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Abstract

This work deals with coding systems based on sparse graphs. The key issue we
address is the relationship between iterative (in particular belief propagation) and
maximum a posteriori decoding. We show that between the two there is a funda-
mental connection, which is reminiscent of the Maxwell construction in thermo-
dynamics.

The main objects we consider are EXIT-like functions. EXIT functions were ori-
ginally introduced as handy tools for the design of iterative coding systems. It
gradually became clear that EXIT functions possess several fundamental proper-
ties. Many of these properties, however, apply only to the erasure case. This mo-
tivates us to introduce GEXIT functions that coincide with EXIT functions over
the erasure channel. In many aspects, GEXIT functions over general memoryless
output-symmetric channels play the same role as EXIT functions do over the era-
sure channel. In particular, GEXIT functions are characterized by the general area
theorem. As a first consequence, we demonstrate that in order for the rate of an
ensemble of codes to approach the capacity under belief propagation decoding,
the GEXIT functions of the component codes have to be matched perfectly. This
statement was previously known as the matching condition for the erasure case.

We then use these GEXIT functions to show that in the limit of large blocklengt-
hs a fundamental connection appears between belief propagation and maximum a
posteriori decoding. A decoding algorithm, which we call Maxwell decoder, pro-
vides an operational interpretation of this relationship for the erasure case. Both
the algorithm and the analysis of the decoder are the translation of the Maxwell
construction from statistical mechanics to the context of probabilistic decoding.
We take the first steps to extend this construction to general memoryless output-
symmetric channels. More exactly, a general upper bound on the maximum a po-
steriori threshold for sparse graph codes is given. It is conjectured that the fun-
damental connection between belief propagation and maximum a posteriori deco-
ding carries over to the general case.
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Zusammenfassung

Diese Arbeit behandelt Codierungssysteme, die auf graphischen Codes basieren.
Der Schwerpunkt liegt auf der Beziehung zwischen der optimalen (Maximum a
Posteriori) und der iterativen (Belief Propagation) Decodierung. Wir zeigen, daß
die Verbindung dieser zwei Codierungsarten durch eine Konstruktion gegeben ist,
die identisch mit der Maxwell-Konstruktion in der Thermodynamik ist.

Unser Hauptaugenmerk liegt auf einem Funktionstyp, der EXIT-Funktionen sehr
ähnelt. EXIT-Funktionen wurden ursprünglich als handliches Mittel zum Design
von iterativen Codierungssystemen eingeführt. Es stellte sich heraus, daß EXIT-
Funktionen einige wichtige grundlegende Eigenschaften haben. Einige dieser Ei-
genschaften lassen sich aber einzig auf den Löschkanal anwenden. Dies führte
zu der Idee, GEXIT-Funktionen einzuführen, die im Fall des Löschkanals den
EXIT-Funktionen entsprechen. Die GEXIT-Funktionen haben in vielen Fällen
die gleichen Eigenschaften in Bezug auf allgemeine symmetrische Kanäle ohne
Gedächtnis wie EXIT-Funktionen für Löschkanäle. Im Besonderen erfüllen die
GEXIT-Funktionen das allgemeine Flächenerhaltungsgesetz. Als eine erste An-
wendung dieses Theorems zeigen wir, daß eine perfekte Übereinstimmung der
GEXIT-Funktionen der Komponenten des Codes notwendig ist, um durch Belief
Propagation die Rate der Kanalkapazität anzunähern. Diese Bedingung war bis
jetzt nur für den Löschkanal bekannt.

Als weiteres Ergebnis zeigen wir, daß GEXIT-Funktionen für unendlich lange
Blocklängen eine fundamentale Beziehung zwischen Belief Propagation und Ma-
ximum a Posteriori Decodierung aufzeigen. Ein Decodierungsalgorithmus, den
wir Maxwell-Decodierer nennen, erlaubt eine operationelle Interpretierung für
den Löschkanal. Sowohl der Algorithmus als auch die Analyse des Decodierers
entstehen aus der Übertragung der Maxwell-Konstruktion von der statistischen
Physik auf das Gebiet der wahrscheinlichkeitsbasierten Decodierung. Wir zeigen
erste Schritte, um diese Konstruktion für allgemeine symmetrische Kanäle oh-
ne Gedächtnis zu generalisieren. Genauer gesagt entwickeln wir eine allgemeine
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obere Schranke für den Maximum a Posteriori Schwellenwert von graphischen
Codes. Des weiteren folgern wir, daß die grundlegende Beziehung zwischen Be-
lief Propagation und Maximum a Posteriori Decodierung auf den allgemeinen Fall
übertragen werden kann.

Schlüsselwörter wahrscheinlichkeitsbasierte Decodierung, Turbo-Codes, gra-
phische Codes, Schwellenwert, Belief Propagation, Maximum a Posteriori, Pha-
senübergang, EXIT-Chart, Maxwell-Konstruktion, Entropie, Flächenerhaltungs-
gesetz
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Version Abrégée

Ce travail se consacre aux systèmes de codage de type Turbo codes. L’accent est
mis sur la relation entre le décodage à maximum de vraisemblance et le décodage
itératif dit à propagation de croyances. On montre que les deux types de décodage
sont liés par une construction identique à la construction de Maxwell en thermo-
dynamique.

L’objet principal de notre étude est une fonction similaire à la fonction d’entro-
pie de sortie qui est aussi appelée fonction EXIT. Il est vite apparu que les fonc-
tions EXIT possèdent plusieurs propriétés extrêmement fortes. Malheureusement,
la plupart d’entre elles ne s’appliquent qu’au canal à effacement. En introduisant
les fonctions GEXIT, nous généralisons les propriétés fondamentales des fonctions
EXIT. Plus exactement, les fonctions GEXIT et EXIT sont confondues sur le ca-
nal à effacement où elles partagent des propriétés communes. Elles diffèrent, en
général, sur un canal symétrique et sans mémoire, où la fonction GEXIT conserve
les mêmes propriétés. Les fonctions GEXIT satisfont notamment le théorème
général des aires. Une première application de ce théorème est de généraliser
la condition d’ajustement pour les codes constituants d’un code composite. Cette
condition impose que, pour atteindre la limite de Shannon, les courbes GEXIT
constituantes doivent être asymptotiquement réciproques. Cette condition était,
jusqu’à présent, connue uniquement dans le cadre du canal à effacement.

Une deuxième application, principale et fondamentale, est le fait que les courbes
GEXIT contiennent, par essence, le lien entre décodage à maximum de vraisem-
blance et décodage itératif. Ce lien apparaı̂t lorsque les longueurs de mots utilisées
tendent vers l’infini. Dans le cadre du canal à effacement nous introduisons le
décodeur de Maxwell. Cet algorithme et son analyse sont la traduction exacte de
la construction de Maxwell, mais cette fois dans le domaine du décodage pro-
babilistique. Nous formulons la conjecture que cette construction de Maxwell
se généralise à tout canal symétrique sans mémoire. Nous apportons plusieurs
éléments de réponse qui valident cette hypothèse. En particulier, nous donnons
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une borne supérieure fine sur le seuil de décodage à maximum de vraisemblance
d’un ensemble de codes de type Turbo codes.

Mots-clés décodage probabilistique, Turbo codes, seuil, propagation de croyances,
maximum a posteriori, maximum de vraisemblance, transition de phase, diagramme
EXIT, construction de Maxwell, entropie, théorème des aires
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well as a continuous educational experience. Without their insights and contribu-
tions this work would not have been possible.

I am very indebted and grateful to my thesis committee. Joachim Hagenauer in-
troduced me to the beauty of research by showing that surprising intuitions may
translate into elegant results. David Forney has been a permanent source of moti-
vation. His encouraging comments have always given a strong motivational boost.
Amin Shokrollahi shows a great ability for explaining and clarifying things. I
would like to thank him for varied interesting discussions (initially in German at
Bell Labs, English later, and now French!).
I thank a great deal the committee president Bixio Rimoldi for his interest and
enthusiasm in research, teaching and social events.
I would like to take the opportunity to thank Emre Telatar for precious advice as
well as “ces petits riens qui signifient beaucoup” such as the art of PostScript pro-
graming. I would also like to thank Tom Richardson for helpful suggestions and
discussions.

Finally, I would like to thank the students, the administrative staff and my col-
leagues from the I&C school at EPF Lausanne. Thanks for the friendly atmo-
sphere and the “ready-to-help” attitude. I also would like to thank the colleagues
I met during my time at TU Munich and at Bell Labs Murray Hill for the many
and varied interesting discussions. For the sake of conciseness, I did not write an
exhaustive list but everyone’s help was much appreciated. Thanks again to my
colleagues, friends and relatives.



viii



ix

Contents

1 Introduction 1
1.1 Maxwell Construction in Thermodynamics . . . . . . . . . . . . 2
1.2 Maxwell Construction in Coding . . . . . . . . . . . . . . . . . . 5
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Preliminaries 11
2.1 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Channel Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Statistics and Estimators . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Markov Chains and Sufficient Statistics . . . . . . . . . . . . . . 16
2.5 Codes, Graphs and BP Estimator . . . . . . . . . . . . . . . . . . 19
2.6 Standard Notations for Iterative Coding Systems . . . . . . . . . . 24
2.7 Asymptotic Rate and Design Rate . . . . . . . . . . . . . . . . . 25
2.8 Degraded Channels and Threshold . . . . . . . . . . . . . . . . . 29
2.9 Channel Smoothness . . . . . . . . . . . . . . . . . . . . . . . . 33
2.10 Peeling Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.11 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . 36

Appendix
2.A Proper Linear Codes . . . . . . . . . . . . . . . . . . . . . . . . 37
2.B Duality and Change of Domain . . . . . . . . . . . . . . . . . . . 38
2.C Relations between Various Thresholds . . . . . . . . . . . . . . . 42

3 EXIT Functions 45
3.1 Definition and Linear Functional . . . . . . . . . . . . . . . . . . 45
3.2 EXIT Chart Method . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3 Universal Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4 EXIT Analysis for the Erasure Channel . . . . . . . . . . . . . . 56



x

3.4.1 Further Properties of EXIT Functions . . . . . . . . . . . 56
3.4.2 EXIT Charts . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4.3 Matching Condition . . . . . . . . . . . . . . . . . . . . 62
3.4.4 Capacity-Achieving Sequences . . . . . . . . . . . . . . 63

3.5 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . 65

Appendix
3.A Technical Clarifications on the Additional Observation Ω . . . . . 66
3.B A Touch of Algebra . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.C A Brief History of Area Theorems . . . . . . . . . . . . . . . . . 68

4 The Bridge between MAP and BP Decoding 71
4.1 Asymptotic EXIT Functions . . . . . . . . . . . . . . . . . . . . 71
4.2 Two (Tight) Bounds on the MAP Threshold . . . . . . . . . . . . 81

4.2.1 Upper Bound via Area Theorem and Data Processing . . . 82
4.2.2 Tightness via Counting Argument . . . . . . . . . . . . . 84

4.3 Maxwell Construction and EBP EXIT Curve . . . . . . . . . . . 86
4.4 Maxwell Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.4.1 Message-Passing with Storing . . . . . . . . . . . . . . . 95
4.4.2 Entropy Balance . . . . . . . . . . . . . . . . . . . . . . 98
4.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . 105

4.5 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . 107

Appendix
4.A Concentration of Entropy . . . . . . . . . . . . . . . . . . . . . . 110
4.B Area and BP EXIT Function . . . . . . . . . . . . . . . . . . . . 113
4.C Technical Lemmas for Counting Argument . . . . . . . . . . . . 114
4.D Maxwell Decoder: Tree and Elementary Consequences . . . . . . 116

5 GEXIT Functions 121
5.1 Definition and Linear Functional . . . . . . . . . . . . . . . . . . 121
5.2 Further Properties of GEXIT Functions . . . . . . . . . . . . . . 128
5.3 GEXIT Charts and Matching Condition . . . . . . . . . . . . . . 134
5.4 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . 138

Appendix
5.A GEXIT Kernel and Concavity . . . . . . . . . . . . . . . . . . . 139
5.B Non-Binary GEXIT Functions . . . . . . . . . . . . . . . . . . . 140
5.C GEXIT Kernel for Gaussian Channels . . . . . . . . . . . . . . . 141
5.D A Long History of Gaussian Channels . . . . . . . . . . . . . . . 147



xi

6 MAP versus BP for Memoryless Symmetric Channels 149
6.1 Asymptotic GEXIT Functions . . . . . . . . . . . . . . . . . . . 149
6.2 Upper Bound on the MAP Threshold . . . . . . . . . . . . . . . . 152
6.3 Maxwell Construction and EBP GEXIT Curve . . . . . . . . . . . 154

6.3.1 EBP GEXIT Curve . . . . . . . . . . . . . . . . . . . . . 154
6.3.2 EBP Computation . . . . . . . . . . . . . . . . . . . . . 158
6.3.3 EBP Area Theorem . . . . . . . . . . . . . . . . . . . . . 159

6.4 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . 161

Appendix
6.A Existence of EBP GEXIT Points . . . . . . . . . . . . . . . . . . 163
6.B Bounds on the EBP GEXIT Curve . . . . . . . . . . . . . . . . . 164

7 Turbo Codes 167
7.1 MAP Thresholds for GLDPC Codes . . . . . . . . . . . . . . . . 167
7.2 MAP Thresholds for Turbo Codes . . . . . . . . . . . . . . . . . 168
7.3 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . 173

Appendix
7.A Properties of GLDPC Ensembles . . . . . . . . . . . . . . . . . . 174
7.B Turbo Codes over the BEC . . . . . . . . . . . . . . . . . . . . . 175
7.C Difference between MAP and BP Threshold . . . . . . . . . . . . 179



xii



1

1 Introduction

This thesis is entitled “Conservation Laws for Coding,” in reference to general
laws of physics. The title is deliberately ambitious. More modestly, the main
“conservation law” we present is the so-called general area theorem, and due to
technical challenges, we have to phrase some of the key observations as con-
jectures. The title, however, is supposed to reflect our underlying aim: to sketch
fundamental principles that govern modern iterative coding, as well as many other
physical phenomena.
Towards this goal we first investigate a one-dimensional measure of the decoding
performance that is known as the EXIT function. Many other alternative measures
of the decoder performance have been suggested in the literature. To name but a
few, the expected value, the standard deviation of the densities, or the minimum-
mean square error are useful alternatives. However – in spite of the pun – EXIT
curves (and further GEXIT curves) are the true “entry point” to uncover the strong
relationship between belief propagation and maximum a posteriori decoding.

Belief propagation (BP) is the “locally optimum” message-passing algorithm.
Given a binary memoryless symmetric channel with Shannon capacity C, it is
conjectured in [1] that there is a sequence of sparse graph codes such that, for any
transmission rate r = (1− δ)C and any target bit error probability, the decoding
complexity, in operations per bit, is of order O( 1

δ log 1
δ ) (the encoding complexity

is of order O(log 1
δ ) as a result of the graph density). Because of this low complex-

ity and its iterative nature, BP decoding on sparse graphs is considered practical.

Maximum a posteriori (MAP) decoding (which in the case of equal priors is equiv-
alent to maximum likelihood decoding) is an optimal decoding rule in the sense
that it minimizes the error probability (see, e.g., [2]). For general codes, however,
the complexity is very high (more precisely, the decoding is NP complete). MAP
decoding is therefore considered ideal.

The focus of this thesis is the relationship between MAP and BP decoding. The
key insight is that the bridge that connects the two can be seen as the translation of
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the Maxwell construction into the field of probabilistic coding. This construction
uses (G)EXIT curves.

The Maxwell construction plays a central role in the theory of phase transitions.
Hence we review it in Section 1.1 of this introduction.
In Section 1.2, we translate the Maxwell construction to the setting of sparse graph
codes and belief propagation. This is the main message of this work.
The thesis outline follows in Section 1.3.

We chose to present our work from the point of view of the relationship between
BP and MAP decoding, which we hope will help to make it more accessible. As
an alternative choice, we could have presented (G)EXIT functions on their own
and listed potential applications. GEXIT functions are one-dimensional transfer
functions. Their (perhaps) most remarkable application is the Maxwell construc-
tion. However, many other applications are possible. For example, we will see
that GEXIT functions are the somewhat “true” measure for the decoding progress:
In order for the rate of an ensemble of codes to approach the capacity under BP
decoding, the GEXIT functions of the component codes have to be matched per-
fectly. Prior work related to this thesis is listed in Section 1.4.

1.1 Maxwell Construction in Thermodynamics

Thermodynamics and statistical physics study properties of physical systems. Ther-
modynamics is concerned with the macroscopic behavior of a system. It histori-
cally precedes statistical physics that is based on microscopic considerations. At
a microscopic level, a system is described by a very large number of variables
such as the position, the speed, or the magnetic moment (spin) of each particle.
The evolution of the system is then explained by the laws of dynamics (Newton’s
law). At a macroscopic level, a system is characterized by a small set of vari-
ables that describe the state of the system: For example, in the case of a fluid,
they are the pressure, the temperature, or the energy. Such macroscopic quantities
provide a sufficiently precise description of the systems in many cases. They are
particularly helpful because the complete microscopic dynamical description of
the system turns out to be, in general, intractable.

Let us focus on the classical case of the compression of a fluid in a container. The
pressure, the volume and the temperature are state variables that are linked to each
other. Consider for example an ideal gas (more precisely, an ideal fluid) that satis-
fies the law p ·V = NRT, where p is the pressure (in Pa), V is the volume (in m3),
T is the absolute temperature (in K), N is the number of moles, and R is the gas
constant (R ≈ 8.314510JK−1mol−1). Recall that p ·V represents work (in J) or
energy. Assume that we have a fixed T (see the corresponding isotherm in Figure
1.1) and a fixed number of particles (atoms or molecules). We aim at describing
how the system evolves when the volume decreases. From the previous law we
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see that by reducing the volume V of the container, we increase the pressure p.
The ideal gas law is obtained by assuming that the particles have negligible sizes
and that they do not interact with each other. Clearly, one can not compress a gas
indefinitely, and the ideal gas approximation is only valid in the limit of a low-
density gas.

