x) + rz(y)) by setting α = D/2. We have used
the fact that rz(x) + rz(y) ≥ |βz(j)|+ |βz(d− j)| ≥ 2|βz(d/2)|.

If the distance is smaller than 1, then x and y must be inside the same
supernode. In that case, we have rx(y) ≤ α ≤ 2D ≤ D(rz(x) + rz(y)). We can
prove the other inequalities in a similar way.

In the proof of Theorem 4.2, we show that we can lower bound the expected
running time of any randomized algorithm on the example of Figure 4.2. The
idea of the proof is that we must identify and compare all direct neighbors to
the query point, and then find the nearest neighbor among the direct neighbors.
We show that we cannot identify all direct neighbors in fewer than an expected
Ω(D log n

D2 +D2) questions.

Proof of Theorem 4.2. Consider the graph metric with shortest path distance
in Figure 4.2. Yao’s minimax principle (see [MR95]) states that, for any distri-
bution on the inputs the expected cost for the best deterministic algorithm pro-
vides a lower bound on the expected running time of any randomized algorithm.
The graph structure (solid lines in Figure 4.2) is known, but the weights of the
edges are unknown. The graph consists of a star with α branches, each com-
posed of n

α2 supernodes. Each of the supernodes in turn contains α database
objects (i.e., objects in T). Clearly, in total there are αα n

α2 = n objects. We
know the answers to all questions of the type O(a, b, c), where a, b, c ∈ T . We
attach a query point q to that graph, and we assume that each ”position” of
the query point (as shown in Fig. 4.2) is equally likely. That is, the query
point is attached to one (non-root) object chosen u.a.r. on each branch of the
star with an edge. This object is a called a direct neighbor. The weights of the
corresponding edges are chosen between 1 and 1 + ǫ in a random way as well

4.4. Searching with Known Disorder Constant 85

Figure 4.2: A graph with disorder constant α and shortest path distance. The
graph forms a star with α branches. Each branch is composed of n/α2 “supern-
odes”. Each edge between the ”roots” of the supernodes in the star has weight 1
(w denotes the weight in the figure). Each supernode (see zoomed region on the
right side of the figure) is in turn composed of a ”root”, and a smaller (α)-ary tree
(of depth 1) consisting of α actual database objects. The weights of the edges
in the tree range from 1/4α to α/4α (are picked u.a.r. in this range). Finally, a
query point is randomly connected to one non-root node on each branch of the
star with edges of weights ranging from 1 to 1+ ǫ (dashed lines), where ǫ≪ 1/4α.
The distances on the graph are shortest path distances. There are (n

α)α ways to
connect the query point to the database. Further, for each such configuration,
there are α possible choices for the nearest neighbor (the direct neighbor which is
connected to the query point with the edge of smallest weight). We assign weights
to the edges connecting direct neighbors to the query point in such a way that
each of the direct neighbors is equally likely to be the nearest neighbor, and each
weight is different.

86 Comparison-based Nearest Neighbor Search

(such that we do not have ties, and each of the direct neighbors is equally likely
to be the nearest neighbor). In other words, the input distribution is uniform
over all configurations. First, note that q’s nearest neighbor must be one of the
objects connected directly to it i.e., one of the α direct neighbors. Indeed, let
δ = {u ∈ T |u is a direct neighbor of q}. Then, we have d(u, q) < d(v, q), when
u ∈ δ and v ∈ T \δ. Further, any of these direct neighbors could be q’s nearest
neighbor with equal probability.

Assume that we are given for free the answers to all questions, except the
questions of the type O(q, x, y), where both x, y ∈ δ. This amounts to knowing
which are the direct neighbors (i.e., we know the set of α nearest neighbors
to q), but not knowing anything about the ranking of those direct neighbors
with respect to q. Indeed, by construction, all direct neighbors are closer to
the query point than any other object in the database. Hence, if we used the
oracle to compare a direct neighbor with another object (which is not a direct
neighbor), the oracle would always answer that the direct neighbor is closer
to the query point. So, we could not exclude one of the direct neighbors as
the nearest neighbor (we do not learn anything about the nearest neighbor).
Further, the comparison of two objects z, t /∈ δ does not tell us anything, since
we do not know the weight of the edges. For instance, the fact that the second
closest object to q inside a supernode Φ containing a direct neighbor is closer
than the second closest object to q inside another supernode Φ′ also containing
a direct neighbor does not tell us that the direct neighbor inside Φ is closer
than the direct neighbor inside Φ′. Hence, in order to identify the nearest
neighbor, the best deterministic algorithm must at least ask α questions to
find the nearest neighbor among the direct neighbors (we must traverse the list
of direct neighbors and ask the oracle to compare every object with the current
best candidate). Consequently, we must first identify all direct neighbors, and
then compare them with each other.

Note that there are (n
α)α ways to choose the direct neighbors, and that

each configuration is equally likely. Identifying all direct neighbors is equiv-
alent to knowing which of these configurations we are in. Let X denote the
random variable of which each outcome corresponds to a configuration. Then,
the entropy of X is log(n

α)α = α log(n/α2) + α logα bits. The answer to every
question we ask the oracle will reduce the uncertainty about which configura-
tion we are in. In order for the probability of error pe to be equal to zero i.e.,
in order to be sure that we found the all direct neighbors, Fano’s inequality
(see [CT06], p39) tells us that we must know at least a set of answers A such
that H(X |A) = 1 bit to have the pe ≥ 0.

For every branch of the star, choosing a direct neighbor u.a.r. is equivalent
to choosing a supernode u.a.r., and then a direct neighbor inside that supernode
u.a.r. First, assume that we know, on each branch, in which supernode the
direct neighbor is located. Let us focus on one branch, and the supernode on
this branch containing a direct neighbor. Denote that supernode by Φ. In
that case, in order to identify the direct neighbor in Φ, we must ask questions
of the type O(q, a, b), where a, b ∈ Φ. Asking a question where either a, b or
both are outside Φ does not tell us anything about which object is the direct

4.5. Searching with Unknown Characterization 87

neighbor, as all objects inside Φ are closer to q than any object outside that
supernode. Further, note that the answer to any question of the type O(q, a, b),
where a, b ∈ Φ and d(z, b) > d(z, a) is b only if b is q’s direct neighbor in Φ.
Hence, the answer to a question of this type allows us to exclude only one
object at a time7. Hence, for each of the α supernodes that contain a direct
neighbor to q, we must ask an expected Ω(α) questions to identify the direct
neighbor. Knowing all the direct neighbors, when the supernodes in which they
are located are known, reduces the entropy by α log(α) bits. Indeed, there are
α such supernodes, and α choices for the direct neighbor inside each of these
supernodes (i.e., if we fix the supernodes containing the direct neighbors, there
are αα ways to choose the direct neighbors). As every question only excludes
one object inside a supernode as direct neighbor, in total we must ask Ω(α2)
questions to the oracle.

Let us now remove the assumption that we know which supernodes contain
a direct neighbor. There are (n

α2)α ways to choose the supernodes that con-
tain the direct neighbors. The entropy for this random choice is consequently
α log(n/α2) bits. Thus, at best, we need to ask α log(n/α2) questions (in the
best case each question reduces the number of possible configurations by 2) in
order to know in which supernodes the direct neighbors are located. In total,
we consequently need to ask at least an expected Ω(α log n

α2 +α2) questions, to
reduce the entropy by log(n

α)α = α log(n/α2) +α logα bits and having pe ≥ 0.
By letting α = Θ(D), we obtain the claim.

4.5 Searching with Unknown Characterization

When we cannot use any characterization of the hidden space as an input,
we cannot be sure to retrieve the nearest neighbor of a query point q, unless
we ask O(n) questions. Indeed, unless we go sequentially through all objects
and compare them to the current nearest neighbor, there could always be an
object closer to the query point. In Section 4.4, we heavily relied on the fact
that by sampling objects u.a.r., we could find objects close to the query point.
Knowing the disorder constant then allowed us to exclude other objects as near
neighbors i.e., we could be almost sure that some objects were not among the
closest neighbors of the query point. More precisely, as illustrated in Section
4.5.1, knowing the disorder and partial rank information, we can easily limit
ranks. If we do not know D or another characterization, we can still hope that
by building a hierarchical decomposition, dissimilar objects will be separated
rapidly as we walk down from the root to a leaf. Hence, we would also expect
objects similar to q to be close to it in the tree. However, we cannot bound
this rank relationship, as we cannot use a characterization as an input to the
algorithm. First, however, we will give an example of a simple and intuitive

7The same is true if we ask questions where a and b are in different supernodes. What
matters is that we can only exclude one object as being a direct neighbor every time we ask
a question.

88 Comparison-based Nearest Neighbor Search

algorithm that shows how much we can gain by knowing the disorder constant,
or equivalently what we lose if we do not have such a characterization.

4.5.1 Consequences of knowing the disorder constant

If we know that an object u is the jth nearest neighbor of an object x (i.e., we
have rx(u, T) = j), and we are looking for an object y, such that ru(y, T) < ζ,
then we know that y must lie in an annulus centered at x of a certain width
around u i.e., we know that a ≤ rx(y) ≤ b, where a and b are functions of j
and ζ. In particular, we have:

Lemma 4.5. Consider three objects x, y, and u. Let rx(u) = j and ry(u) < γ
(1), or ru(y) < ζ (2). Then, y must lie in an annulus such that j

D − ζ ≤
rx(y) ≤ D(j + ζ).

Proof. The result follows directly from the approximate triangle inequality (see
Definition 4.2). The lower bound follows from inequality 3 for (1) and inequality
2 for (2). The upper bound follows from inequality 2 for (1) and inequality 3
for (2).

By sampling m objects u.a.r., and computing all ranks w.r.t. to these
objects, we can thus narrow down the search space to an annulus of width
depending on D and on the rank of the closest sample.

Theorem 4.5. Given a query object q ∈ K, we can retrieve one of its R

nearest-neighbors in T by asking an expected m + logn + D + D2n
mR + 1 ques-

tions, with constant probability. The learning phase requires asking an expected
O(nm log n) questions to sort all objects w.r.t. the m samples.