The Van der Waals equation of state

0 81
3

2
pr

vr
T = 0.85Tc

T = 0.95Tc

T = Tc←−

T = 1.05Tc

T = 1.15Tc

↙

↗

Figure 1.1: Van der Waals isotherms in
reduced1 coordinates.

[3] provides an alternative model that
is closer to the real behavior. A first
refinement takes into account the lim-
its of the compression imposed by the
physical size of the particles. It as-
sumes that molecules are not dimen-
sionless points but have a total vol-
ume equal to Nb. Therefore, the free
space that the system can offer to the
molecules reduces to V−Nb. The sec-
ond refinement captures the effects of
the pairwise attractive force between particles. This causes the average free en-
ergy N f to be reduced by an amount proportional to the fluid density N

V . Since the
pressure obeys the thermodynamic relationship p = − ∂ f

∂(V/N) , it is therefore re-

duced by an amount proportional to N2

V 2 . The equation of state therefore reads

p = NRT
V−Nb − a N2

V 2 (which can be viewed as a second order approximation), or(
p+a N2

V 2

)
(V −Nb) = NRT, where the non-negative constants a and b charac-

terize the considered fluid. Figure 1.1 depicts typical isotherms.1

Let us describe what happens experimentally for the case of the liquid-gas trans-
formation of water. If a small amount of liquid is placed in a completely empty
(and hermetically closed) large container at room temperature, it evaporates. The
vapor exerts pressure on the walls of the container. Figure 1.2 (left) depicts an ex-
perimental observation of the system behavior. By gradually reducing the volume
of the container, we increase the vapor pressure until it reaches a critical value
pc. At this point the vapor condenses into water and the pressure stays constant
throughout this transformation. When there is no vapor left, the pressure starts to
rise again (very quickly since it is difficult to compress water).

1Let v denote the volume divided by the numbers of particles, the Van der Waals isotherm is equiv-
alently described by the equation (p + a

v2 )(v− b) = kT where k = R/NA ≈ 1.380658 · 10−23JK−1 is
the Boltzmann constant (NA ≈ 6.0221367 · 1023 mol−1 being the Avogadro number). Although the
constants a and b change from fluid to fluid, this equation can be recast into an invariant form (which
applies to any fluid). Critical values of p, v or T are obtained at the critical point that separates do-
mains where the system behavior is different. On a diagram representing p versus v as in Figure 1.1,
this critical point is an inflexion point such that ∂ j p

∂v j |c = 0 for j = 1,2. This yields to pc = a
27b2 , vc = 3b

and Tc = 8a
27bR . Define the reduced variables pr

M= p
pc , vr

M= v
vc and Tr

M= T
Tc

, then the Van der Waals

equation is recast in the reduced (invariant) form (pr + 3
v2

r
)(vr− 1

3 ) = 8
3 Tr .



4 Chapter 1. Introduction

In many theoretical descriptions of this phenomenon, such as the Van der Waals
model for T < Tc, a non-monotonic function p(V ) is obtained. See Figure 1.2
(right). The Maxwell construction [4] allows us to modify the “unphysical” part
of this theoretical function p(V ) in order to obtain a consistent behavior of the
system: The two decreasing branches of p(V ) are joined by a constant-pressure
line as observed in experiments. At which height should the horizontal line p = pc

corresponding to the phase transition be placed? The basic idea of the Maxwell
construction is that, at the critical pressure pc, the vapor and the liquid are in
equilibrium: the rates of the forward (vapor into liquid) and reverse transforma-
tions (liquid into vapor) are equal, therefore infinitesimal quantities of vapor can
be transformed into liquid – and vice versa – without any work being performed
on the system. This reversible transformation implies that when we compress the
fluid in the container, the vapor begins its transformation into liquid at pc.

Formally, the Gibbs free energy is a macroscopic quantity that indicates the total
work performed on the system. The Gibbs free energy G of the system is constant
during the liquefaction process because of the phase equilibrium. It is known that
the Gibbs free energy is equal to G =d(pV )− pdV for a fixed amount of fluid (in
which two pure phases of same chemical potential coexist).

Nb

↙

↙↓↓

p

pc

V Nb

p

pc

V

AB
↓↙

Figure 1.2: Maxwell construction in thermodynamics. Left: Pressure-volume diagram for
the liquid-vapor phase transition and corresponding modeled containers. Right: Van der
Waals isotherm and the Maxwell construction.

The work done on the system in an infinitesimal transformation is pdV , where dV
represents the variation of the volume. Integrating between A and B (right picture
in Figure 1.2), we get 0 = GB−GA = pc(VB−VA)−

R B
A p(V )dV . In words, this

shows that the above equilibrium condition implies the equality of the areas en-
closed between the horizontal line and the original non-monotonic Van der Waals
curve p(V ). See, e.g., [5–8].

In the setting of iterative coding, the global variables that play the role of V and
p are the intrinsic and extrinsic symbol entropies (or measures derived from the
symbol information). This thesis will show that one can derive a global conser-
vation law on the conditional word entropy. This law is similar in essence to
the previous conservation of the Gibbs free energy. The Maxwell construction
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will eventually allow us to determine the performance curve under MAP decod-
ing (which is equivalent to the physical system behavior) from the one under BP
decoding (linked to the theoretical Van der Waals equation of state).

1.2 Maxwell Construction in Coding

In practice the performance of a communication scheme is often assessed by plot-
ting the “bit (or word) error rate” versus a measure of the channel quality. For
the binary erasure channel this means that we plot the bit erasure probability
1
n ∑

n
i=1 Pr{x̂DEC

i (ε) = j} obtained at the output of a given decoder as a function
of the channel erasure probability ε (here x̂DEC

i denotes the estimate of the ith bit).
As an illustration, the performance of LDPC codes under BP decoding [9–11] is
depicted in Figure 1.3 using a non-logarithmic scale. The x-axis depicts the chan-
nel erasure probability, i.e., a measure of the channel noise and the y-axis depicts
the erasure probability under BP decoding. The result for several blocklengths n,
n ∈ {100,250,500,1000,2500,5000,10000,50000,100000}, is shown. Observe
that, when the blocklength becomes very large, the bit erasure performance con-
verges to an asymptotic curve. This curve is zero below a certain value of the noise
(called BP threshold and denoted by εBP in Figure 1.3), then “jumps” to some non-
zero value and finally continues smoothly until it reaches one.

Let us describe more precisely the typical behavior under BP decoding. Figure 1.3
shows the average BP performance curves hBP(ε) obtained from Monte Carlo sim-
ulations. Formally, hBP(ε) M= 1

ε E
[ 1

n ∑
n
i=1 Pr{x̂i(ε) = j}

]
, where the expectation is

taken over elements chosen uniformly at random from the ensemble characterized
by a fixed degree distribution pair (dd pair) and a fixed blocklength n.
A few general comments are in order. First, the performance of particular in-
stances of codes concentrates around the average performance, which makes it
meaningful to analyze the average. See [12–15].
For a fixed length n, the average curve can be analytically predicted as shown,
e.g., in [12, 16, 17], where the number of stopping sets (residual “cores” in which
the iterative decoder gets stuck) is analyzed.
When the length n becomes large, the average performance of an ensemble of
sparse graph codes is given by the performance of the corresponding infinite tree
or computation tree. Density evolution on the computation tree permits us to pre-
dict the complete asymptotic performance curve under BP decoding. In particular,
density evolution determines the BP threshold associated with the considered en-
semble of sparse graphs: The BP threshold is εBP ≈ 0.4273 in the example of
Figure 1.3. Operationally, this means that transmission at a vanishing erasure
probability is asymptotically guaranteed to succeed with high probability if and
only if it takes place over the binary erasure channel with parameter ε < εBP. As has
been observed for phase transitions in many other physical systems, this thresh-
old also acts as a fundamental quantity to describe the finite-length performance
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of the ensemble. It is indeed possible (at least on the binary erasure channel) to
think of the BP threshold as the zero order term in a Taylor series so that a scaling
law represents the first order term. See [18–20]. More precisely, we write the
bit erasure probability as E

[ 1
n ∑

n
i=1 Pr{x̂i(ε) = j}

]
= νBPQ(

√
n(εBP−ε)
αλ,ρ

)(1+on(1)),

where Q(u) M=
R +∞

u e−
u2
2 du. This means that, when the blocklength increases, the

bit error/erasure performance in the so-called “waterfall” region is given by the
previous first order scaling.

So far, we have only discussed the case
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0.0
ε

hBP(ε)

Figure 1.3: Probability of bit erasure for

LDPC codes with dd pair ( x+4x3

5 , x3+4x7

5 )
(edge perspective) and n = 100, · · · ,106 on
the binary erasure channel.

of BP decoding. This is of course the
most interesting decoding for practi-
cal implementations and the interest
in the maximum a posteriori (MAP)
decoding is mainly theoretical. In prac-
tice, MAP decoding requires an expo-
nential (typically prohibitive) amount
of computational resources. Neverthe-
less, the hope is that a better under-
standing of this type of decoding will
give valuable hints for the design of
sparse graph codes, e.g., on complex-
ity or capacity-approaching issues. It
is known, see, e.g., [21,22], that the MAP performance of a sequence of codes with
an increasing minimum distance is also characterized by a threshold phenomena.
Similar properties such as the ones concerning the BP threshold are expected to
hold for the MAP threshold. The MAP analysis for sparse graphs has been less
investigated than its BP counterpart.
To date there are basically two types of analysis that are employed for the MAP
decoding. On the one hand, a large body of literature concerns bounds on the
MAP threshold via bounds on the weight distribution or on the parity-check ma-
trix density, see [23, 24]. Although, in general, these bounds are not expected to
be tight. On the other hand, MAP thresholds have been determined via the replica
method, see [25–29], but the method itself is not completely rigorous. Lately
some of these bounds were converted into rigorous bounds via an interpolation
method, see [30, 31]. The fact that such results come from the field of statistical
mechanics is not surprising since the MAP threshold corresponds to the physical
critical point described in the previous section. The MAP threshold is therefore
a more “natural” threshold than its BP counterpart (which is called the dynamical
threshold) from a thermodynamical standpoint.

For sparse graph codes, we will demonstrate that a Maxwell-type construction
holds: It connects the performance curve under BP decoding to the one under
MAP decoding in the asymptotic setting of increasing blocklengths. The curve
that plays the role of the Van der Waals curve is the EBP GEXIT curve. The EBP



1.3. Thesis Outline 7

GEXIT curve is determined in a purely theoretical fashion: It is given by the set
of all fixed points of density evolution. Note that some of these fixed points are
unstable and some are “hidden” so that they cannot be reached in practice by the
BP decoder. The part of the curve which corresponds to unstable and “hidden”
fixed points extends the (operationally reachable) BP curve. The complete curve
is therefore called extended BP or EBP GEXIT curve. This is a smooth curve that
is depicted in Figure 1.4. In this example the “spurious” branch (dashed part of
the curve) corresponds to unstable fixed points of density evolution. Generally,
the EBP GEXIT curve is a “non-physical” description of the system as is the case
for the Van der Waals curve in the setting of thermodynamics.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.0
ε

h(ε)

hBP(ε)

εBP εSC
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0.2

0.4

0.6

0.8
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0.0

hMAP(ε)

ε

h(ε)

εMAP εSC

Figure 1.4: Asymptotic performance of the LDPC ensemble with dd pair (λ(x),ρ(x)) =

( x+4x3

5 , x
3+4x7

5 ). It has design rate rλ,ρ
M= 1− (

R
ρ)/(

R
λ) = 1/2, Shannon threshold

εSH M= 1− rλ,ρ = 0.5 and stability condition threshold εSC M= 1
λ′(0)ρ′(1) ≈ 0.8065. Left: BP

decoding with εBP ≈ 0.4273. Right: MAP decoding with εMAP ≈ 0.4821.

The asymptotic BP performance curve (called BP GEXIT curve) is found to be
the envelope of the EBP GEXIT curve. The transition given by the Maxwell con-
struction on the EBP GEXIT curve is located exactly at the MAP threshold (for the
considered example). Furthermore, below the BP threshold and above the MAP
threshold, MAP and BP decoding coincide. To summarize, the MAP performance
(or GEXIT) curve is zero below the MAP threshold, then jumps to some value,
and from that point on it coincides with the BP performance curve. It then contin-
ues smoothly until it reaches one (as does the BP GEXIT curve).

The MAP GEXIT curve corresponds to the true monotonic relationship between
pressure and volume in thermodynamics whereas the theoretical EBP GEXIT
curve corresponds to the Van der Waals model. This curiosity is explored in this
thesis.

1.3 Thesis Outline
The chapters are relatively independent. The main material is contained in Chapter
3, Chapter 4, Chapter 5, and Chapter 6: Chapters 3 and 4 introduce our formalism
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and present the case of the binary erasure channel (BEC). Chapters 5 and 6 extend
the concepts to general memoryless channels.

Chapter 2 Following Shannon’s communication paradigm, we settle notations,
revisit and redefine some fundamental notions. First, standard channel models
are described and the entropy operator is introduced. Some elements of statistics
and some natural estimators are recalled. We then describe the BP and the MAP
decoding algorithms. Notions of asymptotic rate, the order implied by physical
degradation, thresholds, and families of channels are further discussed.

Chapter 3 EXIT functions and the asymptotic analysis of iterative coding sys-
tems via density evolution are reviewed. We see that, when applied on the BEC,
EXIT functions exhibit various interesting properties. In particular, a first gener-
alization of the area theorem of [32] is stated.

Although these two chapters consist mainly of a review of known statements,
they also introduce a slightly novel viewpoint: For example, this concerns the
asymptotic rate of LDPC ensembles as discussed in Chapter 2, or the conservation
law presented in Chapter 3, which generalizes the original area theorem.

Chapter 4 We present the connection between MAP and BP decoding for the
case of the erasure channel. The area theorem implies a simple upper bound on
the MAP threshold based on the BP EXIT function. In many cases, we are able to
prove the tightness of this bound. The Maxwell construction is interpreted as an
exchange of information during the decoding process. The Maxwell construction
has an operational meaning, which is given by the so-called Maxwell decoder.
This decoder performs MAP decoding and shows how complex it is to transform
a BP decoder into a MAP decoder.

For the BEC, EXIT functions suffice for a detailed analysis of the Maxwell con-
struction. But, in general, one needs to define new functions that we call GEXIT
functions and that extend our field of investigation.

Chapter 5 We define GEXIT functions and investigate their properties. The
presentation follows in lock-step with the presentation of EXIT functions on the
BEC. GEXIT functions over general binary-input memoryless output-symmetric
(BMS) channels and EXIT functions over the BEC share almost all their prop-
erties. Analog to EXIT charts for the BEC, GEXIT charts permit us to derive a
matching condition for general BMS channels.

Chapter 6 Using the general area theorem with GEXIT functions, we extend the
upper bound on the MAP threshold to general BMS channels. As for the BEC, an
area theorem associated to the EBP GEXIT curve is derived. We conjecture that
the Maxwell construction carries over to general BMS channels. Partial results
are provided and numerical evidence is shown.
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Many properties known for EXIT functions on the BEC extend to general mem-
oryless symmetric channels using GEXIT functions. For example, the matching
condition is derived for general BMS channels and the Maxwell construction is
expected to hold to a large extent.

Chapter 7 Our concepts apply to graphs that have the required sparseness prop-
erty and are expected to hold in a much wider setting. Further examples are dis-
cussed, and, in particular, the historical example of Turbo codes for which an exact
derivation is presented in the BEC case.

Promising and challenging tasks for future research and applications in the con-
text of coding include code optimization and complexity study. Other possible
extensions of this work concern general (e.g., combinatorial) search problems.

1.4 Related Work

GEXIT functions are similar in many respects to EXIT functions introduced by
ten Brink [33]. More specifically, GEXIT functions coincide with EXIT functions
on the erasure channel. The area theorem we introduce is a generalization of the
area theorem by Ashikhmin, Kramer, and ten Brink in [32] (in fact similar notions
are found earlier in the work by Shokrollahi et al. [12,34,35]). This area theorem,
when applied to the erasure channel, leads back to the notion of EXIT functions.
The upper bound on the MAP threshold, which we originally presented in [36],
has been extended to general channels with the help of GEXIT functions. For the
erasure case, we then show that in many cases the upper bound on the MAP thresh-
old is tight by strengthening the counting argument of [37]. Notice that a similar
technique is used by Mézard et al. in [38] for the “XORSAT” problem. Over
general channels, we define the GEXIT function as the derivative of the (normal-
ized) conditional entropy with respect to some measure of the noise in the channel.
In [39,40] Guo, Shamai and Verdú showed that for Gaussian channels, the deriva-
tive (with respect of the signal-to-noise ratio) of the mutual information is equal to
the minimum mean square error (MMSE), and in [39] they showed that a similar
relationship holds for Poisson channels. One can think of GEXIT functions as
providing such a relationship in a more general setting (where the generalization
is with respect to the admissible channel families). For some channel families,
GEXIT functions have a particularly nice interpretation. For Gaussian channels,
the interpretation in terms of the MMSE detector can be simplified even further:
It can be seen as the “magnetization” of the system as shown by Macris in [41].
Gaussian channels are further investigated by Zakai in [42]. The results in [43],
which have appeared since the introduction of GEXIT functions in [44], can be
reformulated to give an interpretation of GEXIT functions for the class of additive
channels. Finally note that, inspired by Tüchler, ten Brink and Hagenauer [45]
and based on the result of Guo et al., Bhattad and Narayanan introduce MMSE
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charts in [46] using a Gaussian approximation. This corresponds to GEXIT charts
under the Gaussian hypothesis in our framework.2

2Partial results of our work have been communicated in [36, 44, 47–51] and parts have been sub-
mitted for publication in [52, 53].
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2 Preliminaries

Overview: Some key notions of communications and coding
are revisited, in particular the notions of statistics, estimators,
design rate, and threshold. For a more detailed introduction
into these concepts we refer the reader to [2, 10–15,54–66].