Proof. During a learning phase we sample m objects S = {s1, ...sm} u.a.r in
T , and rank all other objects with respect to the objects in S i.e., ∀s ∈ S, u ∈
T , we compute rs(u, T) by querying the oracle (this can be done by asking
O(mn log n) questions). In the search phase, we start by finding the point
in S closest to q, that is we want to find x = argmins∈Srq(s). This can be
done in m steps by traversing the list of objects in S sequentially and storing
the closest element seen so far. In particular, for every object in S, we ask
the oracle whether it is closer to q than the current minimum, and if so it
becomes the new minimum. Then, using binary search, we can find j′ = rx(q)
(i.e., we ask the oracle whether q is closer to x than the element y such that
rx(y) = n/2, and then apply this process recursively on the new ”interval”).
Now, given that in the learning phase we sample m objects u.a.r. in T , we
know that P [rq(x) = j] = m

n (1 − j
n)m (j has the distribution of the minimum

of m integers selected uniformly at random between 1 and n). Further, we
know by triangle inequality that j

D ≤ j′ ≤ Dj. Hence, by Lemma 4.5, all
objects o such that rq(o, T) < R must lie in an annulus centered at x such that

j
D2 −R ≤ rx(o) ≤ D2j +DR (see Figure 4.3). This annulus contains at most
(D+1)R+j(D2− 1

D2) < (D+1)R+j(D2) objects, of which R are the R nearest

4.5. Searching with Unknown Characterization 89

Figure 4.3: The R nearest neighbors of q must lie in an annulus around x.

neighbors of q. Hence, by sampling (D + 1) + j(D2)
R times, we will retrieve an

R-nearest neighbor with constant probability. Thus, the expected number of

times we need to sample is
∑n

j=1
m
n (1− j

n)m((D+1)+ j(D2)
R) ≤ (D+1)+ nD2

mR .
For every sample, we ask the oracle if it is closer to q than the currently closest
sampled point. If so, we store this point, else we delete it.

In particular, by setting m =
√

n
R , we can retrieve one of the R nearest

neighbors with constant probability in expected O(D2
√

n
R) questions. The

example is similar to what happens on a given level in the scheme of Section
4.4.1, where we applied this idea to develop a hierarchical scheme. In some
sense, we applied this scheme repeatedly for smaller and smaller values of R,
while reducing the search space. The fact that we know D, as is illustrated
by the algorithm above, allows us to exclude some objects as being nearest
neighbors. Indeed, if we have information about the rank of the sample w.r.t.
the query point, or vice-versa, then we know the nearest neighbor must lie in an
annulus of known width. On the other hand, if no characterization is known,
we cannot exclude any object, whatever the density of the sampling. In the
next section, we ask whether we can build a data structure that adapts to the
characteristics of the space, without requiring them as input. In other words,
we ask whether we can decompose the space in such a way that dissimilar
objects are likely to be separated, and similar objects remain close to each
other, without knowing a characterization of the space.

4.5.2 Binary Tree Decomposition

A natural and simple way to build a data structure suited for search operations
is to build a tree. By recursively applying Algorithm 5 (see Figure 4.4), we can
decompose the database into a binary tree. Clearly, this algorithm does not

90 Comparison-based Nearest Neighbor Search

Figure 4.4: We decompose a set S into two sets S0 and S1. To do so, we select
two points x1 and x2 u.a.r. in S, and let S0 = {u ∈ S|rx1(u) < rx1(x2)} and
S1 = {u ∈ S|rx1(u) ≥ rx1(x2)}.

require any characterization of the space as an input. As illustrated in Section
4.5.1, if we do not know a characterization of the hidden space, we cannot limit
the ranks if we only have partial rank information. However, we can expect
this decomposition to adapt to the structure of the underlying space. In other
words, even though we do not know any characterization of the space, we expect
that if the space is sufficiently homogeneous similar nodes are more likely to end
up in the same set than dissimilar objects. Let the expected diameter after the

input : A set S of objects ∈ T
output: Two sets of objects S0 and S1 = S\S0

pick two objects x1 and x2 u.a.r. in S;5.1

S0 = ∅, S1 = ∅;5.2

forall u ∈ S do5.3

if O(x1, x2, u) = u then S0 = S0 ∪ u else S1 = S1 ∪ u;5.4

end5.5

Algorithm 5: Rank-Ball Cut

decomposition of S into S1 and S0 be defined as ∆̃S = |S0|
|S| ∆S0 + |S1|

|S| ∆S1 ≤ ∆S

(by analogy to the notion in [DF08]). Observe that the diameter of a set (see
definition in Section 4.2) has the following property.

Lemma 4.6. The diameter of a set S with |S| = n is always less than or equal
to 2n i.e., ∆S ≤ 2n, with equality when d(u, v) = d(v, u) in the hidden metric
space (symmetric distance function).

4.5. Searching with Unknown Characterization 91

Proof. Clearly, if |S| = n, for any pair of point u and v, we have ru(v, S) ≤ n.
Hence, ru(v) + rv(u) ≤ 2n for all u, v. In case the distances are symmetric in
the hidden space, we can rank the distances from the smallest distance to the
largest distance. Consider the pair v, w, such that d(v, w) = d(w, v) > d(i, j),
for all i, j. Then, we clearly have rv(w) = n and rw(v) = n, since there cannot
be any point further away from v than w, and vice-versa.

We can compute the expected diameter after the decomposition of S into
S0 and S1. First, observe that it will always decrease, as the cardinality of the
two new sets must be smaller or equal to the diameter of S. Let us denote by
x1 and x2 the two randomly selected points in the set S. Let rx1(x2) = k. By
the approximate triangle inequality (1), for any pair of points u and v in S0,
we have ru(v) ≤ D(rx1(u) + rx1(v)) ≤ 2Dk. Hence, the diameter ∆S0 must be
smaller or equal to 4Dk. We can then easily compute the expected diameter to
be ∆̃S ≤ 4D

n k2 +2n−2k. Further, the optimal value for k is k = n
4D . However,

by choosing x2 at random, we cannot ensure that rx1(x2) takes a specific value.
Nevertheless, we know that the value of k is uniformly distributed between 1
and n. Assume that we want ∆̃S ≤ ǫ2n, for some ǫ < 1. Then, we can prove
the following theorem:

Theorem 4.6. Let ǫ < 1. Then,

P
[

∆̃S ≤ ǫ2n
]

=
1

2D

√

1− 8D(1− ǫ)

Proof. We need to compute the probability that k is such that 4D
n k2 + 2n −

2k < ǫ2n, or equivalently 2D
n k2 − k + (1 − ǫ)n < 0. Solving for k, we obtain

k =
1±
√

1−8D(1−ǫ)
4D
n

= n
4D ± n

4D

√

1− 8D(1− ǫ). Hence, the number of values

of k for which the above condition is fulfilled is | n
4D + n

4D

√

1− 8D(1− ǫ) −
n

4D + n
4D

√

1− 8D(1− ǫ)| = n
2D

√

1− 8D(1− ǫ). As we choose k u.a.r. from n

values, we have P
[

∆̃S ≤ ǫ2n
]

= 1
2D

√

1− 8D(1− ǫ)

Let a ”good cut” be a cut such that the diameter is reduced by epsilon. The
probability that we reduce the diameter y a factor ǫ degrades with increasing
values of D. Hence, even though the disorder constant is not an input to the
algorithm, the performance will depend on the disorder constant. For instance,
if D were constant, then we would reduce the diameter by a constant with

constant probability. In general, we roughly need log(1/c)
log(ǫ) good cuts to divide

the diameter by a constant c. In any case,

Lemma 4.7. The depth of the binary tree is O(log n) w.h.p.

Proof. Let δ < 0.5 be a constant independent of n,D. Consider a particular
path in the binary tree from the root to a leaf. Let ni denote the number if
objects in the set at level i and ki the rank of x2 w.r.t x1 (i.e., rx1(x2)) chosen
at level i. Let Xi = 1 if δni ≤ ki ≤ (1 − δ)ni. As ki is distributed u.a.r.

92 Comparison-based Nearest Neighbor Search

in 1, .., ni, we have P [Xi = 1] = 1 − 2δ. If Xi = 1, the number of objects is
reduced by a factor at least 1− δ at this level i.e., max {|S0|, |S1|} < (1− δ)ni.
As there are n objects in total, we can not reduce the number of objects by a

factor (1 − δ) more than s = log(n)
log(1/(1−δ)) times. In m levels on the path, the

expected number of times we expect Xi to be equal to 1 is µ = (1 − 2δ)m. If
we set m = 2as

(1−2δ) , for some constant a > 1 we have

P
[
∑m

j=1Xj < µ/2 = as
]

< O(1/poly(n))

By the Chernoff bound. There are at most n paths (one per leaf). Taking the
union bound over these paths, we obtain the claim.

An interesting fact is that the probability that a node u falls in the good set

i.e., the ball around x1 is given by φu = P [u ∈ βx1(rx1(x2))] = 1
n

∑

j(1−
rj(u)

n).
Hence, ”outliers” are likely to be put in the same bin as other outliers, while
similar objects are likely to be put in the same bin. For instance, an object
y far away from all other objects, such that ∀u ∈ T we have ru(y) = n,
will hardly ever be put in the good set. Conversely, if there is a set of very
popular nodes, which have a low rank w.r.t. all other objects, they will often
end up in the good set. Consequently, this function can be used to estimate
how “central”, or popular an object is (analogous to the notion of 1-median
in [Ind99]). Yi =

∑

j 1{node i is in the good set}, where the sum goes over

randomly selected hash functions and 1{} is the indicator function, will provide
such an estimate. It also implies that outliers are more likely to be separated
from other objects. In particular, if we computed k times the result of a
randomly chosen hash function h, Yu would be roughly equal to kφu. By
sorting the Yi’s, we obtain a ranking of the objects by popularity. In the next
subsection, we will try to exploit this property to design a hashing scheme.

4.5.3 Rank-Sensitive Hashing

We have developed the intuition that by randomly cutting out balls in the
hidden space, it is more likely that similar objects will stay together, and
dissimilar objects be separated. This should be sufficient, if we can amplify
this property, to allow us to efficiently search for similar objects by using an
appropriately chosen hash function. Indeed, we will now show how we can use
this technique to develop a rank sensitive hashing scheme. The rank distortion
provides us a sufficient condition for the scheme to work. Our hash function h
selects two objects u.a.r in T (say x1 and x2), and assigns values h(u) ∈ {0, 1}
to all objects u as follows

h(u) =

{
1 if O(x1, x2, u) = u
0 if O(x1, x2, u) = x2

Note that computing h requires asking a single question per object, and that
the algorithm does not require any characterization of the space as input. The

4.5. Searching with Unknown Characterization 93

function h is (r, (1+ ǫ)r, 1− f(r)
n2 , 1− f((1+ǫ)r)

n2γ)-rank-sensitive. This is the result
of Theorem 4.3

Proof of Theorem 4.3. First, we compute the probability that the hash func-
tion h is different for two objects u and q.

p = P [h(u) 6= h(q)]
=

∑

i,j∈T P [h(u) 6= h(q)|x1 = i, x2 = j]P [x1 = i, x2 = j]

=
∑

i,j∈T 1{rx1(x2)∈[rx1(q),rx1(u)]}P [x1 = i, x2 = j]

=
∑

i∈T E

[

1{rx1(x2)∈[rx1(q),rx1(u)]}
]

P [x1 = i]

= 1
n

∑

i P [rx1(x2) ∈ [rx1(q), rx1(u)] |x1 = i]
= 1

n2

∑

i |ri(u)− ri(q)|
= 1

n2 ||ρu − ρq||1

Hence, we have

P [h(u) = h(q)|rq(u) ≤ r] = 1− 1

n2
||ρu − ρq||1 ≥ 1− f(r)

n2

and

P [h(v) = h(q)|rq(v) ≥ (1 + ǫ)] = 1− 1

n2
||ρv − ρq||1 ≤ 1− f((1 + ǫ)r)

n2γ
)

Where the two inequalities follow from Definition 4.3.

A special case is when the function f is linear. Then, we obtain the following
result.

Corollary 4.1. We can retrieve one of the (1 + ǫ)r-nearest neighbors in T of
a query point q, with constant probability, by asking nO(γ

ǫ) questions, where γ
is the rank distortion of T , when the rank distortion function is linear (i.e.,
f(r) = cr).

Proof. The proof is analogous to the proof for locality-sensitive hashing for
binary vectors provided in [IM98] (a short introduction to locality-sensitive
hashing is provided in Section A-3). More precisely, for an (r,R, p, P)-rank
sensitive hashing scheme, retrieving one of the R nearest neighbor of a query
point q will requires O(nθ) evaluations of the hash function. θ is defined as
log 1

p

log p
P

. It can be shown that θ ≤ 1
1+ǫ

γ −1
= O(γ

1+ǫ). Indeed, the probabilities p

and P take the same form as if we hashed binary vectors of dimension n2/c,
and let r′ = r, and (1 + ǫ′)r′ = (1 + ǫ)r/γ. Then, θ ≤ 1

ǫ′ (see [IM98]).

Intuitively, one situation where f is roughly constant is when the underlying
space is close to a line in ℜd. Further, our numerics have shown that even for
higher dimensions, when the underlying space is homogeneous (e.g., points
distributed u.a.r. in a unit box with wrap around distances), the function f
is very steep for small values of ru(v) and then almost linear. An example is

94 Comparison-based Nearest Neighbor Search

0 200 400 600 800 1000 1200 1400 1600
0

100

200

300

400

500

600

700

800

r
u
(v)

||ρ
u−

ρ v|| 1

1 dimension
2 dimensions
4 dimensions

Figure 4.5: The hidden space consists of 1600 points distributed u.a.r. on
[0, 1]d, where d = 1, 2, 4. To avoid border effects, we compute distances with
wrap-around. We plot the ||ρu − ρv|| against ru(v), for a fixed u. The results are
averaged over 100 samples and the error bars correspond to the standard deviation.
Note that the slope is first steep and then linear. Such a function is appropriate for
RSH, as the function f increases monotonically. Further, the fact that we have a
steep slope for small values of R make those spaces particularly attractive. Indeed,
this implies that P decreases rapidly (so we can search for R-nearest neighbors,
even for small R), and p is sufficiently large for small values of r. This example
shows that for homogeneous spaces, the rank distortion function is such that we
can perform RSH efficiently.

given in Figure 4.5. Note that in order for this scheme to allow us to retrieve
the nearest neighbor of a query point q efficiently, it is sufficient to have a
constant gap between f(rq(1)) and f(rq(j)), for j ≥ 2. In the next subsection,
we investigate what happens in high-dimensional Euclidean spaces, and show
that such a gap exists as long as the query point q is sufficiently close to its
nearest neighbor.

4.5.4 Rank-Sensitive Hashing in high-dimensional Euclidean
Spaces

In order to illustrate and understand the behavior of the RSH algorithm of
Section 4.5.3, we run simulations for normally distributed points in ℜd. More
precisely, in our setup we draw the positions of the n database objects according
to N(0, Id), and choose a query point as follows. We choose one of the n points
u.a.r, say x., and then select the query point u.a.r. in a box of side δ centered
at x. For an (r,R, p, P)-rank sensitive hashing scheme (see definition 4.5), the
number of questions we need to ask in order to retrieve one of the R nearest
neighbors grows as nρ, where ρ = − ln p

ln(p/P) (see [IM98], and Appendix A-3). In

4.5. Searching with Unknown Characterization 95

the case in point, we have no information about the distances in the underlying
space. Hence, we can only fix a value for ρ (i.e., fix the maximum number of
questions we are willing to ask in the search phase), and ”hope for the best”.
Our aim is to determine numerically, in this setup, the value of R we can expect
for a fixed value of ρ as a function of the dimension of the space d.

To do so, for several values of the dimension d, we generated 100 point
constellations (standard normal distributed) and placed the query point q as
explained above (with δ = 0.1). For each constellations and each point i, we
estimated the probability that h(i) = h(q), by sampling 1000 rsh functions.

For a fixed ρ, we can compute P = p
1+ρ

ρ . In order to estimate R, we com-
puted the distance ν between the query point and the furthest point j with
P [h(j) = h(q)] ≥ P . Then, we estimated R as R = |Bq(ν)|. That is, for all
points i outside Bq(ν), we have P [h(i) = h(q)] < P , and for the specified value
of ρ, we can retrieve one of the R nearest neighbors.

Somewhat surprisingly, R decreases with increasing dimensionality. In par-
ticular, the probability that the query point and its nearest neighbor get the
same hash value goes to one, while for all other points the probability that
they get the same hash value as the query point remains bounded away from
1 by a constant. In Figure 4.6, we plot R as a function of the logarithm
base 2 of the dimension. It can be seen that for large values of d, R tends to 1.
This phenomenon is remarkable, as generally high dimensionality makes search
more difficult. The distance oracle seems to allow us to actually search more
efficiently in high dimensional spaces than in low-dimensional spaces.

0 1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

35

40

45

50

log−dimension log
2
(D)

R

ρ=0.2
ρ=0.5
ρ=0.8

Figure 4.6: We plot R as a function of the dimension for 1000 points standard
normally distributed in ℜd. The query point is selected uniformly at random in a
box of side 0.1 centered at a randomly selected point. The value of R decreases as
the dimension increases. The results are averaged over 100 constellations of 1000
points. The error bars correspond to the standard deviation.

96 Comparison-based Nearest Neighbor Search

We now try and get an insight into why this is case. The following theorem
has been shown by Demartines (see [Dem94], and also [FWV07]):

Theorem 4.7 (Demartines). Let X ∈ ℜd be a random vector with i.i.d. com-
ponents: Xi ∼ F . Then,

E [||X ||2] =
√
ad− b+O(1/d) and

var {||X ||2} = b+O(1/
√
d)

where a and b are constants that do not depend on the dimension.

The theorem is valid whatever the distribution F of theXi might be. Dif-
ferent distributions will lead to different values for a and b, but the asymptotic
results remain. The theorem proves that the expectation of the euclidean norm
of random vectors increases as the square root of the dimension, whereas its
variance is constant and independent of the dimension. Therefore, when the
dimension is large, the variance of the norm is very small compared with its
expected value. Hence, for n points chosen independently and d large enough,
if we apply Chebyshev’s inequality and take the union bound over all n points,
with an arbitrarily high probability all n norms will be Θ(

√
d). Indeed, we have

that P
[
|||X || −

√
ad− b| > bα

]
< 1

α2 , for some constants a and b independent
of d. By letting α = n, where c > 1, we make sure that the bound holds for all
points w.h.p.

We can now state the following theorem:

Theorem 4.8. Let T be a set of n points in ℜd, and let the position x(i) of
each object i ∈ T be chosen independently from N(0, Id). Let q be a query
point. Let y denote its nearest neighbor in T and let mini∈T ||x(i) − q|| =

||y − q|| = δ. Then, (i) if δ = o(
√

(d)), P [h(q) = h(y)] → 1, as d → ∞, and

(ii) if δ = Θ(
√
d), then P [h(q) = h(y)] → η, as d → ∞, where η < 1 is a

constant independent of d strictly smaller than 1.

Proof. We have just shown (see Theorem 4.7) that all points lie very close to
the surface of a d-dimensional sphere of radius Θ(

√
d). By selecting two points

x1 and x2 randomly for RSH, we hence roughly speaking select two points
u.a.r on the surface of this sphere. Observe that for point v, w, t on the surface
of the sphere, we have ||v − t||2 > ||w − t||2 implies vT t < wT t. Consider a
query point q at x(q) ∈ ℜd and a point x(y) = x(q) + ∆, such that ||∆|| = δ.
Let us denote by F (q), F (x2) and F (y) the projections of q, x2 and y on x1.
Thus, P [h(q) 6= h(y)] = P [F (x2) ∈[F (q), F (y)]]. The normal distribution is a
2-stable distribution (see for instance [DIIM04]), and consequently F (q)−F (y)
is distributed as Xδ, where X ∼ N(0, 1). Moreover, by the same argument,
xT

2 x1 has distribution X ′Θ(
√
d), where X ′ ∼ N(0, 1).

Let us now consider case (i). The probability that q and y get a different
value is the probability that X ′Θ(

√
d) ∼ N(0,Θ(d)) falls in an interval of

width Xo(
√
d). Indeed, by Chebyshev’s inequality, for d large enough, Xo(

√
d)

will be O(
√
d) with an arbitrarily high probability. At the same time, the

4.6. Concluding Remarks 97

maximum of the the pdf of N(0,Θ(d)) decreases as 1√
2πd

with d. Hence, we

have P [h(q) = h(y)] = 1−Θ(δ√
d
)→ 1.

In case (ii), the probability goes to a constant. Indeed, with constant proba-
bility, |X | > 1 (about 0.32, according to the ”68-95-99.7” rule). Hence, q and y
are always at least a standard deviations of X ′ apart with constant probability.
Further, the diameter of the d-dimensional sphere is Θ

√
d, and the projection

of x2 on x1 must lie inside this sphere. The probability that X ′ (which has
standard deviation Θ

√
d) falls in any interval of width Θ(

√
d) inside the sphere

is independent of the dimension.

Hence, there is always a constant probability that an arbitrary point in
T and q get separated. On the other hand, the probability that the query
point and its neighbor get the same hash value goes to one for very large d,
if the query point is sufficiently close (i.e., within o(

√
d)) of its nearest neigh-

bor. Consequently, in very high dimensional spaces with normal distribution
of points, the nearest neighbor can be retrieved in as little as O(log n) ques-
tions, as long as its distance to the query point is o(

√
d). Conceptually, in high

dimensional spaces, all nodes will start looking “similar”, except the nearest
neighbor, which will lie relatively extremely close to the query point.