Let X denote the channel input alphabet and Y the channel output alphabet. With-
out loss of generality, we assume that the distributions encountered all along this
thesis admit a probability density function.1 We then write all general statements
in terms of densities, the translation to the discrete case being immediate with
the use of Dirac delta distributions. The conditional density pY |X (y|x) denotes the
channel model with random input X and output Y ; this includes discrete channel
models. Let the lower case letter x ∈ X denote a deterministic value taken by a
random X with probability pX (x). A vector (or matrix), let us say X , will also
be denoted by X[n], where [n] M= {1, · · · ,n} is the index set of its columns, n being
its length. In a similar way, if S ⊆ [n], then XS is the sub-vector formed by the
columns of X indexed by S , e.g., X{1,4} = (X1,X4). By a slight abuse of notation,

the ith component of X is simply denoted by Xi
M= X{i}, and X∼i

M= X[n]\{i} when a
single bit is omitted, following the factor graph terminology, see [58–60, 67].

2.1 Channel Model

Recall that a channel model pY |X is said to be binary if its input alphabet is binary,
i.e., if |X | = 2. For simplicity, this thesis deals mainly with binary channels.
Without loss of generality, we choose the binary alphabet X = {−1,+1} (standard
bipolar or Binary Phase-Shift Keying (BPSK) modulation: 0↔+1 and 1↔+1).

1We restrict ourselves to the case of channels without feedback. Results in this thesis are written
in the language of densities for notational simplicity. However, they can be stated in the more general
context of distributions as discussed in [14,15,65]. All our results translate in a straightforward manner
to this context. It suffices to adopt the convention of formally denoting channels by their transition
density even when such a density does not exist, and write

R
f (y)pY |X (y |x)dy as a proxy for the

corresponding expectation whenever E[ f (Y )|X = x] exists (e.g., if f (y) is bounded).
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Figure 2.1: Standard binary memoryless channels.

Example 2.1 [BEC(ε)] Figure 2.1 (left) depicts the Binary Erasure Channel (BEC)
model with parameter ε, call it BEC(ε). The input X takes value x∈X = {−1,+1}
and the output Y takes value y ∈ Y = {−1,j,+1} where j is the erasure sym-
bol. The transition probabilities are discrete and given by pY |X (y|x) = 1− ε if
y = x, pY |X (y|x) = ε if y = j, and pY |X (y|x) = 0 otherwise.

Example 2.2 [BSC(ε)] Figure 2.1 (right) depicts the Binary Symmetric Channel
(BSC) model with parameter ε, call it BSC(ε). The input value x, as well as the
output value y, is an element of X = Y = {−1,+1}. The transition probabilities
are discrete and given by pY |X (y|x) = 1− ε if y = x, and ε otherwise.

Example 2.3 [BAWGNC(σ)] Figure 2.1 (bottom) depicts the Binary Additive
White Gaussian Noise Channel (BAWGNC) model with zero-mean noise of stan-
dard deviation σ, call it BAWGNC(σ). The input value x is an element of X =
{−1,+1} and the output value y ∈ Y = R. The transition probability function is

pY |X (y|x) = 1√
2πσ2 e−

(y−x)2

2σ2 .

Definition 2.1 [Memoryless] For n ∈ N \{0}, let X[n] be a random vector with
components Xi defined over X , i.e., X[n] takes values in the product alphabet X n

and, in a similar way, let Y[n] be a random vector taking value in Y n. The chan-
nel family {pY[n]|X[n]

}n is said to be memoryless if there is a family of individ-
ual channels {pYi|Xi}i such that, for all n, ∀(x,y) ∈ X n×Y n, pY[n]|X[n]

(y[n]|x[n]) =
∏

n
i=1 pYi|Xi(yi|xi).

By a slight abuse of notation, if a channel family {pY[n]|X[n]
}n is memoryless, then

the family of individual channels {pYi|Xi}i will be said to be memoryless. Fur-
thermore, if this family of individual channels is such that pYi|Xi = pY1|X1 for all i,
then the channel pY1|X1 itself will be said to be memoryless. For example, assume
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{pYi|Xi}i describes a family of individual BECs, call it {BECi(εi)}i. If the chan-
nel family is memoryless and such that ∃ε, ∀i, εi = ε, then we say that BEC(ε)
is memoryless. In a similar manner, BSC(ε) is said to be memoryless, as well as
BAWGNC(σ) (assuming that {BAWGNCi(σ)}i is such that the Zi’s are indepen-
dent random variables).
Another particularity of the three simple families of channels discussed above
(shared by many other channel families) is that they are parameterized by a single
scalar parameter p. For example p = σ is the standard deviation for the BAWGNC.

Definition 2.2 [Channel Symmetry] A binary memoryless channel with real-valued
output is said to be output-symmetric, in short, symmetric, if and only if pY |X (y|+
1) = pY |X (−y|−1).

It is straightforward to verify that BEC(ε), BSC(ε) and BAWGNC(σ) are exam-
ples of Binary Memoryless Symmetric Channels (BMSC). By a slight abuse of
notation, a generic BMSC (family) with parameter p will be called BMSC(p). It
is convenient and natural to choose the parametrization p so that there is a one-
to-one mapping between p and the entropy of the channel (see also Section 2.8).
In other words, BMSC(p) is a shorthand to denote a given family {BMSC(p)}p∈P
where p ∈ P is in one-to-one correspondence with the channel entropy H(X |Y ).
Channels of the type BMSC(p) will be our main domain of study.

2.2 Channel Entropy
Let X ,Y be random variables. Assume X is binary with alphabet X = {−1,+1}.

Definition 2.3 [LLR] Consider a binary channel pY |X . The corresponding Log-

Likelihood Ratio (LLR) function is the function y : y 7→ y(y) M= log
pY |X (y|+1)
pY |X (y|−1) tak-

ing values in R with y(y) M=±∞ if pY |X (y|∓1) = 0. The random LLR associated

with Y is denoted by Y
M= y(Y ).

A value y(y) (once the channel output y has been post-processed through y ) is
called a channel output value in the L-domain. We will later state (in Section
2.4) that, for a binary memoryless channel, the post-processing on the ys does not
cause information loss.

Definition 2.4 [Symmetry of Density] Let a be a probability density function de-
fined over R. The density a is said to be symmetric if a(−y) = e−ya(y) for
y ∈ R.

Fact 2.1 [Symmetry of L-Density] Consider a binary symmetric channel pY |X and

define Z M= y(Y ) (i.e, the channel input is transformed into a LLR). Define a(z) to
be the density of Z given X = +1. Then a(z) is symmetric.
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Proof. For a given LLR value z∈R, consider the set Sz
M= {y : y(y) = z}. For nota-

tional simplicity, assume that Sz is discrete and that α(y) M= 1
/∣∣ p′Y |X (y|+1)

pY |X (y|+1) −
p′Y |X (y|−1)
pY |X (y|−1)

∣∣
is well-defined so that, in the language of densities (see [68]), we can write a(z) =

∑y∈Sz α(y)pY |X (y|+1)
(a)
= ∑y∈Sz α(y)ey(y) pY |X (y|−1)

(b)
= ∑y∈Sz α(y)ez pY |X (y|−1)

(c)
=

ez
∑y∈Sz α(y)pY |X (−y|+ 1), where (a) uses the definition of y , (b) uses the def-

inition of Sz and (c) uses the channel symmetry. Now, observe that y(−y) =

log
pY |X (y|−1)
pY |X (y|+1) =−y(y) by channel symmetry, therefore the change of variable y→

−y implies Sz→ S−z. Moreover, the channel symmetry shows that α(y) = α(−y).
It follows that ∑y∈Sz α(y)pY |X (−y|+1) = ∑y∈S−z α(y)pY |X (y|+1) = a(−z).

Lemma 2.1 Consider a binary symmetric channel channel pY |X . If X has uniform
priors pX (±1) = 1/2, then H(X |Y ) = EY |X=+1[log2(1+ e−y(Y ))].

Proof. Since pX (x) = 1
2 , we use the channel symmetry and the Bayes rule to write

H(X |Y ) =−
Z

pY |X (y|+1) log2
pY |X (y|+1)

pY |X (y|+1)+ pY |X (y|−1)
dy

=
Z

pY |X (y|+1)log2(1+ e−y(y))dy.

Definition 2.5 [Entropy Operator] Consider a symmetric density a defined over
R. The operator a 7→ H(a) M=

R +∞

−∞
a(y) log2(1 + e−y)dy is called entropy operator

in the L−domain.

Assume that the binary random variable X with pX (±1) = 1/2 is passed through
a BMSC and then through the LLR function. The following examples compute
the conditional entropy of the resulting channels.

Example 2.4 [Entropy – BEC(ε)] With a(y) M= pY |X (y |+1) = ε ·δ0(y)+(1− ε) ·
δ+∞(y), we have H(X |Y) = ε.

Example 2.5 [Entropy – BSC(ε)] With a(y) M= pY |X (y |+ 1) = ε · δ− log 1−ε
ε

(y)+
(1− ε) · δ+ log ε

1−ε
(y), we have H(X |Y) = h2(ε).

Example 2.6 [Entropy – BAWGN(σ)] The LLRs y(y) = 2
σ2 y have density a(y) M=

σ√
8π

e−
(yσ2−2)2

8σ2 . Unfortunately H(X |Y) = H(a) can only be expressed in terms of
an integral that one has to compute numerically.

Of course, the previous values coincide with the well-known corresponding en-
tropies without post-processing. In the following sections, we will indeed see that
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the channel post-processing y does not affect the channel entropy: More formally,
y(Y ) constitutes a sufficient statistic for estimating X (see Fact 2.6).

2.3 Statistics and Estimators
Let X be a random vector. Consider the family {pY |X=x(y)}x where the random
vector Y represents the observed sample. For any function φ(y), the random vector
or variable φ(Y ) is called statistic. When the statistic φ(Y ) is used to estimate
some unobservable quantity (for example X by choosing φ to be the minimum
mean-square estimator2), then the statistic φ(Y ) is called an estimator.
Estimators or statistics are fairly general notions. More subsequent definitions
show some estimators that are common and useful in coding. Definition 2.6 and
Definition 2.7 assume that transmission takes place over a channel with input vec-
tor X and output vector Y .

Definition 2.6 [Maximum-Likelihood Decision Rule] For a fixed vector y, the
quantity3 x̂ML

i (y) M= argmaxξ(pY |Xi(y|ξ)) is called Maximum Likelihood (ML) de-
cision (or hard estimate) for the ith symbol.

Definition 2.7 [Maximum A Posteriori Decision Rule] For a fixed vector y, the
quantity3 x̂MAP

i (y) M= argmaxξ(pXi|Y (ξ|y)) is called (bit) Maximum A Posteriori
(MAP) decision (or hard estimate) for the ith symbol.

The MAP decoding rule (as well as the ML decoding rule in case of equal priors) is
known to be an optimal decoding rule in the sense that it minimizes the probability
of error, see [2]. The following fact is a straightforward implication of the Bayes
rule.

Fact 2.2 [Equivalence between MAP and ML Estimator] If Xi is uniformly dis-
tributed over X , then x̂ML

i (y) = x̂MAP
i (y) for all y.

In this thesis, we deal mainly with binary alphabets X = {−1,+1}. The ML
and MAP decisions are therefore simply given by the sign of the associated L-

values (logarithms of ratios) ŷML
i (y) M= log

pY |Xi
(y|+1)

pY |Xi
(y|−1) and ŷMAP

i (y) M= log
pXi|Y (+1|y)
pXi|Y (−1|y) .

Following [63, 71, 72], the L-values can be viewed as the ith ML and MAP soft
estimates in R. MAP and ML estimates are linked by the relationship ŷMAP

i (y) =

2In Chapter 5, we will encounter a quantity called minimum mean-square error. Let us re-
view this notion briefly. Further details are available in standard literature, or in [69, 70]. De-
fine x̂MMS(Y ) M= E[X |Y ]; it is called minimum mean-square estimator because it is shown to mini-
mize the estimation error in the mean-square sense. The minimum mean-square error (MMSE) is
defined as E[(X − x̂MMS(Y ))2]. By definition of the conditional expectation, E[(X − x̂MMS(Y ))2] =
E[E[X2|Y ]−E[X |Y ]2].

3By convention, if this maximum is not unique, we define the hard estimate to be equal to the
erasure symbol j.
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ai + ŷML
i (y), where ai

M= log
pXi (+1)
pXi (−1) is the ith a priori estimate. More specifically,

assume that Yi and Y∼i are independent given Xi. For example, this hypothesis,
written Yi→ Xi→Y∼i in (next) Section 2.4, is satisfied by a memoryless channel.4

When written in terms of the LLRs of Definition 2.3, the property pY |Xi(y|ξ) =
pYi|Xi(yi|ξ)pY∼i|Xi(yi|ξ) becomes ŷML

i (y) = yi(yi)+φML
i (y∼i), where

yi(yi)
M= log

pYi|Xi(yi|+1)
pYi|Xi(yi|−1)

is the ith intrinsic estimate,

φML
i (y∼i)

M= log
pY∼i|Xi(y∼i|+1)
pY∼i|Xi(y∼i|−1)

is the ith (ML) extrinsic estimate,

as introduced in [62, 73, 74]. One could alternatively define the extrinsic MAP

estimate φMAP
i (y∼i)

M= log
pXi|Y∼i

(+1|y∼i)
pXi|Y∼i

(−1|y∼i)
= ai + φML

i (y∼i). In case of equal priors,

i.e., ai = 0, then φMAP
i (y∼i) = φML

i (y∼i) and ŷMAP
i (y) = ŷML

i .

2.4 Markov Chains and Sufficient Statistics
Let X ,W,V be random vectors.

Definition 2.8 [Markov Chain] X ,W,V are said to form a Markov chain if X and
V are conditionally independent given W . This relationship is denoted by X →
W →V .

The next fact gives some alternate characterizations of a Markov chain.

Fact 2.3 [Various Characterizations] Assume that the joint probability density
function pX ,W,V (x,w,v) exists. X →W →V is equivalent to the following:

(i) V →W → X ,

(ii) pX ,V |W (x,v|w) = pX |W (x,w)pV |W (v|w),

(iii) pX ,W,V (x,w,v) = pX (x)pW |X (w,x)pV |W (v,w),

(iv) pV |W,X (v|w,x) = pV |W (v|w).

Clearly, for any function φ, if V = φ(W ), then X →W → V . The next example
illustrates an important special instance of this fact.

Example 2.7 With the conventions of Section 2.3, Xi → Y∼i → ΦML
i since ΦML

i =
φML

i (Y∼i). Therefore ΦML
i → Y∼i→ Xi. Of course, the same is true for ΦMAP

i .

4Indeed, if the channel is memoryless (and discrete for simplicity), then
p(y|xi) = ∑∼xi p(y,x∼i|xi) = ∑x∼i p(x∼i|xi)p(y|x) = p(yi|xi)∑x∼i p(x∼i|xi)p(y∼i|x∼i) =
p(yi|xi)∑x∼i p(x∼i|xi)p(y∼i|x∼i,xi) = p(yi|xi)∑x∼i p(y∼i,x∼i|xi) = p(yi|xi)p(y∼i|xi).



2.4. Markov Chains and Sufficient Statistics 17

Definition 2.9 [Sufficient Statistic] Let X and Y be two random vectors. A func-
tion φ(Y ) is said to be a sufficient statistic relative to {pY |X=x(y)}x (or, short, a
sufficient statistic for estimating X) if and only if X → φ(Y )→ Y .

The following examples play a central role in the remainder of the thesis.

Fact 2.4 [Extrinsic MAP Estimate as Sufficient Statistic] Assume Yi→ Xi→ Y∼i,
using the conventions of Section 2.3, and let ΦMAP

i
M= φMAP

i (Y∼i) be the (extrinsic)
MAP estimator. Then ΦMAP

i is a sufficient statistic for estimating Xi (given Y∼i),
i.e., Xi→ ΦMAP

i → Y∼i.

Proof. Assume that we are given z ∈ R. Consider a vector y∼i such that z =
φMAP

i (y∼i) and let Sz
M= {y′∼i : φMAP

i (y′∼i) = z} denote the set of all such vectors.

First, note that ΦMAP
i = φMAP

i (Y∼i) so that pXi|ΦMAP
i ,Y∼i

(xi|z,y∼i) = pXi|Y∼i(xi|y∼i)
(a)
=

(1−xi)+(1+xi)ez

2(1+ez) .
Second, for notational simplicity, assume that Sz is finite and that there exists
a well-defined family {α(y′∼i)} with Vz

M= ∑y′∼i∈Sz pY∼i(y
′
∼i)α(y′∼i) so that, in the

language of densities, we can write pΦMAP
i |Xi

(z|xi) = ∑y′∼i∈SzpY∼i|Xi(y
′
∼i|xi)α(y′∼i) =

∑y′∼i∈Sz
(1−xi)+(1+xi)ez

2(1+ez)
α(y′∼i)pY∼i (y

′
∼i)

pXi (xi)
= (1−xi)+(1+xi)ez

2(1+ez)
Vz

pXi (xi)
. Applying the Bayes

rule, we get log
pXi|ΦMAP

i
(+1|z)

pXi|ΦMAP
i

(−1|z) = z.