4.6 Concluding Remarks

We addressed the problem of finding an object similar to a query object among
the objects in a large database. In contrast to most existing formulations, we
asked whether the database can be searched efficiently if its distance infor-
mation can only be accessed through a similarity oracle, and the underlying
objects need not be in a metric space. The oracle is motivated by a human
user who can make comparisons between objects but not assign meaningful
numerical values to similarities between objects. This raises new interesting
questions on what are good properties of the rank relationships, what are good
and efficient algorithms and what is the right characterization of such a space.
We worked with two such characterizations in this chapter. One that captures
the transitivity of the rank relationship through disorder constant (D), and
the other one, rank distortion (γ), which captures how rank ru(v) relates to
Ei [ri(v)− ri(u)]. We presented a new randomized algorithm that improves
the performance of existing algorithms for the combinatorial framework, and
proved a lower bound on the search complexity. We also propose a new charac-
terization of the hidden space, rank-distortion, and show that the performance
of a novel rank-sensitive hashing scheme depends on that property. Rank-
sensitive hashing enables (approximate) nearest neighbor search in a manner
similar to locality sensitive hashing. We believe that ideas of searching through
comparisons form a bridge between many well known search techniques in met-
ric spaces to perceptually important (non-metric spaces) situations. In Chapter
5, we present an architecture for a system that implements some of the ideas
introduced in this chapter. Further, we present some experimental results for

98 Comparison-based Nearest Neighbor Search

perceptual search. In particular, we asked human users to perform searches
based on rank-sensitive hashing and evaluated the quality of the output for
various amounts of training.

A Platform for Similarity Search 5
In this chapter, we present the architecture of an image database search en-
gine based on a practical implementation of Rank-Sensitive Hashing (RSH), a
notion introduced in Section 4.5.3 of Chapter 4. Our goal is to index images
in such a way that one can find an image similar to a query image only by
answering questions on relative similarity i.e., only by making pairwise com-
parisons. Recall that our RSH function is used to map an image to a binary
vector. Each coordinate corresponds to a ball in the “hidden” image space,
and for a given image the corresponding bit is set to 1 if the image is inside
that ball and 0 otherwise.

The scheme in Chapter 4 was based on the answers of a perfect similarity
oracle. In practice, humans are not perfect oracles and consequently a few
adjustments need to be made. In order to improve the performance of the sys-
tem and reduce the number of questions we need to ask human users, we try
and combine perceptual search based on answers given by users and automatic
feature extraction based on image processing. The key idea is that we first use
an image processing technique, in our case “eigenfaces” (see [TP91a,TP91b]),
to compute approximate similarities between images. This might sound sur-
prising, as we motivated the need for comparison-based search by the fact that
image processing performs poorly. Further, we also argued that it’s extremely
difficult to compute meaningful distances between images. Undoubtedly, image
processing does not perform well. Notwithstanding, we can hope that this pro-
cess helps us obtain a very rough idea of which images are similar, and most
importantly helps us isolate the “hard” questions for which we use precious
human interventions i.e., the questions we need to ask the human users. In
particular, pairs of very similar images or very different images are likely to
be mapped to close by, respectively distant, positions. Thus, we intend to use
human comparisons to refine the automatically generated similarity measures,

99

100 A Platform for Similarity Search

for the triples of images we are the least confident about. The reference pairs
of images (i.e., the pairs used for RSH) are selected, as it is the case for RSH,
u.a.r. among all possible pairs. Clearly, it seems impossible to design a system
that will return the image most similar to a query image, among all the images
in a database, for all users and queries. This is simply due to the fact that
humans have different perceptions of similarity, and hence, even with infinite
training, we could probably not pre-process the database such that efficient
search is possible for all users. Nevertheless, we can try to speed up the search
process, such that for most users the queried face will be one of the first an-
swers provided by the system. At least, we can expect to design a system
that performs substantially better than exhaustive search. Ideally, our system
should present the images to the user sorted by relevance, analogously to what
a web search engine does for websites. Hopefully, exhaustive searches will be
extremely rare, and most searches will result in a rapid retrieval of the desired
image or at least of a similar image. As mentioned above, in a real system, we
do not have access to an exact distance oracle, which given a reference pair and
a query image, returns the reference image closest to the query image. Humans
will sometimes (or even often) disagree. If, for example, we fixed a reference
pair (say images A and B) and a query image, and asked 100 humans to act as
oracles, it is likely that some fraction f would answer A, and a fraction 1− f
would answer B. If f were close to 0 or close to 1, we could be pretty confident
about the answer another random user would give to this question. On the
other hand, if f were close to 0.5, A and B would probably both be as similar
to the query image.

Likewise, our intuition is that an image processing technique such as “eigen-
faces” will provide distances between images, but we need to decide which
distances are meaningful. Recall that RSH consists in picking two images
u.a.r., say A and B, and then to assign a bit 1 to an image C if it lies in-
side the ball BA(d(A,B)), and 0 otherwise. Clearly, if the distances provided
by image processing corresponded exactly to human perception, we could use
them to mimic the oracle. However, in practice we cannot make such an as-
sumption. Nevertheless, we expect that if the distance d(A,C) ≪ d(A,B), or
d(A,C) ≫ d(A,B), then we can trust the automatically generated distances
and base the output of RSH on them. On the other hand, if those two distances
are roughly the same, we need ask humans to reinforce this value.

We now first review the literature related to perceptual search and image
similarity in Section 5.1. Then, we briefly explain the image processing tech-
nique that we use in Section 5.2. In Section 5.3, we present the architecture of
an RSH implementation. Finally, in Section 5.4, we present our results.

5.1 Relationship to Published Works

Image processing and face recognition have been extensively investigated in the
literature. In particular, two main problems related to ours were studied. First,
the design of algorithms to extract features invariant to rotation, scaling, shifts,

5.1. Relationship to Published Works 101

exposition, etc was investigated. Second, researcher tried to find meaningful
ways to measure similarities, or distances, between feature vectors. By mean-
ingful, we mean that the computed similarity must be related to the similarity
perceived by humans. In this section, we review some of the publications related
to those two problems. In [SR06b] and [SR06a], systems for perceptual navi-
gation of an image database are presented. Roughly speaking, these systems
provide a graphical user interface (GUI) for database navigation. Both systems
are based on image processing. A map is displayed on which similar images
(based on features extracted with image processing) are displayed together. In
contrast to our approach, no effort is made to integrate human feedback in the
training phase. More precisely, in [SR06b], images are displayed on a spherical
visualization space that users can rotate. In [SR06a], a hierarchical navigation
system based on multi-dimensional scaling (MDS, see [BG05]) is presented.
In [Low04], a method is presented for extracting distinctive invariant features
from images, that can be used to perform matching between different views of
an object or scene. This method is well adapted if the same object, but rotated
or shifted, must be retrieved from two different images. The authors of [KS04]
present an extension of the approach in [Low04] that makes it more robust.
They use principal component analysis instead of smooth histograms to the
gradient patches. In [RTG00,Dem04,NSDW+07,SJ99], various approaches to
measure similarities between images are presented. In particular, in [RTG00],
the authors propose to use the Earth Mover’s distance to measure distances
between feature vector. It is more robust than histogram matching techniques,
in that it can operate on variable length representations of the distributions.
In [NSDW+07] and [SJ99], the authors introduce similarity measures based on
fuzzy logic and fuzzy sets. Finally, Turk and Pentland [TP91a,TP91b], propose
methods specific for face recognition and similarity measure. In this work, we
apply their method, and we describe it in more details in Section 5.2.1. A com-
parative study of face recognition algorithms is presented in [HPAC03]. This
study has the advantage that it includes an evaluation of image pre-processing
techniques and of combinations of different techniques. Note that we based our
choice of a face recognition technique on the results of this paper.

Another body of literature related to this work investigates issues related to
active learning. The underlying assumption of active learning is that a large set
of unlabeled data is available, but that asking users to assign labels to objects
in order to train a classifier is costly. Learning theory asks whether it is possible
to label only a subset of the objects in the database, and then infer the rest
of the labels. In particular, the question arises of how to select that subset
of examples to be labeled. The learning algorithm itself is allowed to select
the subset of unlabeled examples to be labeled. However, in contrast with a
passive learning algorithm, an active learning algorithm can select the objects
to label iteratively. In particular, it can take into account the previously seen
labels to select the labels to be revealed. For instance, for a linear classifier, an
active learning algorithm would typically request the labels of the objects close
to the current best guess for the decision boundary. In general, the approaches
presented in the literature require that one can compute meaningful distances

102 A Platform for Similarity Search

between objects before labeling takes place. In [DH08] for instance, the active
learning algorithm takes a hierarchical decomposition of the database objects
as input. Active learning relates to RSH, as in a certain sense users assign labels
to pictures by making statements about similarity. We do not have to specify
explicitly what the labels are, but we must select good reference images. Other
references on active learning include [CGJ96, LG94, Set09, BHW08]. Though
we do not explicitly use active learning techniques in the current approach,
we believe that such techniques will be very useful to extend and improve our
scheme. For instance, instead of choosing reference pairs for RSH u.a.r., we
could try and select a new pair that is very discriminant.

5.2 Image Processing

Typically, images are stored as three a× b matrices R,G and B, where P = ab
is the number of pixels in the images. The matrices R,G and B represent the
red, green and blue intensities of every pixel. Each entry in those matrices is an
8 bit vector1, representing a value between 0 and 255. A pixel with intensities
(0, 0, 0) is completely black, while a pixel with intensities (255, 255, 255) is
completely white. As suggested by the authors of [HPAC03], who provide
an extensive comparison of face processing technique, we pre-process images
by resizing them if necessary, normalizing intensities and converting them to
gray scale. Assume that a pixel i has intensities (ri, gi, bi). Then, intensity
normalizations consists in modifying, ∀i, the intensities as follows:

(ri, gi, bi) ← (ri

ri+gi+bi
, gi

ri+gi+bi
, bi

ri+gi+bi
)

A its name indicates, this techniques aims at mitigating the effects of different
brightnesses in different colors channels. Conversion to gray scale is simply
done by replacing the RGB triple for every pixel by a single value, which is a
weighted sum of the three color intensities. Different conversion formulas exist.
A common conversion is as follows:

Ii = 0.3ri + 0.59gi + 0.11bi

Note that the weights are based on experimental results. The gray scale image
can now be stored as a single a×b matrix I. This image can then be converted
to a vector Λ, simply by concatenating the rows of the matrix. In order to
obtain a low-dimensional representation of the images, we project these vectors
on so called eigenfaces. This technique is explained below. That is, we try to
represent every image as a combination of “basis vectors” in the image space.

5.2.1 Eigenfaces

In this section we give a brief explanation of the eigenface method of face
recognition, while referring the reader to Turk and Pentland [TP91a,TP91b] for

1the resolution could vary, but for the sake of simplicity, we make the assumption that
there are 255 levels of intensity.

5.2. Image Processing 103

more detailed explanations. We chose this approach based on the comparative
study in [HPAC03], and on the fact that when dealing with images of faces
taken for large organizations, we can expect the image format to be fairly
standard.

We compute the covariance matrix C, of facial images from a set of M
training images in vector form {Λ1,Λ2, ...,ΛM} as follows:

Ψ = 1
M

∑M
i=1 Λi

Φi = Λi −Ψ
A = [Φ1Φ2...ΦM]

C = 1
M

∑M
i=1 ΦiΦ

T
i

= AAT

The eigenvectors and eigenvalues of this covariance matrix are calculated using
standard linear methods and the M ‘ eigenvectors with the highest eigenvalues
chosen to formulate the projection matrix u. A face-key ω i.e., an image vector
projected into the face space, can then be produced by the following equation
for an image Λ:

ωj = uT
j (Λ−Ψ) for j = 1 to M

These face-keys can than be compared using the Euclidean distance measure.

Figure 5.1: The 18 first eigenfaces for a set of 20 training images of size 82× 65.

104 A Platform for Similarity Search

5.3 System

Assume that we are given a database T of n images. We intend to map each
of these images to a RSH vector in [0, 1]kn . Intuitively, kn should be roughly
⌈log(n)⌉, so that a different binary vector can be assigned to every image.
However, each of the entries corresponds to an “approximation” of the value
of an RSH function as presented in Chapter 4, Section 4.5.3. Every coordinate
should tell us, for a given reference pairAj , Bj , if the image under consideration
is inside or outside the ball BAj (d(Aj , Bj)). It is an approximation, because
neither image processing nor human training can provide us the exact value of
the hash function. Rather, we will consider that a value larger to 0.5 indicates
that the image is inside the ball, and a value smaller than 0.5 that it is outside.
The closer the value is to 0.5, the less confident we are about it. This concept
is illustrated in Figure 5.2.

The learning phase works as follows. For every image, as mentioned above,
we intend to store a binary vector of length kn, where each of the kn entries
corresponds to an approximation to the answer which the similarity oracle
presented in Chapter 4 would give for a given reference pair of images. Hence,

we choose kn pairs of images u.a.r among the n(n−1)
2 possible distinct pairs to

be the reference pairs for RSH. Obviously, the pairs are the same for all images
and remain fixed once chosen. Every image is pre-processed when added to the
database. First, an image I is resized, so that all images have the same size.
Then, we normalize the intensity, as explained above in Section 5.2. Finally,
the image is converted to grayscale, and its face-key is computed, as explained
in Section 5.2.1. Then, for each of the kn RSH reference pairs (Aj , Bj) and
image I, we compute the ratio

rI,j =
||ωAj − ωBj ||2

||ωAj − ωBj ||2 + ||ωAj − ωI ||2

where ωx denotes the face key of image x (see Section 5.2.1). Clearly, if this
ratio is close to 0, then the image I is outside the ball BAj (d(ωAj , ωBj)), and
if it is close to 1, we can be confident that it is inside. In Figure 5.3, we
summarize this process. Human users come into play when a ratio is close to
0.5. For all triples for which this ratio rI,j is such that max {rI,j , 1− rI,j} < θ,
where θ ∈ [0.5, 1] is some threshold value, we can ask human users to refine it.
In particular, consider a triple Aj , Bj , I, for which rI,j is close to 0.5. Assume
that at some point in time, t users have acted as oracle for this triple, and a
new user answers the question. Then, we simply recompute the ratio as

rI,j ← trI,j

t+w + w
t+wrI,j

and update t ← t + w. That is, the current value of the ratio is the average
of the users opinions given so far. An arbitrary weight e.g., a weight of 1, can
be given to the initial ratio obtained with image processing, and an arbitrary
weight of w to clicks. Straightforwardly, the higher w, the more importance
we give to clicks.

5.3. System 105

Figure 5.2: We illustrate how the jth coordinate of the RSH vector for an image
C is computed. The jth coordinate corresponds to the reference pair Aj , Bj . If
image C is inside the ball BAj(d(Aj , Bj)), the hash value is 1, otherwise it is 0.
However, neither image processing nor human training can tell us exactly where
image C lies. Hence, we compute an initial value based on image processing, which
lies between 0 and 1. The closer the value is to 0.5, the more uncertain we consider
it to be. Later, this value will be refined through human training. If the image lies
clearly outside the ball, most human should agree and training will push the value
down to 0 (and vice-versa if it is clearly inside the ball).

In the search phase, we repeat the same process by asking the user the same
kn questions (corresponding to the kn reference pairs), but for the query point.
That is, for all of the kn balls, we want to know whether the query point lies
inside or outside. This time, we get a binary vector of answers a ∈ {0, 1}kn .
This is because in the search phase, a user will be shown every reference pair
only once. Depending on which of the reference images the user clicks, a 1 or a
0 is stored. Finally, we sort the objects in the database according to ||a− rI ||1,
∀I ∈ T , where rI denotes the vector (rI,1, rI,2, ..., rI,kn). The user is presented
the results from the most similar image to the least similar image. Potentially,
one could improve the results by adding tags to images, and using them to
break ties among images at close distances. Further, in order for the system
to work well, different users should compare images roughly in the same way.
In other words, comparisons should be based on the same criteria, and the

106 A Platform for Similarity Search

Figure 5.3: The block diagram for image insertion

weight given to each criteria should be the same. For instance, assume that
the reference pair consists of an asian woman, and a Caucasian man, and that
the query image is an asian man. Depending on the user, both reference images
could be considered to be the most similar one to the query image. In order to
mitigate this undesirable effect, we give the users an order on the criteria in our
experimental setup, which they must use to break ties. For instance, gender
always comes before ethnicity, and consequently the right answer above would
be the caucasian man. We now present a few of these experimental results.

5.4 Experimental Results

We have implemented a full-fledged test system in Matlab, in order to obtain
experimental results on perceptual search based on RSH (a screenshot of the
training phase is shown in Figure 5.4). We tested perceptual search based on
comparisons on a database of 110 faces, of different gender, ethnicity, age, etc.
The images we used to test our implementation come from the Indian Face
Database [JM02], a collection of faces of the University of Essex [Spa02], and
a collection of pictures of friends and colleagues. We set kn = 10, θ = 0.9 and
w, the weight of a click, to 10. The Eigenfaces were computed based on 20
training images. Seven users were each asked to search for two query images
selected u.a.r in the database. This amounts to 20 clicks per user for searches.
Additionally, they were asked to make 200 training clicks. We then computed
the rank of the query image in the search results, after various amounts of
training clicks. That is, we ranked the images with respect to their l1 distance
to the search vector as explained above, and looked at the rank of the query
image in the result list. Note that the training clicks of all users were randomly
mixed and shuffled. Clearly, if no image processing nor training were done, the
average position of the query image in the result list would be in the middle, so
roughly n/2. In Figure 5.5, we plot the average percentage of the database that

5.4. Experimental Results 107

Figure 5.4: A screen shot of the training phase in the Matlab implementation.

must be inspected before the query image is found (i.e., the relative rank of the
query image in the result list), as a function of the number of training clicks. It
can be seen that the curve converges to an average value of roughly 20%. This
means that on average the searched image (query image), will appear among
the 22 first results presented to the user. Clearly, without any processing,
this average would be close to 50% i.e., 55 images. Image processing alone
(without training) improves over exhaustive search by roughly 10%.

Collecting clicks from users is not necessarily an easy task, which explains
the relatively small number of clicks and users. Nevertheless, the results in
Figure 5.5 show that training has a clear impact on the quality of the search.
Indeed, training improved the quality of the results by roughly 20% over per-
ceptual search based uniquely on image processing. In itself, this result is
interesting as it shows that different users agree more often than not. Indeed,
training clicks from different users could have canceled each other out. After
observing and talking to users, it appeared that most users find it rather simple
to classify faces based on criteria such as ethnicity, age or gender. This fact
certainly explains that training led to an improvment, as such distinctions are
easy to make for humans, but difficult for computers. We also believe that this
is how humans “compute” similarity, by tagging images and matching them
whenever possible. On the other hand, when all faces are roughly similar and
come from the same “group” of people, classification becomes much more diffi-
cult, and seems to be based on the face shape, and criteria specific to each user.
Hence, the quality of the search results also depends on the composition of the

108 A Platform for Similarity Search

0 200 400 600 800 1000 1200 1400

10

20

30

40

50

60

70

training clicks

A
ve

ra
ge

 r
an

k
of

 q
ue

ry
 o

bj
ec

t i
n

ou
tp

ut
 [%

 o
f d

b
si

ze
]

Figure 5.5: We show the effect of human training on RSH results. The plot shows
the average percentage of the database that must be inspected before the query
image is found, as a function of the number of clicks. The error bars correspond
to the standard deviation

database. If the faces are very clustered in different group, search will be easier
than if they all belong to the same group. Note also that in this experiment
we tried to retrieve a specific image, and not any image that is similar to that
image. This choice was motivated by the fact that we wanted to obtain sound
numerical results. A closer look at the search results after all training clicks
(see Figure 5.6) shows us that roughly 30% of the time, the searched image will
be among the 10 first results (in our database of 110 images), and roughly 50%
of the time among the 15 best results. On the other hand, 20% of the searches
will produce very bad results i.e., the searched image will not be among the 50
first images shown to the user. This result tends to indicate that there is some
inherent slack in the process. In other words, for most of the images the RSH
vector is meaningful and corresponds to some extent to human perception. On
the other hand, for a part of the images, the process fails and they are very
hard to retrieve.

5.4.1 Web Platform

In addition to the experimental results exposed above, we have implemented in
the framework of several student project, a web platform for comparison based

5.5. Concluding Remarks 109

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rank s of searched image in result list (out of 110 images)

P
r(

ra
nk

 is
 b

el
ow

 s
)

Empirical CDF

Figure 5.6: CDF of the quality of search results after training. It can be seen that
roughly 50% of images appear among the 15 first search results. Conversly, there
is a fraction of the images which are hard to classify and have rank higher than 50.

search. The current version of the website can be found at

http://ipg.epfl.ch/∼dtschopp/facebrowser/

. The underlying mechanisms and algorithms are the same as for the matlab
implementation. Additionally, we offer the users the possibility to insert im-
ages, to tag them, and to add contact details for the person on the images.
When new images are inserted, new reference pairs are automatically selected.
Users can also navigate the database, either by moving from one image to one
of the most similar images, or by moving to a completely different image (we
added links to images with exponentially spaced ranks e.g., to image with ranks
2, 4, 8, 16, 32, ... w.r.t. to the current image). The website is written in PHP,
html and mySQL.