Finally, substitute z in the equation obtained from (a) to get pXi|ΦMAP
i ,Y∼i

(xi|z,y∼i)=
pXi|φMAP

i
(xi|z), i.e., Y∼i→ ΦMAP

i → Xi.

Observe that ΦMAP
i and ΦML

i differ only by the constant term ai of the priors. There-
fore ΦML

i is also a sufficient statistic for estimating Xi.

Fact 2.5 [MAP Estimate as Sufficient Statistic] Assume Yi→ Xi→ Y∼i using the
conventions of Section 2.3, and let ΦMAP

i
M= φMAP

i (Y∼i) be the (extrinsic) MAP es-
timator. Then (Yi,Φ

MAP
i ) is a sufficient statistic for estimating Xi (given Y ), i.e.,

Xi→ (Yi,Φ
MAP
i )→ Y .

Proof. Assume that we are given z ∈ R and let y∼i be an element of Sz
M= {y′∼i :

φMAP
i (y′∼i) = z}. Since Yi → Xi → Y∼i, we first get pXi|Yi,Y∼i,Φ

MAP
i

(xi|yi,y∼i,z) =
pYi|Xi

(yi|xi)pXi|Y∼i,Φ
MAP
i

(xi|y∼i,z)

∑x′i∈X pYi|Xi
(yi|x′i)pXi|Y∼i,Φ

MAP
i

(x′i|y∼i,z)
. Since Xi→ΦMAP

i →Y∼i from Fact 2.4, we further

get pXi|Y∼i,Φ
MAP
i

(xi|y∼i,z) = pXi|ΦMAP
i

(xi|z). Finally, substituting in the above equa-
tion, we get pXi|Yi,Y∼i,Φ

MAP
i

(xi|yi,y∼i,z) = pXi|Yi,Φ
MAP
i

(xi|yi,z), i.e., Y → (Yi,Φ
MAP
i )→

Xi.

Fact 2.6 [LLR as Sufficient Statistic] Consider the channel pYi|Xi where Xi and Yi
are random variables, Xi being binary. The LLR Yi = y(Yi) is a sufficient statistic
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for estimating Xi.

Proof. The proof is similar to the one of Fact 2.4. It demonstrates Yi → Yi → Xi

using the set Sz
M= {y′i : φi(y′i) = z}.

Theorem 2.1 [Data Processing Inequality] If X→W→V , then H(X |W )≤H(X |V ).
Alternatively, I(X ,W |V )≤ I(X ;W ).

Proof. X→W →V implies H(X |W ) = H(X |W,V )≤H(X |V ) since conditioning
reduces uncertainty. Using the same argument, we get I(X ;W |V ) = H(X |V )−
H(X |V,W ) = H(X |V )−H(X |W )≤ H(X)−H(X |W ) = I(X ;W ).

As a corollary, for any function φ, consider V = φ(W ). Then X→W →V and the
data processing inequality shows that H(X |W )≤ H(X |V ).

Example 2.8 The previous remark shows that H(Xi|Yi) ≤ H(Xi|y(Yi)). In addi-
tion, Fact 2.6 states that the LLR is a sufficient statistic for estimating Xi, i.e.,
Xi→ y(Yi)→ Yi, therefore H(Xi|y(Yi)) ≤ H(Xi|Yi) from the data processing the-
orem. Hence H(Xi|Yi) = H(Xi|y(Yi)).

Example 2.9 The data processing theorem shows that H(Xi|Y∼i) ≤ H(Xi|ΦMAP
i )

(from Example 2.7). If Yi → Xi → Y∼i (e.g., for a memoryless channel), it also
shows that H(Xi|ΦMAP

i ) ≤ H(Xi|Y∼i) because of Fact 2.4. Hence H(Xi|ΦMAP
i ) =

H(Xi|Y∼i).

Example 2.10 The data processing theorem shows that H(Xi|Y )≤ H(Xi|Yi,Φ
MAP
i )

(from Example 2.7). If Yi → Xi → Y∼i, it also shows H(Xi|Yi,Φ
MAP
i ) ≤ H(Xi|Y )

because of Fact 2.5. Hence H(Xi|Yi,Φ
MAP
i ) = H(Xi|Y ).

Example 2.11 [EXIT Upper Bound] A consequence of Example 2.9 is that for
any function φDEC

i , i.e., any estimator ΦDEC
i

M= φDEC
i (Y∼i), H(Xi|ΦMAP

i )≤H(Xi|ΦDEC
i ).

Following the discussion of Section 2.2, Example 2.8 shows that channel post-
processing does not deteriorate the information content of the channel output and
can therefore be interpreted as part of the channel. A consequence is that the chan-
nel entropies computed in Example 2.4, Example 2.5 and Example 2.6 correspond
to the true channel capacity (up to a change I(X ;Y ) = 1−H(X |Y ) assuming equal
priors). This, together with Fact 2.2, shows that the study of symmetric channels
reduces to a study based on the symmetric channel density a(y).

Lemma 2.2 [Channel Equivalence] Let a(y) be a symmetric density. The transi-
tion density pY |X such that pY |X (y|± 1) = a(±y) describes a symmetric channel
with associated L-density a(y).
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Proof. First, the channel is symmetric since pY |X (y |−1) = a(−y) = pY |X (−y |+
1). Second it has associated L−density a(y) since log

pY |X (y |+1)
pY |X (y |−1) = logey = y .

2.5 Codes, Graphs and BP Estimator
Recall that a linear code of length n is defined as the kernel of a n×m matrix,
m≤ n, see [56]. Such a matrix has rank n−k≤m where k is the code dimension;
it is in general non-unique. A given parity-check matrix can be regarded as the
incidence matrix of a hypergraph whose vertices or variable nodes represent the
code components and whose hyperedges represent the parity-check constraint.
A hypergraph can further be represented as a bipartite graph if we replace the
hyperedges by function nodes: This graphical representation of a code where each
function node is associated with a single parity-check constraint is called a Tanner
graph [57]. Equivalently to a parity-check matrix, a Tanner graph also defines a
code.
For example, the parity-check matrix

1 3 7

2 6 8

4 5 9

1
2
3
4
5
6
7
8
9

Figure 2.2: A Tanner tree.

H =


1 1 1 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0
0 0 1 0 0 1 1 0 0
0 0 0 0 0 0 1 1 1


defines a code of length n = 9 and di-
mension k = 5 over the binary field
F2

M= {0,1}. This binary [9,5] linear
code is equivalently defined by the (cycle-
free) Tanner graph depicted in Figure 2.2.
Tanner graphs can be seen as a factorization of the code membership function if we
associate a single-parity check code to each of its function nodes. In our example,
I{HxT =0} = I{x1+x2+x3=0} · I{x3+x4+x5=0} · I{x3+x6+x7=0} · I{x7+x8+x9=0}. In this respect Tan-
ner graphs constitute a special case of factor graphs. Factor graphs [58–60,67] are
a handy tool for visualizing the factorization of a given function. It is sometimes
advantageous to introduce auxiliary nodes to facilitate the factorization: such aux-
iliary nodes are associated with hidden variables such as state variables in trellis
representations. A particular application of factor graphs concerns the description
of algorithms used in estimation. They provide a very efficient way to reduce
the computational complexity by exploiting the general distributive law over a
(semi-)ring. See [75]. The estimation task will be performed iteratively using a
message-passing algorithm on the factor tree. A standard message-passing algo-
rithm in coding or statistical mechanics is the so-called Belief Propagation (BP),
see [11, 76]. This algorithm, also known as the sum-product algorithm (for which
BCJR [77], Turbo [62] or LDPC [10] decoding are particular instances), performs
symbol MAP decoding on a tree. The BP algorithm will play a central role in
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our work. Let us therefore review the principles of message-passing decoding
and, in particular, the definition of the extrinsic BP estimate. Recall that the MAP
decision rule of Definition 2.7 maximizes

pXi|Y (ξ|y) ∝ pY (y)pXi|Y (ξ|y) = ∑
x∼i

pXi,X∼i,Y (ξ,x∼i,y)

= ∑
x∼i

pXi,X∼i(ξ,x∼i)pY |Xi,X∼i(y|ξ,x∼i)

over ξ ∈ X (σ-additivity law of total probability and Bayes rule).
We see from this general representation that an exponential number of terms
pXi,X∼i(ξ,x∼i)pY |Xi,X∼i(y|ξ,x∼i) might be required to marginalize the probability
pXi,Y=y(ξ) = pY (y)pXi|Y (ξ|y). Fortunately, because of the tree structure, a cascade
of successive factorizations drastically reduces this computational complexity. In
order to see this, assume Yi → Xi → Y∼i as in Section 2.3 and take the intrinsic
factor out of the sum (distributive law in the ring of the reals) to get

pXi|Y (ξ|y) ∝ pY (y)pXi|Y (ξ|y) = pYi|Xi(yi|ξ)︸ ︷︷ ︸
intrinsic factor

·∑
x∼i

pXi,X∼i(ξ,x∼i)pY∼i|X∼i(y∼i|x∼i)︸ ︷︷ ︸
extrinsic factor

.

In fact, the hypothesis Yi→Xi→Y∼i is embedded in the more general memoryless
assumption which is assumed in the rest of the thesis. Now, assume that the extrin-
sic quantity pXi,X∼i(ξ,x∼i) (one function node) further factorizes into K subfactors
(K function nodes) such that pXi,X∼i(ξ,x∼i) = ∏

K
k=1 fk(ξ,xSk) where Sk ⊆ [n]\{i}

are pairwise disjoint. The distributive law permits us to write

pXi|Y (ξ|y) ∝ pYi|Xi(yi|ξ) ·∑
x∼i

K

∏
k=1

(
fk(ξ,xSk)pYSk |XSk

(ySk |xSk)
)

︸ ︷︷ ︸
extrinsic quantity

= pYi|Xi(yi|ξ) ·
K

∏
k=1

(
∑
x∼i

fk(ξ,xSk)pYSk |XSk
(ySk |xSk)

)
. (2.1)

Furthermore, if each individual subfactor fk(ξ,xSk) factorizes into Kk subfactors,
i.e., if fk(ξ,xSk) = fk(xSk

1
)∏

Kk
lk=2 fk(ξ,xSk

lk
) where Sk

lk
⊆ Sk are pairwise disjoint,

then

pXi|Y (ξ|y) ∝pYi|Xi(yi|ξ) ·
K

∏
k=1

(
∑
x

Sk
1

fk(xSk
1
)pY

Sk
1
|X

Sk
1
(ySk

1
|xSk

1
)·

(
∑

x
Sk\S

k
lk

Kk

∏
lk=+1

fk(ξ,xSk
lk
)pY

Sk
lk
|X

Sk
lk

(ySk
lk
|xSk

lk
)
)

︸ ︷︷ ︸
new extrinsic quantity

)
.
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We can now iterate the same procedure for the new extrinsic quantities. By suc-
cessive iterations, we recursively describe the BP algorithm on a tree.

f1
f2
f3
f4
f5
f6
f7
f8
f9

pY1 |X1 (y1|·)
pY2 |X2 (y2|·)
pY3 |X3 (y3|·)
pY4 |X4 (y4|·)
pY5 |X5 (y5|·)
pY6 |X6 (y6|·)
pY7 |X7 (y7|·)
pY8 |X8 (y8|·)
pY9 |X9 (y9|·)

I{x⊥(HT )1}
I{x⊥(HT )2}
I{x⊥(HT )3}
I{x⊥(HT )4}

I{x⊥(HT )1}
I{x⊥(HT )2}
I{x⊥(HT )3}
I{x⊥(HT )4}

Figure 2.3: Factor graph representation. Left: Wiberg-style Factor graph. Right: Forney-
style factor graph.

. . . . . .
{µ1(x)}x {µK(x)}x

{x}

f1 fk

f

fK

{∏K
k=1 µk(x)}x

. . . . . .
{µ1(x1)}x1 {µI(xI)}xI

f

{x1} {xi}

{ξ}

{xI}

{∑x[I]
f (ξ,x[I])∏

I
i=1 µi(xi)}x

Figure 2.4: Message-passing rules. Left: variable node update (if variable node is a leaf,
there are no incoming message functions µk(x) and {µ(x) = 1}x). Right: function node
update (if function node is a leaf, there are no incoming functions µi and µ(x) = f (x)).

Consider our running example and assume that the transmitted codewords are
chosen uniformly at random from C. Then pX (x) = 1

2k I{xHT =0}∝ ∏
4
k=1 I{x(HT )k=0}

and we get

x̂MAP
1 (y)

(a)
= argmaxx1 ∑

x∼1

9

∏
j=1

p(y j|x j) · I{x1+x2+x3=0} · I{x3+x4+x5=0}·

I{x3+x6+x7=0} · I{x7+x8+x9=0}

(b)
= argmaxx1

p(y1|x1)
{

∑
x2,x3

I{x1+x2+x3=0}p(y2|x2)p(y3|x3)·[
∑

x4,x5

I{x3+x4+x5=0}p(y4|x4)p(y5|x5)
]
·[

∑
x6,x7

I{x3+x6+x7=0}p(y6|x6)p(y7|x7)(
∑

x8,x9

I{x7+x8+x9=0}p(y8|x8)p(y9|x9)
)]}

.
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For each value of x1, 6655 elementary operations (function evaluation, multipli-
cation or addition) are required to determine the marginal in a brute force (a).
Some further thoughts show that this complexity reduces down to 601 elementary
operations if one takes advantage of the distributive law (b): The BP algorithm
will operate recursively, evaluating first the quantity inside the bracket “( )” (in
4× 5 + 3 operations), then the brackets “[ ]”, and finally ”{ }”. This is better vi-
sualized by the propagation of beliefs through the factor graph in Figure 2.3 using
the generic message-passing rules shown in Figure 2.4 and provided by Equation
2.1.
So far, the BP recursion has been written for a unique variable node but one can
take advantage of a parallel processing of all variable nodes. In the remainder of
the thesis (unless we explicitly use the equivalent peeling schedule, see Section
2.10), we choose the following time schedule. At iteration ` we simultaneously
process all variable nodes, then all function nodes. The L−value

φ
BP(G),`
i (y∼i)

M= log
µ`(+1,y∼i)
µ`(−1,y∼i)

is the ith BP estimate at iteration `,

and {µ`(xi,y∼i)}xi is given by the product of the messages coming from the
neighboring function nodes at iteration ` (recall µ`=0(+1,y∼i) = µ`=0(−1,y∼i) =
1). The BP decision for the ith bit at the `th iteration is therefore x̂BP(G),`

i (y) M=

sign
(
yi +ai +φ

BP(G),`
i (y∼i)

)
.

Assume we are given a code C. For notational simplicity, we skip the dependence
of BP decoding on a particular graphical representation of C, i.e., we use the su-
perscript BP, instead of BP(G). For our running example,

φBP,0
1 (y∼1) = 0, φBP,1

1 (y∼1) = log
∑x2,x3 I{x2+x3=0}p(y2|x2)p(y3|x3)

∑x2,x3 I{x2+x3=1}p(y2|x2)p(y3|x3)
,

φBP,2
1 (y∼1) = log

∑x2,x3 I{x2+x3=0}p(y2|x2)p(y3|x3)qy4,y5(x3)ry6,y7(x3)

∑x2,x3 I{x2+x3=1}p(y2|x2)p(y3|x3)qy4,y5(x3)ry6,y7(x3)
,

where we use the functions qy4,y5(x3)
M= ∑x4,x5

I{x4+x5=x3}p(y4|x4)p(y5|x5) and

ry6,y7(x3)
M= ∑x6,x7 I{x6+x7=x3}p(y6|x6)p(y7|x7), and φBP,3

1 (y∼1) = φMAP
1 (y∼1) (cycle-

free graph). In terms of LLRs, the dual rule (see Appendix 2.B and Example
2.14) reveals that the above expressions can be computed as φBP,1

1 (y∼1) = y2 �y3,
φBP,2

1 (y∼1) = y2 � (y3 +y4 �y5 +y6 �y7), and φBP,3
1 (y∼1) = y2 � (y3 +y4 �y5 +

y6 � (y7 +y8 �y9)) = φMAP
1 (y∼1) where the “boxplus function,” denoted by “�”,

is defined in [63].

BP (for ` as large as the longest subtree) and MAP decoding are identical on a tree.
However cycle-free graphs with a bounded state size do not appear to be powerful
enough models to allow transmission arbitrarily close to capacity. For instance, it
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is known that in the setting of standard binary Tanner graphs the error probability
of codes defined on trees is lower bounded by a constant that only depends on the
channel and the rate of the code [65, 78].