5.5 Concluding Remarks

In this Chapter, we have presented the architecture for a systems that imple-
ments image search based on rank sensitive hashing (RSH). The system allows
users to retrieve an image in a database on average more rapidly than if they
had to search the database exhaustively. In a certain sense, every pair of images
selected to be part of the hashing scheme is a form of label, or coordinate. Ev-
ery image in the database gets labeled automatically through image processing.
Further, the labels we are most uncertain about are refined by human users.
Those coordinates can then be used to compute distances between images.

http://ipg.epfl.ch/~dtschopp/facebrowser/

110 A Platform for Similarity Search

Search is entirely based on a small sequence of questions, which is processed to
output the label of the query image. In contrast to classical labeling schemes,
we do not have to explicitly define labels. While these implementations are
in early stages, we believe that this approach can be greatly improved. Our
experiments have shown that human training can considerably improve the
search results. Currently, we are very conservative in the training phase, as
a training click only modifies one coordinate of one image. Though this can
influence the outcome of a large number of searches, the impact remains small
(an image can gain or lose one rank in the search results). Another possible
option would be to use the training clicks to learn a distance function, and use
this distance function to iteratively recompute the coordinates of the images.
Most interestingly maybe, we could use active learning techniques to select the
reference pairs for RSH. In particular, as the number of images in the database
increases, we need to select new reference pairs. In that case, we could select
those pairs based on the clicks collected so far instead of choosing them u.a.r.
One possibility might be to select pairs that have not been well discriminated,
and consequently lie in a region of the hidden space where objects are not well
classifiable.

Conclusions and Future Work 6
In this thesis, we have discussed a routing and a search problem. The two prob-
lems share the particularity that we can exploit their low intrinsic complexity
to develop efficient algorithm for the “retrieval” of a target node or database
object. In both cases, the problem was selected because it seemed natural and
intuitive that the problem could be solved if we managed to understand its
structure. In turn, after characterizing the problem by an appropriately cho-
sen property of the space in which the objects or nodes live, we could design
good algorithms that depend only on this property. Indeed, it seemed natural
to assume that the intrinsic dimension of the connectivity graph of very large
wireless ad hoc networks was low dimensional. Clearly, this intuition comes
from our perception of the physical world in which the nodes live. It appears
natural that distant nodes have to communicate over mode relays than nearby
nodes. It also seems natural that the topology, in general, changes more rapidly
at the local scale than at the global scale. In the case of image databases, our
intuition was that humans have the ability to classify pictures of faces based
on a relatively small number of criteria. Hence, it must be possible to obtain
a representation of a set of human faces that is low dimensional and easily
searchable. Here, one of the main issues is that humans cannot assign mean-
ingful distances to pairs of pictures, and that automatic comparison is difficult.
Consequently, in addition to be low dimensional, sets of images should also be
searchable by comparisons. In both cases, one of the difficulties is to identify
and understand the right characterization of the problem.

Clearly, this work is mainly theoretical, and one possible continuation would
be the design of a system to test and evaluate our results in a real world setup.
In the case of image database search, and more generally search based on human
perception, we believe that there is a lot of additional work that needs to be
done in order to fully understand the problem. In particular, one could design

111

112 Conclusions and Future Work

more efficient hash functions for rank-sensitive hashing, and obtain more robust
characterizations of the sets of images or objects in general. One option would
be to combine automatic classification with human based search to obtain a
new kind of search engine for images. Also, the majority of our results on
this problem are based on the characterization of the hidden space given by
the disorder constant. This criterion is a worst case criterion. Hence, on
average, the results might be considerably better. We went in this direction by
introducing the idea of rank distortion, which is an average criterion. However,
it is not a trivial task to compute this distortion, even for simple spaces. Thus,
we believe that it is still possible to make considerable progress on this problem.
This work could potentially also be related to recent results on inference of
rankings.

Regarding the routing problem, we believe that the doubling dimension is a
robust notion of complexity. One interesting extension of our work would be to
investigate trade-offs of control traffic overhead and throughput. That is, how
much signaling traffic must be sent around in the network, in order to establish
a path, or several paths with some guarantees on the throughput (e.g., average
or minimal throughput). Here, one could examine recent results on hierarchical
cooperation (e.g., groups of nodes can cooperate to mimic MIMO transmission
schemes) in wireless networks, and try and design transmission schemes which
implement such cooperation schemes. Another variation of the problem would
consist in loosening the requirement that there must always exist all-to-all
paths in the network. One could replace this requirement by the requirement
that there must always exist a path for a fraction of the node pairs, or that
a path must exist with a given probability. Potentially, it would be possible
to design schemes that only guarantee the existence of a fraction of the paths,
with a dramatic reduction of control traffic.

Appendix

A-1 Unit Disc Graphs

Another common model used in studies on wireless networks are Unit Disk

Graphs (UDG), which are the deterministic variants of the random geometric
graphs. The randomness of the positions of the nodes is removed and they
can be placed arbitrarily on a finite of infinite area. The channel model is
completely deterministic as before and nodes are connected if their Euclidean
distance is below a threshold distance r, called the communication radius. In
mathematical terms, two nodes u and v with positions x(u), x(v) ∈ [0, R]2 are
connected if and only if ||x(u)− x(v)|| < r. We will now show that there exist
UDG which are not α-doubling (see Section 3.2 for a definition of an α-doubling
metric).

Theorem 6.1. There exists an infinite UDG for which is no constant that
upper bounds the doubling dimension i.e., UDG are not doubling.

Proof. Consider the graph shown in Figure A-1. To show that this graph is
not α-doubling, we must show that there exists no constant such that all balls
of radius R can be covered a constant α number of balls of radius R/2, for all
R. Consider the ball centered around u in the figure. One can see that there
are R/4+ 1 “columns” which cross the middle row at a distance less than R/2
from u (that is, the intersection of the column and the row is less than R/2
hops away from u). The intersection of each of these columns with Bu(R) is of
length more than R (see hatched zones on Figure A-1). Consequently, for each
of these columns there is at least one node at distance more than R/2 from
the middle row. To cover these nodes, we need to place at least one ball of
radius R/2 on each of these columns. Hence, the doubling dimension is lower
bounded by R/4 and tends to infinity as R goes to infinity.

One can notice that in the non-doubling UDG in the proof of Theorem 6.1
results from a careful construction. In Appendix A-2, we show however that
such a structure will occur with high probability when rn <

√
logn in random

geometric graphs.

113

114 Appendix

Figure A-1: An infinite UDG obtained by deleting all the nodes in every second
column of a grid, except for the nodes on the the middle row. Consequently,
“columns” are 2r apart.

A-2 Random Geometric Graphs with subthreshold
Communication Radius

We first consider the case in which the communication radius r is such that
rn = r = (logn)

1
2− θ

2 < log1/2 n and θ ∈] ζ, 1]. ζ is a constant such that
0 < ζ < 1.

Lemma 6.1. For any constant β, there exists constants γ > 0 and b > 0 such
that a small square area of side γr with b nodes contains a subgraph of doubling
dimension β + 1 with probability p > 0.

Proof. Consider the small square shown in Fig. A-2 of side γr, where γ is a
constant independent of n to be specified later. Subdivide the small square
further into mini-squares of side r/c. Choose the constant c such that there
exists a constant k satisfying

√
2(k − 2) > c ≥

√
k2 + 1. Under these condi-

tions, two nodes in mini-squares separated by (k−2) other mini-square will be
connected, but not mini-squares r(k−2)

√
2/c apart (see right hand side of Fig.

A-2). Consider now the graph on the left hand side of Fig. A-2. Assume that
each full (colored) mini-square contains exactly one node. We now focus on
the ball BG

2R(u) and will lower bound the number of balls of radius R necessary
to cover it. On the ⌊R/2⌋ first vertical branches from the left, the last node

A-2. Random Geometric Graphs with subthreshold Communication
Radius 115

Figure A-2: A non-doubling subgraph in a random geometric graph

of the branch inside that ball (circled) must be covered by a ball of radius R
centered on the same branch. This is clear since the length of the branch is
larger than R. Consequently, the doubling dimension of this graph is at least
⌊R/2⌋ ≥ R−1

2 . We want the doubling dimension to be larger than β, which can

be easily achieved by choosing R such that R−1
2 > β. Let R = 2β+2 > 2β+1.

Further, we can now set γ = (2R + 5)(k − 1)/c = (4β + 9)(k − 1)/c and

b = (2R+1)
⌈

2R+1
2 + 1

⌉
= (4β+5)

⌈
4β+5

2 + 1
⌉

. This ensures that the doubling

dimension is strictly larger than β.
It remains to be shown that when such a small square contains b nodes,

the graph constructed above occurs with probability p > 0. The number m of

mini-squares contained in a small square of side γr is m = γ2r2

r2/c2 = γ2c2 which

is constant. Each node can fall in any of the m squares with equal probability.
Hence, all mb configurations are equiprobable and p = 1

mb > 0.

We number the small squares from 1 to m = n
(γr)2 = n

γ2 log1−θ n
and denote

by Xb
i the indicator variable that takes value 1 when small square i contains

exactly b nodes.

Lemma 6.2. There are at least n1/2 squares containing b nodes with probability
at least (1−O(1

en0.25)) for n sufficiently large

116 Appendix

Proof.

E [X] = E
[∑m

i=1X
b
i

]

=
∑m

i=1 P
[
Xb

i

]

=
∑m

i=1

(
n
b

)
(1

m)b(1− 1
m)n−b

≥ m(n
b)b(1

m)b(1 − 1
m)n

≥ n
bb (γ2 log1−θ n)b−1(1 − 1

m)mγ2 log1−θ n

≥ n
bb (γ2 log1−θ n)b−1 1

22γ2 log
1−θ
2

n/ log
1−θ
2

e

≥ O(n
1−O(1

logθ n
)
)

≥ O(nδ)

where δ ≥ 7
8 for n sufficiently large, since θ > ζ.

Let Si be the random variable representing the small square into which
the ith node falls. Let F be the number of small squares containing exactly b
nodes after all nodes have been placed. Then the sequence Zi = E [F |S1, ..., Si]
is a Doob Martingale. One can show that F = f(S1, S2, ..., Sn) satisfies the
Lipschitz condition with bound 1. Indeed, changing the placement of the ith

ball can only modify the value of F by at most 1. We therefore obtain:

P
[
|F − E [F]| ≥ n5/8

]
≤ 2e−2n10/8−1

= 2
1

e2n1/4

by the Azuma-Hoeffding inequality. Consequently,

P
[
F < n1/2

]
< P

F < E [F]− n5/8

︸ ︷︷ ︸

=n7/8−n5/8>n1/2

≤ 2 1

e2n1/4 ≤ 2 1

en1/4

and

P
[
F ≥ n1/2

]
≥ (1− 2

1

en1/4
)

It now remains to show that in this regime, G(n, r) are not doubling with
high probability.

Theorem 6.2. G(n, (logn)
1
2− θ

2), where θ ∈] ζ, 1 [and ζ is a constant such
that 0 < ζ < 1, are not doubling with high probability.