Therefore we will consider graphs with
1
2
3
4
5
6
7

1 23

4

5

6 7

Figure 2.5: A [7,4] Hamming Tanner graph.
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Pr{x̂1(y∼1)=j}

MDB

BP

MAP

Figure 2.6: Comparison of the extrinsic era-
sure functions for the [7,4,3] Hamming and
various decoding algorithms when transmis-
sion takes place over the BEC.

cycles as illustrated by the binary [7,4]
Hamming5 code in Figure 2.5. First,
let us show that the BP decoder is sub-
optimal on such a graph. Assume that
codewords are chosen uniformly at ran-
dom from the [7,4] Hamming code and
transmitted through BEC(ε). It is easy
to check that all bit estimates have the
same probability of erasure, i.e., ∀i ∈
[7], Pr{x̂MAP

i = j}= Pr{x̂MAP
1 = j} (see

further details in Chapter 3, in partic-
ular Lemma 3.5). Consider a decoder
that decodes up to dmin− 1 erasures.
We call it a minimum-distance-based
(MDB) decoder. For the [7,4] Ham-
ming code, we have dmin = 3 so that
the MDB decoder has extrinsic era-
sure probability6 Pr{x̂MDB

1 (y∼1)=j}= 1−
ε6−6εε5. In fact, a MAP decoder can
recover certain patterns beyond dmin−
1 and a tedious but conceptually easy
exercise (see also Chapter 3) shows

that Pr{x̂MAP
1 (y∼1)=j}= 1−ε6−6εε5−12ε2ε4−4ε3ε3 = 3ε2 +4ε3−15ε4 +12ε5−

3ε6. Of course we have Pr{x̂MAP
1 (y∼1)=j} ≤ Pr{x̂MDB

1 (y∼1)=j}, i.e., we find that the
MDB decoder is sub-optimal. It is now natural to ask: How would a BP de-
coder perform? Some thought reveals that the extrinsic erasure probability is
Pr{x̂BP

1 (Yi=j,y∼1)=j} = 12ε2 − 28ε3 + 27ε4 − 12ε5 + 2ε6. See also [16] for the
finite-length analysis of BP decoding. The performance curves of the respective
decoders are compared in Figure 2.6. We see that the BP decoder on the consid-
ered graph is strictly sub-optimal. BP decoding performs only a local search; its
sub-optimality is a general statement (implied by the data processing theorem).
Notice nevertheless that the BP performance curve in Figure 2.6 is not “too” poor,
thus BP decoding is used in practice (in particular associated with sparse graphs).
The general wisdom is to apply BP decoding to graphs with loops and to consider
this type of decoding as a (typically) strictly sub-optimal attempt to perform max-
imum a posteriori (MAP) bit decoding. Therefore one would not expect any link
between the BP and the MAP decoder, except for the obvious sub-optimality of
the BP decoder... We will see that the actual typical behavior is more surprising!

5A p-ary [pr − 1, pr − 1− r] Hamming code is defined using the (parity-check) matrix whose
columns are all non-zero p-ary r-tuples, see [56]. This construction implies that Hamming codes
are perfect codes with distance dmin = 3.

6Recall that for a single-parity check code of length r, the extrinsic erasure probability is given

by Pr{x̂MAP
i (y∼i)=j} M= Pr{x̂MAP

i (Yi=j,y∼i)=j} = Pr{x̂MAP
i =j}

ε = 1− εr−1 where ε = 1− ε. This is true
because the code can correct exactly dmin − 1 = 1 erasure. For single-parity check codes, we have
Pr{x̂MAP

i (y∼i)=j}= Pr{x̂MDB
i (y∼i)=j}.
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2.6 Standard Notations for Iterative Coding Systems

To be concrete, most of the statements of this thesis will be exemplified using stan-
dard Low-Density Parity-Check (LDPC) codes introduced in [10]. However, the
results extend to various scenarios, among others Generalized LDPC (GLDPC)
code ensembles or multi-edge ensembles such as Turbo codes. Many statements
will therefore be stated in a general form. LDPC codes were originally defined
in [9,10] as the kernel of a pseudo-random low-density parity-check matrix whose
rows and columns have a fixed number of non-zero entries. Such a matrix is
therefore sparse for large lengths n. More generally, iterative coding systems are
described by sparse factor graphs.

An in-depth introduction to the analysis of LDPC ensembles is found, e.g., in
[12–15]. Further references on LDPC and iterative coding analysis are [11,25,57,
62,63,67,79–92]. We will use standard conventions; for convenience of the reader,
and to settle notation, let us nevertheless briefly review some key statements. The
degree distribution (dd) pair (λ(x),ρ(x)) = (∑ j λ jx j−1,∑ j ρ jx j−1) represents the
left and right degree distributions of the graph from the edge perspective. (For
Turbo codes, λ(x) will be the distribution of the systematic information symbols,
see Chapter 7.) We consider the ensemble LDPC(n,λ,ρ) of such graphs7 of length
n and we are interested in its asymptotic average performance (when the block-
length n→ ∞).

This ensemble can equivalently be described by the pair Ξ
M= (Λ(x),Γ (x)) =

(∑ j Λ jx j,∑ j Γ jx j), which is the dd pair from the node perspective. The changes of
representation are obtained via Λ(x) = (

R x
0 λ(u)du)/

R
λ, Γ (x) = (

R x
0 ρ(u)du)/

R
ρ,

λ(x) = Λ′(x)/Λ′(1) and ρ(x) = Γ ′(x)/Γ ′(1). Notice that Λ′(1) = 1/
R

λ is the av-
erage left (variable node) degree, Γ ′(1) = 1/

R
ρ is the average right (check node)

degree. An important characteristic of the ensemble LDPC(n,λ,ρ) = LDPC(n,Ξ)
is the design rate rΞ

M= 1−
R

ρ/
R

λ = 1−Λ′(1)/Γ ′(1). Let rG be the actual rate of
an element of the ensemble LDPC(n,Ξ). The rate rG is potentially larger than the
design rate (as the associated parity-check matrix has potentially linearly depen-
dent rows). However, when n→∞, in many cases, this rate is provably the design
rate with high probability. This is formalized in the next section. (Notice that,
in this thesis, we consider a classical dd pair (λ,ρ) in order to define the initial
ensemble of sparse graphs. This ensemble of codes is asymptotically proper, see
Appendix 2.A, which means that limn→∞ ELDPCλ,ρ[∑n

i=1 H(Xi)] = 1.)

7Clarifications: First, the ensemble of graphs is in general slightly larger that the ensemble of
corresponding codes. For example, a graph might have multiple edges or two graphs might represent
the same code. We do not distinguish such cases because it is shown to have a negligible effect on the
average ensemble performance. Second, codes (or graphs) in general cannot be constructed for any n
but only for any nm where {nm}m is a sub-sequence of {n}n. For the analysis, we only deal with the
sequence {LDPC(nmλ,ρ)}m and the shorthand “n→ ∞” means in fact “m→ ∞.”



2.7. Asymptotic Rate and Design Rate 25

2.7 Asymptotic Rate and Design Rate
Consider a dd pair Ξ and let rΞ be the associated design rate. Consider the en-
semble LDPC(n,Ξ) and let G be chosen uniformly at random from this ensemble
with rate rG. For our purpose, we would like to know when the asymptotic average
rate converges to the design rate, i.e., when

lim
n→∞

ELDPC(n,Ξ)[rG] = rΞ .

At first view, one would expect that this statement holds for any LDPC ensemble.
However this is not necessarily the case, see discussion in Section 4.5. The next
lemma asserts that, under some technical conditions, the actual rate of a random
element of an ensemble is equal to the design rate with high probability when the
blocklength n→ ∞.

Lemma 2.3 [Design Rate versus Asymptotic Rate] Consider a dd pair Ξ with as-
sociated design rate rΞ . Let us define the function

ΘΞ(u) M=−Λ′(1) log2

[
1+u · vu

(1+u)(1+ vu)

]
+∑

l

Λl log2

[
1+ul

2(1+u)l

]
+

Λ′(1)
Γ ′(1) ∑

r

Γr log2

[
1+
(1− vu

1+ vu

)r]
,

where vu =
(

∑l
λlul−1

1+ul
)
/
(

∑l
λl

1+ul
)
. Let G(n) be chosen uniformly at random

from the ensemble LDPC(n,Ξ), let rG(n) denote its actual rate. If ∀u ∈ (0,1),
ΘΞ(u)≤ 0, then rG(n) converges and

lim
n→∞

ELDPC(n,Ξ)[rG] = rΞ .

More precisely, ∃B > 0, ∀ξ > 0, ∃nξ,Ξ ∈N, such that ∀n > nξ,Ξ we have Pr{|rG(n)−
rΞ | > ξ} ≤ e−Bξn, and ∃C > 0 such that ∀n > nξ,Ξ we have ELDPC(n,Ξ)[rG(n)−
rΞ ]≤C logn

n .

Proof. Recall that for any G∈ LDPC(n,Ξ), we have rG ≥ rΞ , and that Jensen’s in-

equality reads nrΞ ≤ ELDPC(n,Ξ)
[
nrG
]
=

ELDPC(n,Ξ)[log2 NG]
n ≤ log2 ELDPC(n,Ξ)[NG]

n . The
idea of the proof is to use the first-order moment method and the Hayman approx-
imation to derive an upper bound on the average rate of the ensemble LDPC(n,Ξ)
when n→ ∞. If the logarithm of the expected number of codewords divided by
the length is close to the design rate, then we can use the Markov inequality to
show that most codes have rates close to the design rate.
Following [9,87,90,93–99] and using weight enumerator functions, we write that
the expected number of codewords involving E edges is given by

ELDPC(n,Ξ)[NG(E)] =
1(nΛ′(1)
E

)coef
{

∏
l

(1+ul)nΛl ∏
r

qr(v)
n Λ′(1)

Γ ′(1) Γr
,uEvE

}
,
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where qr(v) = ((1 + v)r + (1− v)r)/2. Let n tend to infinity and define e =
E/(nΛ′(1)). From standard arguments presented in the quoted papers it is known
that, for a fixed e ∈ [0,1], the exponent limn→∞

1
n log2

(
E[NG(enΛ′(1))]

)
is given

by the infimum with respect to u,v > 0 of

∑
l

Λl log2(1+ul)−Λ′(1)e log2 u+
Λ′(1)
Γ ′(1) ∑

r

Γr log2 qr(v)

−Λ′(1)e log2 v−Λ′(1)h(e). (2.2)

We aim at evaluating the exponent corresponding to the expected number of code-
words, i.e., we want to determine limn→∞

1
n log2

(
E[NG]

)
, where NG = ∑E NG(E).

As there is only a linear number of “types” (numbers E) this exponent is equal to
the supremum of (2.2) over all 0≤ e≤ 1. In summary, the sought after exponent
is given by a stationary point of the function stated in Eq. (2.2) with respect to u,
v and e. Taking the derivative with respect to e gives us e = uv/(1 + uv). If we
substitute this expression for e into Eq. (2.2), subtract the design rate r(Λ,Γ ), and
rearrange the terms somewhat, we get the expression of ΘΞ(u). Next, if we take
the derivative with respect to u and solve for v, we get the expression for vu. In
summary, ΘΞ(u) is a function so that

log2 ELDPC(n,Ξ)[NG] = on(n)+n
(
rΞ + sup

u∈[0,∞)
ΘΞ(u)

)
.

In particular, by explicit computation we see that we always have ΘΞ(1) = 0. The
case u = 1 corresponds to the exponent of codewords of weight n/2. Therefore,
the condition that the global maximum of ΘΞ(u) is achieved at u = 1 is equivalent
to the condition that the expected weight enumerator is dominated by codewords
of weight (close to) n/2. In this case, there exists B > 0 such that ∀ξ > 0, ∃nξ,Ξ ∈
N, ∀n > nξ,Ξ ,

Pr{rG ≥ rΞ + ξ}= Pr
{

NG ≥ 2n(ξ−on(1))ELDPC(n,Ξ)[NG]
}
≤ e−Bnξ ,

where the last step follows from the Markov inequality if B = (log2)/2 and ωn ≤
ξ/2 for any n ≥ n0. Moreover, since rG ≤ 1, we get ELDPC(n,Ξ)[|rG− rΞ |] ≤ ξ +
e−Bnξ , and the last claim follows by choosing ξ = logn/Bn.
It now remains to show that ΘΞ(u) achieves its maximum over [0,+∞) in [0,1].
With this aim, first observe the following symmetries. The function u 7→ vu enjoys
the property v1/u = 1/vu for any u > 0, e.g., u ∈ (0,1) implies vu ∈ (0,1). In
fact, the change (u,vu)↔ (1/u,1/vu) corresponds to the change e↔ 1−e, which
indicates the symmetry around the half-weight codewords. Observe now that, for
all u ∈ (0,1),

ΘΞ(u)−ΘΞ(1/u) =
2Λ′(1)
Γ ′(1) ∑

r:r odd
Γr log2

[ (1+ vu)r +(1− vu)r

(1+ vu)r− (1− vu)r
]

=
2Λ′(1)
Γ ′(1) ∑

r:r odd
Γr �r

j=1 log(1/vu)
(a)
≥ 0,
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where (a) is an equality if and only if Γr = 0 for all odd degree r. Therefore, if
ΘΞ has a maximum in u′ > 1, it has necessarily another maximum in u = 1/u′ <
1. Since ΘΞ(1) = 1, we finally have that limn→∞ ELDPC(n,Ξ)[rG] = rΞ whenever
ΘΞ(u)≤ 0 over (0,1).

Discussion: First notice that, if the conditions of the lemma are fulfilled, then the
function ΘΞ is locally concave around 1. If we use slightly stronger conditions,
i.e., if we assume ∀u ∈ (0,1), ΘΞ(u) < 0, then the function is strictly concave in
1. In this case the function is also locally quadratic (i.e., locally “Gaussian”): This
property is further investigated in [98] where it is assumed that the maximum of
ΘΞ is unique and achieved for u = 1. In this case where ∀u ∈ (0,1), ΘΞ(u) < 0,
it can even be specified that Pr{nrG(n) = nrΞ + δ} = 1− on(1) where δ = 0 in
general, and δ = 1 if x 7→ Λ(x) is an even function: This means that all parity-
check equations (except one trivially obtained as the sum of all remaining parity-
check equations) are linearly independent with high probability.
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Figure 2.7: Characterization of the growth rate of the average weight via u 7→ ΘΞ(u).
Left: dd pair (λ(x),ρ(x)) = (x2,x5) with design rate r = 1

2 . Right: dd pair (λ(x),ρ(x)) =
( 2x+3x2+4x13
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Figure 2.8: Growth rate of the average weight via the parametric curve
{( uvu

1+uvu
,ΘΞ(u))}u∈[0,+∞). Left: dd pair (λ(x),ρ(x)) = (x2,x5) with design rate

r = 1
2 . Right: dd pair (λ(x),ρ(x)) = ( 2x+3x2+4x13

10 ,x6) with design rate r = 19
39 .

Second, observe that the function ΘΞ(u) is essentially a re-parameterization for
the growth rate of the average weight distribution.
This is illustrated in Figure 2.7. The parameter u = 1 corresponds to codewords
of a relative weight of one-half. The standard picture for the growth rate of the
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average weight distribution is depicted in Figure 2.8. In the two considered ex-
amples, the maximum growth rate corresponds to codewords of a relative weight
of one-half: The maximum of u 7→ ΘΞ(u) is achieved for u = 1 and Lemma 2.3
asserts that the actual asymptotic rate is the design rate.
One further consequence of the characterization given by Lemma 2.3 is the fol-
lowing. The observation stated at the end of the proof shows that the growth rate of
the average weight distribution is symmetric with respect to the line representing
the half-weight codewords iff all parity-check nodes have even degree.
Lemma 2.3 is practical in the sense that it is a “plug and play” criterion to insure
that the actual rate is the design rate with high probability for sufficiently large
blocklengths. However, it is only a sufficient condition. It could happen that this
condition is not fulfilled although the actual rate is the design rate with high prob-
ability. This would mean that the average growth rate can still be strictly below
the growth rate of the average weight distribution obtained from the combinatorial
first moment method.
Finally, let us show that for regular LDPC ensembles the actual rate always con-
verges to the design rate.

Theorem 2.2 [Asymptotic Rate for Regular Ensembles] Assume that we are given
a regular dd pair (λ(x),ρ(x)) = (xl−1,xr−1). Let rl,r = 1− l

r
be the associated

design rate. Consider the ensemble LDPC(n,xl−1,xr−1) and let G(n) be chosen
uniformly at random from this regular ensemble. Let rG(n) denote its actual rate.
Then

lim
n→∞

ELDPC(n,xl−1,xr−1)[rG] = rl,r.

Proof. In the regular case the expression of ΘΞ(u) simplifies to

ΘΞ(u) = log
(1

2
(1+ul)1−l((1+ul−1)r +(1−ul−1)r)

l
r

)
.

Define x M= ul−1. Then the condition ΘΞ(u)≤ 0, with strict inequality except for
u = 1, is equivalent to f (x,r) ≤ g(x,l), with strict inequality except for x = 1,
where f (x,r) M= ((1 + x)r +(1− x)r)

1
r and g(x,l) M= 2

1
l (1 + x

l
l−1 )

l−1
l . We start

by showing that for r ≥ 2 and x ≥ 0, f (x,r) ≤ g(x,r), i.e., that the desired in-
equality is true for the choice l= r. To see this, consider the equivalent statement
2∑i

(
r
2i

)
x2i = f (x,r)r≤ g(x,r)r = 2∑ j

(
r−1

j

)
x

r
r−1 j. For r= 2 a direct check shows

that the two sides are equal and the same is true for x = 0. Consider therefore the
case r ≥ 3 and x > 0. First, cancel the factor 2 from both sides. Next, note that
both series start with the term 1 and if r is even then the last term on both sides
is xr. For each remaining term on the left of the form

(
r
2i

)
x2i, 2 ≤ 2i < r, there

are exactly two terms and they have the form
(
r−1
2i−1

)
x

(2i−1)r
r−1 +

(
r−1

2i

)
x

2ir
r−1 on the
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right. Now note that for x > 0, the function α 7→ xα is convex for α > 0 and that(
r−1
2i−1

)
+
(
r−1

2i

)
=
(
r
2i

)
. Therefore by Jensen,(

r−1
2i−1

)(
r
2i

) x
(2i−1)r
r−1 +

(
r−1

2i

)(
r
2i

) x
2ir
r−1 ≥

(
x((r−1

2i−1)
(2i−1)r
r−1 +(r−1

2i ) 2ir
r−1 )/(r2i)

)
= x2i.

As we know that f (x,r)≤ g(x,r) for r≥ 2 and x≥ 0, the proof will be complete
if we can show that g(x,l) is a decreasing function in l and that it is strictly
decreasing except for x = 1: we write f (x,r) ≤ g(x,r) ≤ g(x,l), where the last
inequality is strict for x 6= 1.
It remains to show that g(x,l) is indeed decreasing in l. Consider the related
function g̃x(l)

M= 2
1
l (1+x

l
l−1 )

l−1
l where l is now a real-valued variable. It is easy

to check that the sign of dg̃x(l)
dl is given by the opposite of the sign of w(x,l) M=

lx
l

l−1 log(x)+(l−1)
(

1+ x
l

l−1

) (
log(2)− log(1+ x

l
l−1 )

)
. Define y M= xl/(l−1)

to get w(x,l) = w̃l(y)
M= (l− 1)

(
y log(y) + (1 + y) log(2)− (1 + y) log(1 + y)

)
.

Since w̃′l(y) = (l− 1) log 2y
1+y , w̃′l(y) = 1

y(1+y) , we find that w̃l(y) achieves its
(unique) minimum in 1 such that w̃l(1) = 0, and w̃l(y) > 0 for y ∈ (0,+∞)\{1}.
This shows that g̃x(l) is decreasing in l and concludes the proof.

Discussion: With the same arguments as above, one can say that, in the case of
such (l,r)-regular LDPC ensembles, we have Pr{rG(n) = rl,rn + ν} = 1− on(1)
where ν = 1 if l is even, and ν = 0 otherwise.

2.8 Degraded Channels and Threshold

Once an ensemble and its corresponding asymptotic rate (or design rate) have
been fixed, a natural approach for practical coding is to consider a family of chan-
nels ordered by some measure of the “noise” and to study at which threshold the
“noise” prevents (asymptotically) the decoder from recovering the information.
The channel family will be typically {BMSC(p)}p where p is a real-valued pa-
rameter, see Section 2.1. In most of the cases, p can be viewed as the channel
entropy h such that an increase of p corresponds to some degradation of the trans-
mission channel. The largest value of p that is compatible with a vanishing bit
error probability will be the threshold associated with the considered decoding.
Following [14, 15] let us formalize those concepts when the transition densities
are assumed to exist.

Definition 2.10 [Physical Degradation] Assume we are given two channels pZ|X , pY |X
with input alphabet X , and output alphabets Z, respectively Y . We say that pZ|X
is physically degraded with respect to pY |X and denote pY |X ≺ pZ|X if and only if
there exists a joint distribution pY,X |Z such that X → Y → Z.
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A few remarks are in order. First, let us comment our definition of channel degra-
dation. It is easy to see that physical degradation implies stochastic degrada-
tion [55]. In fact, most of the statements of this thesis are meaningful if we con-
sider a channel pZ|X that is stochastically degraded with respect to pY |X . How-
ever, since we are mostly interested in marginals (or linear operators acting on
marginals), we are free to think of the channel pZ|X as a physically degraded ver-
sion of pY |X .
Second, let us justify the notation “≺”. Observe that two memoryless channels
pY |X ≺ pZ|X are such that H(X |Y ) ≤ H(X |Z) because of the data processing the-
orem. Moreover, as shown in [65], if we consider coded transmission over these
two channels and denote by PrMAP(pY |X ) and PrMAP(pZ|X ) the respective (bit or
block) error probabilities associated with a MAP decoder, then PrMAP(pY |X ) ≤
PrMAP(pZ|X ). Third, observe that if the channels are binary and symmetric, then
the channel pZ|Y itself is also symmetric, see [65].

Definition 2.11 [Order implied by Physical Degradation] Consider the input al-
phabet X and the output alphabet Y . Consider a family of memoryless channels
with common input and output alphabets {pp

Y |X}p∈P parameterized by p ∈ P⊆R.
This family is said to be ordered by physical degradation if and only if p1 < p2
implies pp1

Y |X ≺ p
p2
Y |X .

If a family parameterized by−p is ordered by physical degradation, we will some-
times (when there is no risk of confusion) say that the family itself is ordered by
physical degradation.

Definition 2.12 [Ordered and complete Family] Consider the input alphabet X
and the output alphabet Y . Consider a family of memoryless channels with com-
mon input and output alphabets {pp

Y |X}p∈P parameterized by p ∈ P ⊆ R. If this

family is ordered by physical degradation and if {hp}p
M= {H(X |Y (p))}p ranges

from 0 to H(X) (where p describes P and where H(X |Y (p)) is the conditional en-
tropy associated with pp

Y |X ), then the family is said to be ordered and complete.

Example 2.12 The standard channel families {BEC(ε)}ε∈[0,1], {BSC(ε)}ε∈[0,1/2],
and {BAWGNC(σ)}σ∈[0,∞) are all ordered and complete.

The notion of threshold is inherent to the notion of physical degradation. Let us
now review different thresholds that characterize transmission over a complete
and ordered family of memoryless symmetric channels, call it {pp

Y |X}p∈P. First,

the ultimate limit is the Shannon threshold that we denote by pSH M= h−1(1− r∞)
where r∞ indicates the (asymptotic) rate of transmission. For this rate the channel
coding theorem (see [2, 54, 55]) shows that transmission at a vanishing (block)
error probability (independently of the code and/or decoder) is not possible above
this threshold.
The existence of a threshold phenomena concerning the MAP decoding of codes
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is discussed in [21, 22] when the minimum distance of a sequence of linear codes
of length n tends to infinity when n→ ∞. Let us exemplify this notion for the
case of an ensemble of LDPC codes characterized by the dd pair Ξ from a node
perspective.

Definition 2.13 [MAP Threshold] Consider a dd pair Ξ and assume that G is cho-
sen uniformly at random from LDPC(n,Ξ). Assume that transmission takes place
over a complete and ordered family of BMS channels. The MAP threshold is de-
fined as

pMAP M= min{p : liminfn→∞ELDPC(n,Ξ)
[
HG(X |Y (ε))/n

]
> 0}.

Discussion: Observe that, with this definition, the inequality pMAP≤ pSH is a rephras-
ing of the channel coding theorem (combined with the Fano inequality and the
strong converse [2, 55]). To see this, recall that the Fano inequality implies that
the block error probability is (up to some fixed scaling) larger than the entropy
rate, i.e., Pr{x̂MAP

[n] (Y ) 6= X} ≥ (H(X |Y )−1)/(nrG). This implies that transmission
at a vanishing (block) error probability (for this particular ensemble) is not pos-
sible in average above this threshold. Moreover, a stronger result is given by the
strong converse. This states that transmission is reliable below this threshold so
that pMAP ≤ pSH. Another reason to define the MAP threshold as above is more
intuitive and considers the conditional entropy as a measure of the typical number
of codewords compatible with a received vector. Let us consider the operational
meaning of the above definition for a particular instance of transmission. On the
one hand, assume that p < pMAP, then there exists a subsequence of blocklengths so
that the average conditional entropy rate converges to zero. Assume that the con-
ditional normalized entropy concentrates (this result is shown in Theorem 4.3). It
follows that most of the codes in the corresponding ensembles have a conditional
entropy rate smaller than any fixed constant. For sufficiently large blocklengths, a
conditional entropy that grows sublinearly implies that the receiver can limit the
set of hypothesis to a subexponential list that with high probability contains the
correct codeword. Therefore, in this sense, reliable communication is possible.
On the other hand, assume that p > pMAP. In this case the conditional entropy rate
stays bounded away from zero by a strictly positive constant for all sufficiently
large blocklengths. If the conditional normalized entropy concentrates (Theorem
4.3), then this is not only true for the average over the ensemble but for most ele-
ments from the ensemble. It follows that with high probability, for most elements
from the ensemble, reliable communication is not possible.
Notice that we set the hypothesis of a complete family simply in order to lay the
emphasis on practical communication schemes. This hypothesis is however not
strictly required by the above definition of threshold (an ordered family would be
sufficient).
Similar to the MAP threshold, specific ensembles like LDPC ensembles exhibit
a threshold phenomena when they are decoded using the BP algorithm. In this
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case, the behavior is well-defined as observed in [12–15]. Various (equivalent)
definitions of the BP threshold are possible. We will use the following.

Definition 2.14 [BP Threshold] Consider a dd pair Ξ and assume that G is chosen
uniformly at random from LDPC(n,Ξ). Assume that transmission takes place
over a complete and ordered family of BMS channels. The BP threshold is defined
as

pBP M= inf{p : lim
`→∞

lim
n→∞

ELDPC(n,Ξ)
1
n

n

∑
i=1

Pr{x̂BP,`
i (Y ) 6= Xi}> 0}.

Discussion: Let PMAP
b

M= 1
n ∑

n
i=1 Pr{x̂MAP

i (Y ) 6= Xi} denote the average symbol er-
ror probability and h2 the binary entropy. The Fano inequality reads h2(PMAP

b ) ≥
H(X |Y )/n. Hence our definition of pBP since it has for straightforward conse-
quence (using the sub-optimality of BP decoding shown in Example 2.9 after tak-
ing the limits) that pBP ≤ pMAP.

Example 2.13 [Thresholds over the BEC] Assume transmission takes place over
{BEC(ε)}ε∈[0,1]. The BP threshold is alternatively determined as εBP M= sup{ε ∈
[0,1] : ελ(1− ρ(1− x)) < x,∀x ∈ (0,1]}. See [12–15] and Chapter 3. Opera-
tionally, if we transmit at ε < εBP and use a BP decoder, then all bits except pos-
sibly a sub-linear fraction can be recovered when n→ ∞. Otherwise, if ε ≥ εBP,
then a fixed fraction of bits remains erased after BP decoding when n→ ∞. The
BP threshold associated with LDPC(x2,x5) is εBP ≈ 0.429. Values for the MAP
threshold were first obtained by the replica method in [28]. Some steps of the
replica method are not rigorously justified and, in [37] a simple counting argument
leading to an upper bound for this threshold is given. This argument is explained
and sharpened in Section 4.2.2. In this thesis we will develop the viewpoint taken
in [48] and we will see that the MAP threshold associated with LDPC(x2,x5) is
εMAP ≈ 0.488.

In the previous example, we have verified that εBP ≈ 0.429≤ εMAP ≈ 0.488≤ εSH =
0.5. Note that the last inequality is obtained from the previous section where it is
shown that the design rate equals the asymptotic rate for regular ensembles. As
stated above, the inequalities

pBP ≤ pMAP ≤ pSH M= 1− liminfn→∞

(
ELDPC(n,Ξ)[rG]

)
≤ 1− rΞ

are true for any complete and ordered family of BMS channels. Furthermore, for
BEC(ε), we show in Appendix 2.C that

εBP ≤ εMAP ≤min{εSH, εSC},

where εSH and εSC M= 1
λ′(0)ρ′(1) denote the Shannon and stability condition thresh-

olds, respectively. A consequence of the Maxwell construction presented in this
thesis is that the above relations will generalize naturally over any family of BMS
channels.
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2.9 Channel Smoothness
The order implied by physical degradation leads naturally to the notion of “dif-
ferentiability” with respect to a measure of the degradation. More precisely, in
the chapters ahead, especially Chapter 5, Chapter 6 and Chapter 7, we will of-
ten be concerned by the “differentiability” of certain quantities with respect to a
given uncertainty measure. For example, we will study how the conditional en-
tropy H(X |Y ) behaves when the noise in the channel varies. In order to ensure
that the considered objects exist, we need to impose some regularity conditions
on the channel family with respect to a given channel parameter. This can be done
in various ways. We choose the following convention for practical reasons, see,
e.g., [100].

Definition 2.15 [Channel Smoothness] Consider the input alphabet X and the out-
put alphabet Y . Consider a family of memoryless channels with common input
and output alphabets {pp

Y |X (y |x)}p∈P parameterized by p ∈ P ⊆ R. The channel
family is said to be smooth with respect to p if for all x ∈ X and all bounded con-
tinuously differentiable functions f (y), the integral

R
f (y)pp

Y |X (y |x)dy exists and
is a continuously differentiable function with respect to p, p ∈ P.

Discussion: If {BMSC(p)} is smooth, the derivative d
dp

R
f (y)pY |X (y|x)dy ex-

ists and is a linear functional of f . It is therefore consistent to formally define
the derivative of pY |X (y|x) with respect to p by setting d

dp

R
f (y)pY |X (y|x)dy M=R

f (y)
dpY |X (y|x)

dp dy. In a large number of cases it is relatively easy to check that the
channel family is smooth, for example, if Y is finite and the transition probabil-
ities are differentiable functions of p, or if it admits a density with respect to the
Lebesgue measure and the density is differentiable for each y. In these cases, our
formal definition coincides with the ordinary derivative. Examples are the BMS
channel families {BEC(ε)}1

ε=0, {BSC(ε)}ε∈[0,1/2], and {BAWGNC(σ)}σ∈[0,∞),
which are then all smooth.
In the case of transmission over a BMSC, we will see that it is interesting and
useful to parameterize the channels in such a way that the parameter reflects the
channel entropy h

M= H(X |Y ). More precisely, let {cp}p be a family of BMS
channels characterized by their L-densities and such that the random input X has
equal priors. We then write this family of L-densities as {ch}h if H(cp) = h, where
H is the entropy operator of Definition 2.5. Observe that, if c is a (symmetric)
L−density, then

H(c) M=
Z

∞

−∞

c(y)log2(1+ e−y )dy =
Z

∞

−∞

c(y)l(y)dy =
Z

∞

0
h2

(
e−y

1+ e−y

)
c|L|(y)dy ,

where c|L| indicates the channel density in the |D|−domain, see Appendix 2.B.
This integral always exists; it is continuously differentiable in p when the family
is smooth. (If the channel does not admit a density, then this can also be seen by
writing it in the equivalent form as Riemann-Stieltjes integral.)
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2.10 Peeling Decoder
In this thesis we will deal essentially with the BP schedule discussed in Section
2.5. However an alternative and equivalent description is presented in [12, 13] for
the case of transmission over the BEC. A similar approach is found in [38]. The
analysis of this alternative schedule is based on the Wormald method [101, 102].
It is very convenient to gain insight, for example, in the finite-length behavior
of iterative decoding. This also illuminates the behavior above threshold and the
notion of residual graph. Let us call such an implementation a peeling decoder
and review the basic principles. This is illustrated in Figure 2.9.
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(i) Unknown bits after transmission (ii) Decoding bit 1 from check 1

2

4

2

12

2

6

6

3

6

6

6

14

11

7

11

8

11

12

12

3

12

15

12

3

12

11

19

11

19

14

21

12

21

7

21

2

23

4

23

7

23

10

24

9

24

4

24

3

26

13

26

10

26

12

28

6

28

2

28

9

29

9

29

2

29

13

30

15

30

11

30

10

2

4

2

12

2

6

6

3

6

6

6

14

12

3

12

15

12

3

12

11

19

11

19

14

21

12

21

7

21

2

23

4

23

7

23

10

24

9

24

4

24

3

26

13

26

10

26

12

28

6

28

2

28

9

29

9

29

2

29

13

30

15

30

11

30

10

(iii) Decoding bit 10 from check 5 (iv) Decoding bit 11 from check 8

Figure 2.9: Code of length n = 30 and peeling decoder. At the decoder, the variable nodes
which have received a non-erased bit are removed from the bipartite graph. The remaining
graph is shown in (i). The peeling decoder determines successively bits 1, 10 and 11, until
it gets stuck. The stopping set is shown in (iv).

Let G (with length n) be chosen uniformly at random from an ensemble character-
ized from a node perspective by the dd pair Ξ

M= (Λ,Γ ). Assume that transmission
takes place over BEC(ε). The peeling decoder proceeds as follows. A variable
node is removed (together with all connected edges) as soon as it has received (ei-
ther from the channel or from the incoming edges) at least one known message. At
each iteration, a check node of degree one is chosen uniformly at random among
all check nodes with degree one. This check node is further removed, as well as
all connected edges. At the end of the decoding process, all check nodes have
degree at least two: The decoder is in a stopping set as the one depicted in Figure
2.9 (iv). A stopping set defines a residual graph with a given degree profile.
Let G(ε) denote such a particular graph obtained from G and transmission over
BEC(ε). Let us further denote by ΞG(ε) its degree profile and ΛG(ε)(1)n its length.
It is easy to check, see [12, 13], that stopping sets are uniformly distributed over
an ensemble of residual graphs once we have fixed the degree profile ΞG(ε) and
the length ΛG(ε)(1)n. The degree profile of the residual graph ΞG(ε) is a random
quantity because of the channel randomness. However it is sharply concentrated
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around its expected value. In the asymptotic limit when n→∞ this expected value
converges to a typical dd pair, call it Ξε.
The expected number of remaining variable nodes (parity-check nodes with de-
gree at least 2) after nt steps of the peeling algorithm, normalized by n, con-
verges to Lδ

ε
M= εΛ(1−ρ(1− δ)) (respectively, Rδ

ε
M= (1− rΞ)∑ j≥2 ∑i Γi

( i
j

)
δ j(1−

δ)i− j), where δ = δ(t)∈ [0,1], sometimes called state of the system, parameterizes
(smoothly) the decoding process. The limiting value for δ (i.e., once the peeling
algorithm has terminated and is stuck in a stopping set) equals the fixed point of
density evolution (see Section 3.2). In the limit δ = x, when there are no more
check nodes with degree one, the total number of parity-check nodes remaining at
the end of the decoding is then

Rε =
Λ′(1)
Γ ′(1) ∑

j≥2
∑

i
Γi

(
i
j

)
x j(1−x)i− j =

Λ′(1)
Γ ′(1) ∑

i
Γi ∑

j≥2

(
i
j

)
x j(1−x)i− j

=
Λ′(1)
Γ ′(1) ∑

i
Γi(1− ix(1−x)i−1− (1−x)i) = Λ′(1)(

Z 1

1−x
ρ(u)du−xρ(1−x)),

while the number of variable nodes is Lε = ελ(1− ρ(1− x)). Observe that the
expected difference (divided by n) between the residual numbers of variable and
check nodes is then

P(x) M= Lε−Rε = εΛ(y(x))− Λ′(1)
Γ ′(1)

(1−Γ (1−x))+Λ′(1)x(1−y(1−x)),

(2.3)

where y(x) M= 1−ρ(1−x). In Chapter 4 we will observe that ε = ε(x) M= x
λ(y(x))

(at the fixed point of density evolution) and call the resulting polynomial trial
entropy, because it indicates the number of remaining degrees of freedom of the
linear system.
A more refined description of the residual graph is needed if we want to know
whether or not the linear system of equations has full rank (i.e., whether or not
the parity-check equations are independent with high probability). With this aim,
we shall describe the expected degree distribution of the residual graph from a
node perspective. Let us therefore introduce an unknown variable z in order
to describe the degree distribution as a polynomial in z. Similarly to the pre-
vious description of the total number of nodes, the expected (normalized with
respect to the original graph) degree distribution of the variable nodes from a
node perspective converges to Lε(z)

M= εΛ(zy) while the (normalized with re-
spect to the original graph) distribution of the check nodes converges to Rε(z) =
Λ′(1)
Γ ′(1) ∑ j≥2 ∑i Γi

( i
j

)
(zx) j(1−x)i− j. A similar calculation as above shows that the

expected degree distribution of the residual graph typically has the form

Ξε =
(
Λε(z),Γε(z)

) M=
(

Λ(zy)
Λ(y)

,
Γ (1−x+xz)−Γ (1−x)−zxΓ ′(1−x)

1−Γ (1−x)−xΓ ′(1−x)

)
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where x denotes the fixed point of density evolution (i.e., the largest solution of
x = ελ(1−ρ(1−x))) when the channel parameter in ε and y

M= 1−ρ(1−x).8

In the sequel the dd pair associated with the residual graph combined with the
technical condition of Lemma 2.3 will permit us to determine the asymptotic rate
of the residual ensemble in which BP decoding gets stuck. This will be investi-
gated in Chapter 4, where we will determine MAP thresholds for iterative coding
systems.