Proof. By Lemma 6.1, for any constant β, a small square area of side γr with b
nodes contains a graph of doubling dimension > β with probability p > 0. By
Lemma 6.2, there are n1/2 such small squares containing b nodes w.h.p. Let F
denote the number of small squares containing exactly b nodes. Consequently,
the probability that at least one of this squares contains a graph of doubling

A-3. Locality-Sensitive Hashing 117

dimension > β is given by:

P [not doubling] =
∑m

j=1 P [not doubling|F = j]P [F = j]

≥ (1 −O(1
en0.25))

∑m
j=n1/2(1− (1− p)j)

≥ (1 − (1− p)n1/2

)(1 −O(1
en0.25))

≥ (1 − (1− p)n1/2

)2

≥ (1 − 2
xO(n))

where x = (1
1−p) > 1. Consequently, with probability at least (1− 2

xO(n)), there

exists no constant which bounds the doubling dimension of G(n, (log n)
1
2− θ

2).

A-3 Locality-Sensitive Hashing

A family of hash functions H is said to be locality-sensitive (see [IM98]) if:

Definition 6.1. We call a family of hash functions H , ”(r, cr, p, P)-locality-
sensitive” if

P [h(q) = h(u)|d(q, u) < r] > p and P [h(q) = h(v)|d(q, v) > cr] < P

Then, we can show the following result (from [IM98]). Let k = log p
P

(2n).

Define g(x) = (h1(x), ..., hk(x)), where hi(x) ∈ H. We assume that d(p, q) ≤ r,
for some point p. Consider any point p′ such that d(p′, q) > cr. We have (1),

P1 = P [g(p∗) = g(q)] ≥ pk

and (2)
P2 = P [g(p′) = g(p)|g(p∗) = g(q)]

=
P [g(p′) = g(p), g(p∗) = g(q)]

P [g(p∗) = g(q)]

≤ P [g(p′) = g(p)]
P [g(p∗) = g(q)]

≤ (P
p)k

= 1
2n

Hence, if (1) is true, then (2) is true with probability at least

1−
∑

p′s.t. rq(p′)>R

1

2n
≥ 1

2

. Further, by substituting k in P1, we have P1 ≥ n−ρ. Finally, by choosing
l = nρ functions gj, we ensure that at least one of them satisfies both properties
(1) and (2). In order to search for the nearest neighbor of a point q, we compute
g1(q), ..., gl(q), and return an arbitrary point that falls in the same bin as q for
every function gj. There are at most nρ such objects. We can then return the
closest point to q among these objects. With constant probability, this point
will be one of the cr nearest neighbors of q.

Bibliography

[ABC+05] I. Abraham, Y. Bartal, T-H. Chan, K. Dhamdhere, A. Gupta,
J. Kleinberg, O. Neiman, and A. Slivkins, Metric embeddings with
relaxed guarantees, FOCS, 2005, pp. 83–100.

[ADT07] Salman Avestimehr, Suhas Diggavi, and David Tse, Wireless net-
work information flow, 2007, arXiv:0710.3781v2 [cs.IT].

[ADT09] , Wireless network information flow: A deterministic ap-
proach, 2009, arXiv:0906.5394v2 [cs.IT].

[AGGM06] I. Abraham, C. Gavoille, A. V. Goldberg, and D. Malkhi, Routing
in networks with low doubling dimension, ICDCS, 2006, p. 75.

[AI08] Alexandr Andoni and Piotr Indyk, Near-optimal hashing algo-
rithms for approximate nearest neighbor in high dimensions, Com-
munications of the ACM 51 (2008), no. 1, 117–122.

[AX03] D. K. Agrafiotis and H. Xu, A geodesic framework for analyzing
molecular similarities, J. Chem. Info. Comput. Sci. 43 (2003),
475–484.

[BG05] Ingwer Borg and Patrick J.F. Groenen, Modern multidimensional
scaling - theory and applications, 2nd ed., Springer Series in
Statistics, 2005.

[BGJ05] Jehoshua Bruck, Jie Gao, and Anxiao Jiang, MAP: Medial axis
based geometric routing in sensor networks, Mobicom, 2005,
pp. 88–102.

[BHW08] Maria-Florina Balcan, Steve Hanneke, and Jennifer Wortman,
The true sample complexity of active learning, COLT, 2008,
pp. 45–56.

[BMSU99] Prosenjit Bose, Pat Morin, Ivan Stojmenovic, and Jorge Urru-
tia, Routing with guaranteed delivery in ad hoc wireless networks,
DIALM, 1999, pp. 48–55.

119

120 Bibliography

[BV05] J.-Y. Le Boudec and M. Vojnovic, Perfect simulation and station-
arity of a class of mobility models, INFOCOM, 2005, pp. 2743–
2754.

[CGJ96] D.A. Cohn, Z. Ghahramani, and M.I. Jordan, Active learning with
statistical models, JAIR 4 (1996), 129–145.

[CGMZ05] T-H. Hubert Chan, Anupam Gupta, Bruce M. Maggs, and
Shuheng Zhou, On hierarchical routing in doubling metrics,
SODA, 2005, pp. 762–771.

[Cla06] K.L. Clarkson, Nearest-neighbor searching and metric space di-
mensions, Nearest-Neighbor Methods for Learning and Vision:
Theory and Practice (G. Shakhnarovich, T. Darrell, and P. In-
dyk, eds.), MIT Press, 2006, pp. 15–59.

[CT06] Thomas M. Cover and Joy A. Thomas, Elements of information
theory, 2 ed., Wiley, 2006.

[DCKM04] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, Vivaldi: A de-
centralized network coordinate system, Computer Communication
Review, vol. 34, 2004, pp. 15–26.

[Dem94] P. Demartines, Analyse de données par réseaux de neurones auto-
organisés, 1994.

[Dem04] Eugene Demidenko, Kolmogorov-smirnov test for image compari-
son, Computational Science and Its Applications - ICCSA, 2004,
pp. 933–939.

[DF08] S. Dasgupta and Y. Freund, Random projection trees and low
dimensional manifolds, STOC, 2008, pp. 537–546.

[DH08] S. Dasgupta and D.J. Hsu, Hierarchical sampling for active learn-
ing, ICML, 2008, pp. 208–215.

[DIIM04] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mir-
rokni, Locality-sensitive hashing scheme based on p-stable distri-
butions, SCG, 2004, pp. 253–262.

[Dim03] K. Agrafiotis Dimitris, Stochastic proximity embedding, Journal
of Computational Chemistry 24 (2003), no. 10, 1215–1221.

[DPH05] S. M. Das, H. Pucha, and Y. C. Hu, Performance comparison
of scalable location services for geographic ad hoc routing, INFO-
COM, March 2005, pp. 1228–1239.

[FGG+05] Q. Fang, J. Gao, L. J. Guibas, V. de Silva, and L. Zhang, Glider:
gradient landmark-based distributed routing for sensor networks,
INFOCOM, March 2005, pp. 339–350.

Bibliography 121

[FRZ+05] Rodrigo Fonseca, Sylvia Ratnasamy, Jerry Zhao, Cheng Tien Ee,
David Culler, Scott Shenker, and Ion Stoica, Beacon-vector rout-
ing: Scalable point-to-point routing in wireless sensor networks,
NSDI, 2005, pp. 329–342.

[FWV07] Damien François, Vincent Wertz, and Michel Verleysen, The con-
centration of fractional distances, IEEE Transactions on Knowl-
edge and Data Engineering 19 (2007), no. 7, 873–886.

[Gav01] C. Gavoille, Routing in distributed networks, ACM SIGACT News
(2001), 36.

[GK98] P. Gupta and P. R. Kumar, Critical power for asymptotic con-
nectivity in wireless networks, Stochastic Analysis, Control, Op-
timization and Applications (1998), 547–566.

[GK00] P. Gupta and P.R. Kumar, The capacity of wireless networks,
IEEE Transactions on Information Theory 46 (2000), no. 2, 388–
404.

[GLS08] N. Goyal, Y. Lifshits, and H. Schutze, Disorder inequality: A
combinatorial approach to nearest neighbor search, WSDM, 2008,
pp. 25–32.

[GV06] M. Grossglauser and M. Vetterli, Locating Mobile Nodes with
EASE: Learning Efficient Routes from Encounter Histories
Alone, IEEE/ACM Trans. on Networking 14 (2006), no. 3, 457–
469.

[HPAC03] T. Heseltine, N. Pears, J. Austin, and Z. Chen, Face recognition:
A comparison of appearance-based approaches, DICTA, vol. 1,
2003, pp. 59–68.

[IM98] Piotr Indyk and Rajeev Motwani, Approximate nearest neigh-
bors: Towards removing the curse of dimensionality, STOC, 1998,
pp. 604–613.

[IM04] Piotr Indyk and Jiri Matousek, Low-distortion embeddings of fi-
nite metric spaces, CRC Handbook of Discrete and Computa-
tional Geometry, 2004, Chapter 8.

[Ind99] Piotr Indyk, Sublinear time algorithms for metric space problems,
STOC, 1999, pp. 428–434.

[Ind04] P. Indyk, Nearest neighbors in high-dimensional spaces, Hand-
book of Discrete and Computational Geometry (J. E. Goodman
and J. O’Rourke, eds.), CRC Press, 2 ed., 2004.

[JM02] Vidit Jain and Amitabha Mukher-
jee, The indian face database, 2002,
http://vis-www.cs.umass.edu/∼vidit/IndianFaceDatabase/.

http://vis-www.cs.umass.edu/~vidit/IndianFaceDatabase/

122 Bibliography

[JMB01a] D. B. Johnson, D. A. Maltz, and J. Broch, Dsr: The dynamic
source routing protocol for multi-hop wireless ad hoc networks,
2001, Book.

[JMB01b] David B. Johnson, David A. Maltz, and Josh Broch, Ad hoc net-
working, ch. DSR: The Dynamic Source Routing Protocol for
Multi-Hop Wireless Ad Hoc Networks, pp. 139–172, Addison-
Wesley, 2001.

[KK00] B. Karp and H.T. Kung, Gpsr: Greedy perimeter stateless routing
for wireless networks, MOBICOM, 2000, pp. 243–254.

[KL04] Robert Krauthgamer and James R. Lee, Navigating nets: simple
algorithms for proximity search, SODA, 2004, pp. 798–807.

[KR02] David R. Karger and Matthias Ruhl, Finding nearest neighbors
in growth-restricted metrics, STOC, 2002, pp. 741–750.

[KRX06] Goran Konjevod, Andrea W. Richa, and Donglin Xia, Optimal
stretch name independent compact routing in doubling metrics,
PODC, 2006, pp. 198–207.

[KS04] Y. Ke and R. Sukthankar, Pca-sift: A more distinctive represen-
tation for local image descriptors, CVPR, 2004, pp. 506–513.

[KSW04] J. Kleinberg, A. Slivkins, and T. Wexler, Triangulation and em-
bedding using small sets of beacons, FOCS, 2004, pp. 444–453.

[KV02] S. R. Kulkarni and P. Viswanath, A deterministic approach to
throughput scaling in wireless networks, ISIT, 2002, p. 351.