2.11 Conclusion and Discussion
We have settled notations and conventions for the analysis presented in the fol-
lowing chapters. Markov chains and the order implied by physical degradation,
linear functionals and asymptotic rates will play a central role in this thesis. We
have introduced the main tools, mostly in the context of a binary input alphabet X .

Binary input alphabets are indeed our main domain of investigation, but we will
see, e.g., in Chapter 5, that many concepts of our analysis extend to the non-binary
case. Think of the result stating that the LLR post-processing gives rise to an
equivalent channel. In the non-binary case, the LLR mapping can be replaced by
the canonical representation of the channel output y 7→ y(y) M= {pY |X (y|x)/z(y) :

x ∈ X }, where z(y) M= ∑x∈X pY |X (y|x) (discrete assumption). In this case, y(y)
belongs to the (|X |−1)-dimensional simplex. In the binary case, the LLR repre-
sentation is a particular parameterization of the one-dimensional simplex. Various
alternatives are possible, for example the “soft bit” (or “difference”) parameteri-
zation E[X |Y = y]. See, e.g., [63, 65, 103]. Let {cp}p represent a family of BMS
channels such that the random input X has equal priors and such that there is a bi-
jection between the channel entropy h

M= H(X |Y ) = H(cp) = h(p) and the channel
parameter p (see Section 2.1). We then write this family of L-densities as {ch}h.
By some abuse of notation, we will sometimes, especially in Chapter 5 and Chap-
ter 6, write BMSC(h) instead of BMSC(p) to denote a BMSC of parameter p with
entropy h.

In the next chapter, we will give a first motivation for the choice of the entropy as
channel parameter. With this aim, we will present EXIT functions and their main
properties.

8Observe that, if we adopt the convention of normalizing the dd pair
with respect to n, then we get a non-standard dd pair (Lε(z),Rε(z)) =
(εΛ(zy),(Λ′(1)/Γ ′(1))(Γ (1−x−xz)−Γ (1−x)−zxΓ ′(1−x))) (whose coefficients do
not sum to one). If we now adopt the convention of normalizing the dd pair with re-
spect to the original graph (i.e., dividing the number of variable nodes by n and the num-
ber of check nodes by n(Λ′(1)/Γ ′(1))), then we get an alternative non-standard dd pair
(Lε(z),Rε(z)) =

(
εΛ(zy),Γ (1 − x − xz) − Γ (1 − x) − zxΓ ′(1 − x)

)
(whose coefficients do

not sum to one).
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Appendix

2.A Proper Linear Codes
A random Xi over the finite alphabet X is said to have equal priors if, for all
xi ∈ X , pXi(xi)

M= Pr{Xi = xi}= 1
|X | . Assume we are given a code C. If X is chosen

uniformly at random from C, the codewords are said to have equal priors. A “non-
trivial” binary linear code is expected to be such that its symbols have equal priors
when the codewords are equally likely. Next definition characterizes such codes.

Definition 2.16 [Proper Linear Codes] A linear code C of length n ≥ 1 is said
to be proper if and only if its dual code C⊥ has minimum distance d⊥min > 1, or
equivalently, if and only if it possesses a generator matrix with no zero column.

Almost all linear codes used in practice are proper. We will often use proper linear
codes for our statements. In a proper binary linear code, half the codewords take
on the value +1 and half the value −1 in each given bit position. This is stated in
the next fact, a basic exercise in information theory.

Fact 2.7 Let C be a proper linear binary code of length n. Assume X is chosen
uniformly at random from C, then ∀S ⊆ [n], ∀i∈ [n]\S , ∀(xi,xS )∈F1+|S |

2 , Pr{Xi =
xi|XS = xS}= 1

2 .

Proper linear codes are often needed for technical reasons. For example, the
proper code assumption will imply that our definition of the EXIT function in
Chapter 3 is simply the complementary to one of the original definition in [33].
More important, the next lemma shows that proper codes preserve channel sym-
metry when a MAP decoder is considered. As it can be found in [14, 15, 65], this
property has also for consequence that the densities appearing in density evolution
are also symmetric. Let us review this result for our purpose.

Lemma 2.4 [Symmetry, Linearity, and MAP Decoder] Let C be a proper linear
binary code of length n. Assume X is chosen uniformly at random from C and is
passed through a BMS channel. Let ai(z) denote the L−density associated with

the ith MAP extrinsic estimate ΦMAP
i , i.e., the density of log

pY∼i|Xi
(y∼i|+1)

pY∼i|Xi
(y∼i|−1) condi-

tioned on Xi = 1. Then ai(z) is symmetric, i.e., ai(−z) = ezai(−z).

Proof. The proof is virtually identical to the one in [65]. We simply need to
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distinguish between intrinsic and extrinsic part. With this aim observe that

pY∼i|Xi(y∼i|ξ)pXi(ξ) =
Z

∑
x:xi=ξ

pY |X (y|x)pX (x)dyi

=
(Z

pYi|Xi(yi|ξ)dyi
)( 1
|C| ∑

x∈C:xi=ξ

pY∼i|X∼i(y∼i|x∼i)
)
.

Therefore we get
pY∼i|Xi

(y∼i|+1)
pY∼i|Xi

(y∼i|−1) =
∑x∈C:xi=+1 pY∼i|X∼i

(y∼i|x∼i)
∑x∈C:xi=−1 pY∼i|X∼i

(y∼i|x∼i)
using the “memoryless”

and “proper” assumptions. The proof follows similarly to [65] since the channel
symmetry gives

pY∼i|X∼i(y|x) = pY∼i|X∼i(x∼iy∼i|1) = pY∼i|X∼i(w∼iy∼i|w∼ix∼i)

for all w,x ∈ C, where the vector product is the component-wise product and 1 the
all-one codeword.

Discussion: Observe that the assumptions in Lemma 2.4 could be weakened. First,
the following symmetries of channel would be first sufficient: ∀w∈ C, pY∼i|X∼i(y|w)=
pY∼i|X∼i(w∼iy∼i|1), Yi → Xi → Y∼i, and pYi|Xi symmetric. Second, the generator
matrix of the code only needs to have non-zero ith column.
Because of Lemma 2.4, operations on conditionally independent L-values like
“+”, “�”, or any other computation performed by a MAP decoder preserve sym-
metry.

2.B Duality and Change of Domain
Duality relationships play an important role in iterative coding. The first part of
this section is a review of the well-known dual decoding rule presented in [86,
104]. This will lead us to another duality rule presented in [105, 106]. We will
finally review some notations for the different dual representations.
The dual decoding rule is based on the MacWilliams identities, see [56, 107].
If C is a binary linear code of length n, recall that the multi-variate extended
MacWilliams polynomial associated with C, which we denote by PC(a[n];b[n]) =

PC(a1, · · · ,an;b1, · · · ,bn)
M= ∑x∈C ∏ j∈[n] a

(1+x j)/2
j b

(1−x j)/2
j is such that the follow-

ing identity is satisfied.

Theorem 2.3 [Extended MacWilliams Theorem] Let C be a binary linear code of
length n and C⊥ its dual. Then

PC(a[n];b[n]) =
1
|C|

PC⊥(a1 +b1, · · · ,an +bn;a1−b1, · · · ,an−bn).



2.B. Duality and Change of Domain 39

Observe that, for any i ∈ [n],

PC(a[n];b[n]) = aiS+1
i,C (a[n];b[n])+biS−1

i,C (a[n];b[n]),

where we use S±1
i,C (a1, · · · ,an;b1, · · · ,bn)

M= ∑x∈C:xi=±1 ∏ j∈[n]\{i} a
(1+x j)/2
j b

(1−x j)/2
j .

Let now rin
i (yi)

M= exp(−yi) =
pYi|Xi(yi|−1)
pYi|Xi(yi|+1)

be the ith intrinsic (inverse) ratio and

let rout
i,C(y[n]\{i})

M= exp(−φMAP
i ) =

pXi|Y[n]\{i}(−1|y[n]\{i})

pXi|Y[n]\{i}(+1|y[n]\{i})
be the ith MAP extrinsic

(inverse) ratio. With these conventions, the (bit) MAP decoding rule can be ex-
pressed as follows.

Lemma 2.5 [MAP Decoding and Ratio Parameterization] Let C be a binary linear
code of length n. Assume that X is chosen uniformly at random from C and that
transmission takes place over a BMS channel. Define the values {ai

M= pYi|Xi(yi|+
1)}, {ai

M= pYi|Xi(yi|−1)}, then

rin
i (y[n]\{i}) =

bi

ai
, rout

i,C(y[n]\{i}) =
S−1

i,C (a[n];b[n])

S+1
i,C (a[n];b[n])

.

Proof. Let us focus on the right identity. Given (yi,y∼i), we use the σ-additivity
to write

pXi|Y∼i(ξ|y∼i) = ∑
x:xi=ξ

pX |Y∼i(x|y∼i) ∝ ∑
x:xi=+1

p(x,y∼i).

The channel is memoryless, therefore pYi|X ,Y∼i(yi|x,y∼i) = pYi|Xi(yi|ξ). This shows
that

pXi|Y∼i(ξ|y∼i) ∝
1

pYi|Xi(yi|ξ) ∑
x:xi=ξ

pX |Y (x,y) ∝
1

pYi|Xi(yi|ξ) ∑
x∈C:xi=ξ

pY |X (y|x)

because the code has equal priors. We use the memoryless assumption again to
factorize pY |X (y|x). This concludes the proof.

In the domain of the ratios, the discrete Fourier transform is equivalent to the
involution F : r 7→ 1−r

1+r (such that F = F −1). We use the notation F (r[n])
M=

(F (r1), · · · ,F (rn)) if r[n] is a vector. We can now state the dual decoding rule
of [86, 104].

Theorem 2.4 [MAP Dual Decoding] Let C be a binary linear code of length n
and C⊥ its dual. Assume that X is chosen uniformly at random from C and that
transmission takes place over a BMS channel. With the previous notations,

rout
i,C(y[n]\{i}) = rout

i,C(r
in
[n]\{i}), rout

i,C(r
in
[n]\{i}) = F

(
rout

i,C⊥ [F (rin
[n]\{i})]

)
.
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Proof. The following are equivalent:

rout
i,C(r

in
[n]\{i}) = u

⇐⇒ S−1
i,C (a[n];b[n])−uS+1

i,C (a[n];b[n]) = 0

⇐⇒ PC(a1, · · · ,ai =−u, · · · ,an;b1, · · · ,bi = 1, · · · ,bn) = 0
Th. 2.3⇐⇒ PC⊥(a1 +a1, · · · ,1−u, · · · ,1+an;a1−b1, · · · ,−1−u, · · · ,an−bn) = 0

⇐⇒ (−1−u)S−1
i,C⊥

(a[n] +b[n];a[n]−b[n])+(1−u)S+1
i,C⊥

(a[n] +b[n];a[n]−b[n]) = 0

⇐⇒ rout
i,C⊥ [F (rin

[n]\{i})] = F (u).

Discussion: Theorem 2.4 has various practical applications, for example it gives
rise to a low-complex decoding of high rate codes in [63, 108]. In fact Theorem
2.4 (with the identity 2tanh−1(u) = log 1+u

1−u ) shows that the two implementations
represented in Figure 2.10 are equivalent.

⇐⇒

y - - - -e−y MAPC − logy

y - - - -tanh( y
2 ) MAPC⊥ 2tanh−1(y )

Figure 2.10: Two equivalent implementations of a decoder with L-values at input/output.
The MAP decoder uses ratios as inputs/outputs, e.g., it is a simple product for the case of
a repetition code. Left: Implementation based on the actual code and its MAP decoding.
Right: Implementation in the dual domain.

An illustration is given in Example 2.14 where the update rule for LLRs at the
parity-check nodes (viewed as single parity-check codes) is obtained from the
product of the (Fourier transform of the) ratios entering the corresponding vari-
ables nodes (viewed as dual codes, i.e., repetition codes).

Example 2.14 [Rule at Variable and Function Nodes for LDPC Decoding] Assume
the channel outputs n + 1 L-values y1, · · · ,yn+1. For the [n + 1,1,n + 1] repeti-
tion code, the n + 1th MAP extrinsic estimate in the L−domain equals the sum
∑

n
i=1 yi (using the upper scheme in Figure 2.10). For the [n+1,n,2] single parity-

check code, the n+1th MAP extrinsic estimate in the L−domain equals the value
�n

i=1yi
M= 2tanh−1 (

∏
n
i=1 tanh(yi/2)

)
(using the bottom scheme in Figure 2.10).

Observe moreover that Theorem 2.4 shows also that the input ratios constitute a
sufficient statistic for estimating Xi. See also Lemma 2.2. As shown in Figure
2.11, a channel can be equivalently defined by its L/R/D-density.
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It is now natural to ask whether or not the pointwise duality described by Theo-
rem 2.4 has a corollary in the domain of the densities. Let us explain this point
in more detail. For any density d over [−1,+∞], define (when it exists) the linear
operator H (d) M=

R +∞

−1 d(r) log2(1 + r)dr and the density d⊥ = 2
(1+r)2 d( 1−r

1+r ) over

[−1,+∞] (density of the Fourier transforms). Then H (d) = 1−H (d⊥). There-

fore formally
(

H (d),H (dout(d)
i,C )

)
=
(

1−H (d⊥),1−H (dout(d⊥)
i,C⊥

)
)

by Theorem
2.4, where we assume that the previous quantities are well-defined, where d is the
common distribution of the values rin

i , where d⊥ is the common distribution of the
values (F (rin

i )), and where d
out(d)
i,C is the distribution of the rout

i,C’s with inputs rin
i .

Such a result is a typical duality result in the context of EXIT-like curves. Here
duality means symmetry around (1/2,1/2). Observe that, if d(z) is zero for z≤ 0,
then it defines a “true” transmission channel with entropy H (d) = H(d). Unfortu-
nately the domain I = [0,+∞] (where d is non-zero) is mapped into I⊥ = [−1,1],
and the “dual” channel is not in general a “true” transmission channel. A possible
exception is when the channel is BEC(ε): it has I = {0,1} and the dual channel
is BEC(1− ε) with I = {1,0}. This symmetry for the BEC will be stated in (the
duality) Theorem 3.3 of Chapter 3.

y∼ pY |X=+1(y)

- -
y

y(y)
y ∼ a(y)

L-density

y ∈ R

y∼ pY |X=+1(y)

- -
y

e−[y(y)]
r ∼ aR(r)

R-density
r ∈ [0,+∞]

y∼ pY |X=+1(y)

- -
y

tanh [y(y)]
2

r ∼ aD(r)

D-density
r ∈ [−1,+1]

Figure 2.11: Equivalent channels. The R-domain and D-domain are dual (Fourier trans-

form) of each other. Changes of domain can be obtained as, e.g., aD(r) = 2a(2tanh−1(r))
1−r2 and

aR(r) = a(−log(r))
r where a(l) is the L−density. Left: L-density. Middle: R-density. Right:

D-density.

Duality results, different from the previous symmetry, can further be derived. This
is shown in the next lemma. This lemma states that the entropy at the output of a
parity-check node plus the entropy at the output of a variable node (both with the
same two inputs) is equal to the sum of the two input entropies. See [105, 106].

Lemma 2.6 [Duality Rule For Entropy] Let a and b denote two L−densities. Let
X and Y have L-densities a and b. Consider the (symmetric) L-densities a�b and
a�b, where a�b denotes the density of X +Y and a�b denotes the density of
X �Y . Then H(a�b)+H(a�b) = H(a)+H(b).