[KWZZ03] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger, Geometric
ad-hoc routing: Of theory and practice, PODC, July 2003, pp. 63–
72.

[LG94] D. Lewis and W. Gale, A sequential algorithm for training text
classiers, ACM SIGIR, 1994, pp. 3–12.

[LJDC+00] Jinyang Li, John Jannotti, Douglas S. J. De Couto, David R.
Karger, and Robert Morris, Scalable location service for geo-
graphic ad hoc routing, MOBICOM, 2000, p. 120.

[Low04] David G. Lowe, Distinctive image features from scale-invariant
keypoints, International Journal of Computer Vision 60 (2004),
no. 2, 91–110.

[LZ09] Yury Lifshits and Shengyu Zhang, Combinatorial algorithms for
nearest neighbors, near-duplicates and small-world design, SODA,
2009, pp. 318–326.

Bibliography 123

[MNP06] Rajeev Motwani, Assaf Naor, and Rina Panigrahy, Lower bounds
on locality sensitive hashing, SCG, 2006, pp. 154–157.

[MOWW04] Thomas Moscibroda, Regina O’Dell, Mirjam Wattenhofer, and
Roger Wattenhofer, Virtual coordinates for ad hoc and sensor
networks, DIALM-POMC, October 2004, pp. 8–16.

[MR95] Rajeev Motwani and Prabhakar Raghavan, Randomized algo-
rithms, Cambridge University Press, 1995.

[MSZ06] Eytan Modiano, Devavrat Shah, and Gil Zussman, Maximizing
throughput in wireless networks via gossip, ACM SIGMETRIC’06,
2006, p. 26.

[MU05] Michael Mitzenmacher and Eli Upfal, Probability and comput-
ing: Randomized algorithms and probabilistic analysis, Cambridge
University Press, 2005.

[NS03] James Newsome and Dawn Song, Gem: graph embedding for rout-
ing and data-centric storage in sensor networks without geographic
information, SenSys, 2003, pp. 76–88.

[NSDW+07] Mike Nachtegael, Stefan Schulte, Valerie De Witte, Tom Mélange,
and Etienne Kerre, Image similarity, from fuzzy sets to color im-
age applications, Advances in Visual Information Systems, 2007,
pp. 26–37.

[Pan06] Rina Panigrahy, Entropy based nearest neighbor search in high
dimensions, SODA, 2006, pp. 1186–1195.

[PR97] C. Perkins and E. M. Royer, Ad-hoc on-demand distance vector
routing, MILCOM ’97 panel on Ad Hoc Networks, 1997.

[PR99] Charles E. Perkins and Elizabeth M. Royer, Ad hoc on-demand
distance vector routing, WMCSA, February 1999, pp. 90–100.

[RRP+03] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and I. Sto-
ica, Geographic routing without location information, Proc. ACM
Mobicom, 2003, pp. 96–108.

[RS98] Martin Raab and Angelika Steger, Balls into bins: A simple and
tight analysis, Lecture Notes in Computer Science 1518 (1998),
159.

[RTG00] Y. Rubner, C. Tomasi, and L. J. Guibas, The earth mover’s dis-
tance as a metric for image retrieval, International Journal of
Computer Vision 40 (2000), no. 2, 99–121.

[Set09] Burr Settles, Active learning literature survey, Computer sciences
technical report, University of Wisconsin–Madison, 2009.

124 Bibliography

[SJ99] Simone Santini and Ramesh Jain, Similarity measures, IEEE
transactions on Pattern Analysis and Machine Intelligence 21
(1999), no. 9, 871–883.

[SMS06] G. Sharma, R. Mazumdar, and N. Shroff, Delay and capacity
trade-offs in mobile ad hoc networks: A global perspective, INFO-
COM, 2006, pp. 1–12.

[Spa02] Libor Spacek, Face recognition data of the university of essex, uk,
2002, http://cswww.essex.ac.uk/mv/allfaces/index.html.

[SR06a] G. Schaefer and S. Ruszala, Image database navigation on a hi-
erarchical mds grid, Pattern Recognition, 2006, pp. 304–313.

[SR06b] Gerald Schaefer and Simon Ruszala, Hierarchical image database
navigation on a hue sphere, Advances in Visual Computing, 2006,
pp. 814–823.

[SRZF04] Y. Shang, W. Ruml, Y. Zhang, and M. Fromherz, Localization
from connectivity in sensor networks, IEEE Transactions on Par-
allel and Distributed Systems 15 (2004), no. 11, 961.

[Tal04] Kunal Talwar, Bypassing the embedding: algorithms for low di-
mensional metrics, STOC (Chicago, IL, USA), 2004, p. 281.

[TC03] L. Tang and M. Crovella, Virtual landmarks for the internet,
Proc. ACM Sigcomm, 2003, pp. 143–152.

[TDGW07a] D. Tschopp, S. Diggavi, M. Grossglauser, and J. Widmer, Robust
geo-routing on embeddings of dynamic wireless networks, INFO-
COM, 2007, p. 1730.

[TDGW07b] D. Tschopp, S. Diggavi, M. Grossglauser, and J. Widmer, Robust
Routing for Dynamic Wireless Networks Based on Stable Em-
beddings, Proc. Information Theory and Applications workshop
(ITA) (San Diego, CA), January 2007.

[TP91a] M Turk and A. Pentland, Eigenfaces for recognition, Journal of
Cognitive Neuroscience 3 (1991), 72–86.

[TP91b] M. Turk and A. Pentland, Face recognition using eignefaces,
CVPR, 1991, pp. 586–591.

[ÖLT07] Ayfer Özgür, Olivier Lévêque, and David Tse, Hierarchical co-
operation achieves optimal capacity scaling in ad hoc networks,
IEEE Trans. Inf. Theory 53 (2007), 3549–3572.

http://cswww.essex.ac.uk/mv/allfaces/index.html

Strengths

Education

Work

Experience

Skills

Languages

Leisure

Status

• EPFL Diploma in Engineering and Ph.D.

• Expert in algorithm design and analysis and computer networking
• Native French and Swiss German speaker, fluent in English

• Ph.D. in Computer and Communication Sciences / EPFL, Lausanne

• Diploma (Masters degree) in Communication Systems Engineering / EPFL, Lausanne

• Academic Exchange Year / KTH, Stockholm

• Research and Teaching Assistant / EPFL, Lausanne
The first part of my thesis work consisted in analyzing a new routing protocol for wireless

networks through simulations. The results led to a European Patent. In a second phase, I

worked on theoretical aspects of algorithms for search and routing. My work was published
in the proceedings of top international conferences.

� publication list available at http://people.epfl.ch/dominique.tschopp

• Intern / IBM Research, Zurich

I performed a 6 months internship for my diploma thesis. I developed and implemented a

model for systems-on-chips and proposed a mechanism for failure recovery based on the
simulation results. The work was later presented at an international workshop. I was also

selected to participate in an IBM EMEA Top student award event in Nice, France.
• Intern / International Federation of Red Cross and Red Crescent (IFRG), Geneva

I performed a summer internship at IFRG. I worked on various system administrator tasks.

My main contribution was the implementation of a web platform to help visualize and
aggregate information about server loads. The results were presented to the IT department

of the IFRG, and raised awareness on unsuspected issues.
• Intern / Swiss Institute For Experimental Cancer Research (ISREC), Lausanne

I performed a summer internship at ISREC. I designed and implemented algorithms for
DNA sequence alignment

• Programming
During my studies and my internships, I worked on numerous programming projects. I

used Matlab extensively for my research and Java for computer networking projects and
teaching. I worked with php/mysql for web design. Other programming languages that I

worked with include C, ASP, VHDL, Perl and UML.

• Problem solving/ Structuring/ Analysis
During my Ph.D., my theoretical research taught me to understand and solve complex

problems and propose sound, efficient and provably good solutions, in a structured way.
• Soft Skills

Fast Learner / Good presentation skills / Organized / Efficient

• French Mother Tongue I grew up in French-speaking Switzerland

• Swiss German Mother Tongue I speak Swiss German with both my parents
• English Fluent (C2) I lived in the USA for 6 months, TOEFL 670/677

• German Good (C1) Excellent understanding, good writing

• Swedish Conversational (A2) I lived in Sweden for 1 year

• Skiing / Tennis / Running / Swimming
• Photography

• Member of the EPFL Tango Association

• Date of birth September 10th 1980

• Citizenship Switzerland
• Civil Status Married

Exp. 2009

2004

2001 - 2002

2004 - 2009

2004

2003

2002

1998

2001-2002

Dominique Tschopp

Place de la Cathédrale 5
CH-1005 Lausanne
+41 21 311 64 76 / +41 79 772 82 74
dominique.tschopp@gmail.com

	Abstract
	Résumé
	Acktionary
	Contents
	Introduction
	Routing in Mobile Wireless Ad hoc Networks
	Comparison-based Search in Image Databases
	A Needle in a Flat Haystack

	Virtual Coordinates for Routing in Dynamic Ad hoc Networks
	Relationship to Published Works
	Low-Dimensional Embeddings
	Stable Dynamic Embedding of Connectivity Graph
	Observations on Wireless Connectivity Graph

	Embedding Algorithm
	Embedding Heuristic
	Dealing with Dynamic Graphs
	Formal Description of PB Algorithm

	Routing Algorithm
	Simulation Results
	Experiment Design
	Performance Metrics
	Static Networks
	Mobile Networks

	Concluding Remarks

	Hierarchical Routing in Dynamic Ad hoc Networks
	Relationship to Published Works
	Models and Definitions
	Geometric random graph
	SINR full connectivity
	Uniform speed-limited (USL) mobility
	Assumptions

	Network Properties
	Inhomogeneous Topologies
	Sequences of Communication Graphs

	Routing Algorithm
	Beaconing Algorithm
	Forwarding Algorithm
	Load-balancing

	Performance Analysis
	Control Traffic
	Route Stretch

	Implementation Issues
	Concluding Remarks

	Comparison-based Nearest Neighbor Search
	Relationship to Published Works
	Definitions and Problem Statement
	Contributions
	Searching with Known Disorder Constant
	Hierarchical Data Structure For Nearest-Neighbor Search
	Lower Bound

	Searching with Unknown Characterization
	Consequences of knowing the disorder constant
	Binary Tree Decomposition
	Rank-Sensitive Hashing
	Rank-Sensitive Hashing in high-dimensional Euclidean Spaces

	Concluding Remarks

	A Platform for Similarity Search
	Relationship to Published Works
	Image Processing
	Eigenfaces

	System
	Experimental Results
	Web Platform

	Concluding Remarks

	Conclusions and Future Work
	Appendix
	Unit Disc Graphs
	Random Geometric Graphs with subthreshold Communication Radius
	Locality-Sensitive Hashing

	Bibliography
	Curriculum Vitae