Proof. Let Z have L−density c. If Z M= X �Y = 2tanh−1(tanh(X
2 ) tanh(Y

2 )) such
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that c = a�b, then

H(c) =
Z

∞

−∞

c(z)log2(1+ e−z)dz

=
Z

∞

−∞

Z
∞

−∞

a(x)b(y)log2

(
1+ e−2tanh−1(tanh(x/2) tanh(y/2)))dxdy

=
Z

∞

−∞

Z
∞

−∞

a(x)b(y)log2

(
(1+ e−x)(1+ e−y)

1+ e−x−y

)
dxdy

= H(a)+H(b)−H(a�b)

using

H(a�b) =
Z

∞

−∞

(Z
∞

−∞

a(x)b(y− x)dx
)

log2(1+ e−y)dy

=
Z

∞

−∞

Z
∞

−∞

a(x)b(y)log2(1+ e−x−y)dxdy.

Finally let us collect, once and for all, some remarks about the different domains
(i.e., parameterizations of the decoder inputs) used in this thesis. (Further in-
formation can be found in [65].) Most of the time we consider the L-density,
i.e., the density representing the L-values under the all-one assumption. The as-
sociated channel with corresponding post-processing is depicted in Figure 2.11
(left picture). Several results in Chapter 5 are more easily presented in the D-
domain, see Figure 2.11 (right picture). Let us give some conversion rules when
the L−density a(y) is the reference density. If y ∼ a(y), then |y | ∼ a|L|(|y|)
where a|L|(z) M= (1+ e−z)a(z) is the |L|-density. If r ∼ aD(r) = 2a(2tanh−1(r))

1−r2 , then

|r| ∼ a|D|(|r|) where a|D|(z) M= 2
1+za

D(z) is the |D|-density. In the D-domain the
channel symmetry reads aD(−z) = 1−z

1+za
D(z).

2.C Relations between Various Thresholds
The inequalities between BP, MAP and Shannon thresholds are trivial to see. It
is more difficult to see how the threshold obtained from the stability condition is
related to the previous quantities. This is relatively easy to show for the case of
the erasure channel.

Lemma 2.7 Assume that transmission takes places over BEC(ε) and that we are
given a dd pair (λ,ρ). We have the relations

εBP ≤ εMAP ≤min{εSH, εSC},

where εSH and εSC M= 1
λ′(0)ρ′(1) denote, respectively, the Shannon and stability con-

dition thresholds.
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Proof. As discussed in this chapter, εBP ≤ εMAP follows from the sub-optimality of
BP decoding, Moreover, εMAP≤ εSH≤ 1−rΞ follows from a rephrasing of the chan-
nel coding theorem and its strong converse. Finally εMAP ≤ εSC = 1/(λ′(0)ρ′(1))
can be proved through the following graph-theoretic argument. Assume, by con-
tradiction that εMAP > εSC and let ε be such that εSC < ε < εMAP. Notice that εSC < ε is
equivalent to ελ′(0)ρ′(1) > 1. Consider now the peeling decoder and the residual
graph once the received variable nodes have been erased. Focus on the subgraph
of degree 2 variable nodes. This (bipartite) Tanner graph can be identified with an
ordinary graph by mapping the check nodes to vertices and the variable nodes to
edges. The average degree of such a graph is ελ′(0)ρ′(1) > 1 and therefore a finite
fraction of its vertices belong to loops as shown in [109]. If a bit belongs to such a
loop, it is not determined by the received message: in particular E[Xi|Y ] = 1/2. In
fact, there exists a codeword such that xi = 1: just set x j = 1 if j belongs to some
fixed loop through i and 0 otherwise. As there is a finite fraction of such vertices
liminfn→∞(E[H(X |Y )]/n) and therefore ε > εMAP. We have reached a contradic-
tion, therefore εMAP ≤ εSC as claimed.
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3 EXIT Functions

Overview: The definition and basic properties of EXIT func-
tions are reviewed. EXIT functions are the starting point of
this thesis.

The rediscovery of iterative decoding [9, 10] in [62, 73, 110] was heavily based
on the notion of extrinsic estimate. The remaining uncertainty on an individual
symbol given the information provided by all other received values is a natural
measure of the performance associated with a code. This observation guides the
definition of EXIT functions [33].

3.1 Definition and Linear Functional
EXIT functions [33] (see also [111–114]) measure the residual uncertainty asso-
ciated with a given symbol based on the remaining observations. They were origi-
nally derived from the picture of a “soft-in soft-out” receiver [71,72] and they can
be considered as “transfer functions” because they give the residual uncertainty at
the “exit” of the decoder.

Definition 3.1 [EXIT Value] Let X be a vector of length n chosen with probability
pX (x). Assume that transmission takes place over the channel pY |X . Let Y be the
received random vector of length n, and let Ω be a further observation of X such
that Ω → X → Y . Consider i ∈ [n]. Define hi

M= H(Xi|Y∼i,Ω). This estimator is
called the ith EXIT value.

The concept of EXIT estimators is quite general. Nevertheless, as in the rest of the
thesis, we focus on binary channels for notational simplicity. In this context, let
us recall some notations from Chapter 2. Assume that the channel is memoryless.
Then the random extrinsic estimator is

ΦMAP
i

M= log
(

pXi|Y∼i,Ω(+1|Y∼i,Ω)
pXi|Y∼i,Ω(−1|Y∼i,Ω)

)

and takes on values φMAP
i (y∼i,ω) M= log

( pXi|Y∼i,Ω
(+1|y∼i,ω)

pXi|Y∼i,Ω
(−1|Y∼i,ω)

)
. We have seen in Chap-
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ter 2 that ΦMAP
i is a sufficient statistic1 for estimating Xi. This quite intuitive fact is

used in the next lemma.

Lemma 3.1 [(MAP) EXIT Value: Alternative Characterization] Let X be a binary
vector of length n chosen with probability pX (x). Assume that transmission takes
place over the channel pY |X . Let Y be a received random vector of length n, and
let Ω be a further observation of X . Assume that Ω→ X → Y and Yi→ Xi→ Y∼i.
Then hMAP

i
M= hi = H(Xi|ΦMAP

i ,Ω).

In the previous lemma we wrote “(MAP)” EXIT value to emphasize that we can
replace Y∼i with the extrinsic estimate ΦMAP

i . The concept of EXIT estimators is
more meaningful if we consider transmission over channels parametrized by a
common parameter p so that the EXIT estimator becomes a function of a (typi-
cally, single-valued) variable p. With this aim, let us consider transmission over
the channel family {{BMSCi(hi(p))}i}p which means that the ith bit experiences
the channel entropy hi(p). A typical example is when, for all i, the channel en-
tropy is identical, i.e., hi(p) = h1(p) = h(p), and monotonic with respect to p, e.g.,
hi(p) = p.

Definition 3.2 [(MAP) EXIT Function] Let X be a binary vector of length n cho-
sen with probability pX (x). Assume that transmission takes place over the channel
family {BMSCi(hi)}i. Let Y be the received random vector of length n, and let Ω
be a further observation of X such that Ω→ X → Y . Define

hMAP
i (h∼i)

M= H(Xi|Y∼i(h∼i),Ω), hMAP(h∼i)
M=

1
n

n

∑
i=1

hMAP
i (h∼i).

The function hMAP (hMAP
i ) is the multi-variate EXIT (respectively, ith EXIT) func-

tion. If the individual channel entropies hi = H(Xi|Yi) are all parametrized by a
scalar p∈P⊆R such that hi = hi(p), then hMAP

i (p) M= H(Xi|Y∼i(p),Ω) and hMAP(p) M=
1
n ∑

n
i=1 hMAP

i (p) = 1
n ∑

n
i=1 H(Xi|Y∼i(p),Ω) are simply the ith (MAP) EXIT function

and (MAP) EXIT function, respectively.

Let us make two more remarks concerning Lemma 3.1. First, if no extra observa-
tion is added or if the underlying channel is symmetric, then the MAP estimator
φMAP(Y∼i) or φMAP(Y∼i,Ω) has a symmetric L−density. See Chapter 2 and Ap-
pendix 3.A. In the sequel we will assume this to be the case. Second, Lemma
3.1 permits us to enlarge the notion of (MAP) EXIT estimator and function. The
definition extends naturally to any (extrinsic) decoder that is denoted by the short-
hand DEC and whose associated estimator is ΦDEC

i
M= φDEC

i (Y∼i,Ω). An impor-
tant example of extrinsic DEC estimator is the BP estimator if we define it as

1Implied by the memoryless assumption, the hypothesis Yi → Xi → Y∼i suffices to define the ex-
trinsic MAP estimator and to show that ΦMAP

i is a sufficient statistic. This is demonstrated in Example
2.11 when there is no extra observation Ω. This can be strengthened to include a fixed observation
Ω as shown in Appendix 3.A. In the non-binary case (see Section 2.11) the statement stays literally
unchanged, as well as Lemma 3.1.
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ΦBP,`
i

M= φBP,`
i (Y∼i) at iteration `. Notice that, in our definition, φBP,`

i (y∼i) does not
include the ith received yi by construction.2

Definition 3.3 [EXIT Function] Let X be a binary vector of length n chosen with
probability pX (x). Assume that transmission takes place over the channel family
{BMSCi(hi)}i. Let Y be the received random vector of length n, and let Ω be a
further observation of X such that Ω → X → Y . Consider any estimator ΦDEC

i =
φDEC

i (Y∼i). Define

hDEC
i (h∼i)

M= H(Xi|ΦDEC
i (h∼i),Ω), hDEC(h∼i)

M=
1
n

n

∑
i=1

hDEC
i (h∼i).

The function hDEC (hDEC
i ) is the multi-variate EXIT (respectively, ith EXIT) function

associated with the extrinsic DEC estimator. If the individual channel entropies
hi = H(Xi|Yi) are all parametrized by a scalar p ∈ P⊆R such that hi = hi(p), then
the function becomes function of a single scalar parameter.

Discussion: Our definition of EXIT functions differs only in a trivial way from the
original definition in [33]. More precisely, EXIT functions were originally defined
as I(Xi|Y∼i(h(p)),Ω) = H(Xi)−H(Xi|Y∼i(h(p)),Ω). If Xi is binary and has equal
priors, then H(Xi) = 1. In this case the EXIT curve (h(p),hMAP

i (h(p))) according
to our definition is simply the original one as introduced in [33] but flipped around
the diagonal. In applications we deal mainly with proper binary linear codes (see
Appendix 2.A) which satisfy H(Xi) = 1 for all i.

Lemma 3.2 [(MAP) EXIT: Operational Characterization] Let X be chosen uni-
formly at random from a proper binary linear code of length n. Assume that trans-
mission takes place over the channel family {BMSCi(hi)}i. Let aMAP

i denote the
density of ΦMAP

i = φMAP
i (Y∼i) assuming that the all-one codeword was transmitted.

Then
hMAP

i (h∼i) = H(aMAP
i ),

where H(a) =
R

a(y)log2(1+e−y )dy = EY [log2(1+e−Y )] is the entropy operator
of Definition 2.5.

Proof. Lemma 2.4 shows that assuming X is chosen uniformly at random from a
proper binary linear code C, the binary channel pΦi|Xi is symmetric. Further, note
that Φi is already in the L-domain, therefore its density conditioned on Xi = 1 is
already the L-density conditioned on Xi = 1. Assume temporarily that this density
is equal to the density of Φi when the all-one codeword 1 is transmitted. Let
ai denote this density. From Lemma 2.1 and Definition 2.5, we conclude that

2If the (finite) graph G has cycles, then the “true” BP estimate (which is received by the ith variable
node) is potentially a function of yi. However, for a fixed number of iterations and in the limit of large
blocklengths, the two BP estimates (i.e., based either on (yi,y∼i) or on (j,y∼i)) coincide with high
probability, see, e.g., Chapter 4 and Chapter 6. The definition of the BP extrinsic estimate as a function
of y∼i simplifies the analysis.
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H(Xi|Φi) = H(ai). It now remains to prove that ai is equal to the density of Φi
assuming that 1 was transmitted (which is already implicit in Lemma 2.4). To
see this, note that, using the symmetry of the channel and the equal priors of
the codewords (together with the fact that the code is proper), for a fixed y we
can write pXi|Y (xi|y) ∝ ∑x̃∈C:x̃i=xi pY |X (y x̃|1) (the product involving the vectors
y and x̃ denotes the component-wise product). In a similar manner, if x′ ∈ C,
then pXi|Y (xi|yx′) ∝ ∑x̃∈C:x̃i=xix′i

pY |X (yx′x̃|x′). Compare the density of the LLR
assuming the codeword 1 was transmitted to the one assuming that the codeword
x′ was transmitted. The claim follows by noting that for any received vector y,
pY |X (y|1) = pY |X (yx′|x′), and that in this case also pY |X (yx̃|1) = pY |X (yx′x̃|x′).

Discussion: The function l(y) M= log2(1 + e−y ) is sometimes called EXIT kernel
and the entropy operator is in fact an “EXIT operator.”
Again (under the technical conditions used in the previous proof) we can enlarge
the domain of applications of the previous lemma to include alternative estimators.

Lemma 3.3 [EXIT: Operational Characterization] Let X be chosen uniformly at
random from a proper binary linear code of length n. Assume that transmission
takes place over the channel family {BMSCi(hi)}i. Consider an additional obser-
vation Ω such that Ω→ X → Y . Consider any estimator ΦDEC

i = φDEC
i (Y∼i,Ω) that

preserves channel symmetry. Let the density of ΦDEC
i under the assumption that the

all-one codeword was transmitted be aDEC
i . Then

hDEC
i (h∼i) = H(aDEC

i ),

where H(a) =
R

a(y)log2(1+e−y )dy is the entropy operator (and l(y) M= log2(1+
e−Y ) the EXIT kernel).

In the binary case, notice that the EXIT function is a quantity between 0 and 1. In
most applications, it is a non-decreasing function of the channel entropy h(p) as
shown in the next fact.

Fact 3.1 [Monotonicity over Ordered Channels] Let X be a vector of length n cho-
sen with probability pX (x). Assume that all bits are transmitted over a chan-
nel BMSC(p) and that for all p we have Ω → X → Y (p). If the channel fam-
ily {BMSC(p)}p is ordered and complete (see Section 2.8), then the function
hMAP

i (h) = H(Xi|Y∼i(h),Ω) is non-decreasing for h ∈ [0,1].

Proof. Fix (h1,h2) such that h1 < h2. Since the family of channels is complete
(i.e., h ranges from 0 to 1) and ordered by physical degradation, then ∃p1,p2 such
that p1 < p2, h1 = H(X |Y (p1)) is the entropy of BMSC(p1), h2 = H(X |Y (p2))
is the entropy of BMSC(p2), and BMSC(p2) is physically degraded with respect
to BMSC(p1). Since the channels are memoryless and degraded, we get Xi →
Y∼i(p1) → Y∼i(p2). Therefore H(Xi|Y∼i(p1),Ω) = H(Xi|Y∼i(p1),Y∼i(p2),Ω) ≤
H(Xi|Y∼i(p2),Ω) using Markovity in the first equality and the fact that condition-
ing reduces entropy in the second.
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Discussion: Notice first that the EXIT monotonicity comes from the data process-
ing inequality. Second, observe that, if the channel family is complete, then the
MAP EXIT functions is a non-decreasing (possibly piecewise constant) mapping
from [0,1] to [0,1]. Observe also that a similar property is true for any hDEC as-
sociated with any estimator “DEC” that preserves the order implied by physical
degradation.
Finally, the following characterization using the all-one codeword assumption is
helpful for deriving explicit EXIT functions.

Fact 3.2 [Alternative Characterization] Let X be a vector of length n chosen with
probability pX (x). Assume that, for all i, the ith bit is transmitted over BMSCi(hi(p))
and Ω→ X → Y . Then

hMAP
i = H(Xi|Y∼i,Ω) =

Z
y∼i

pY∼i|X∼i(y∼i|1)H(Xi|Y∼i = y∼iX∼i,Ω) ∏

j 6=i
dy j,

where the product of vectors is defined as the component-wise product.

Proof. Let us assume that Y is discrete. Under the BMSC assumption, the expan-
sion of the entropy rule reads

H(Xi|Y∼i,Ω) = ∑
y∼i

pY∼i(y∼i)H(Xi|Y∼i = y∼i,Ω)

= ∑
x∼i

pX∼i(1)∑
y∼i

pY∼i|X∼i(y∼ix∼i|1)H(Xi|Y∼i = y∼i,Ω).

The proof can be concluded by the change of variable y∼i← y∼ix∼i, followed by
reordering of the sums.

Assume that transmission takes place
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Figure 3.1: EXIT functions for [3,1] R and
[6,5] SPC codes on BEC(h) (solid), BSC(h)
(dashed) and BAWGNC(h) (dotted).

over the channel family {BMSCi(hi =
h)} so that each bit is passed through
the same BMS channel. Using the pre-
vious lemma it is relatively easy to see
that single parity-check codes, repeti-
tion codes or cyclic codes (e.g., Ham-
ming codes) have individual EXIT func-
tions that are independent of the lo-
cation i. This is investigated in [115,
116] where such codes (more exactly,
codes for which the extrinsic density
aMAP

i is independent of i) are called isotropic. Let us now give simple examples of
EXIT functions.

Example 3.1 [EXIT Function for Maximum Distance Separable Codes] Figure 3.1
shows the MAP EXIT curve h 7→ hMAP(h) = hMAP

1 (h) for the [3,1,3] repetition (R)
code, as well as for the [6,5,2] single parity-check (SPC) code over BEC(h),
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BSC(h), and BAWGNC(h). E.g., over BSC(h), the EXIT function for the [n +
1,n,2] single parity-check code is given by hMAP(h) = hMAP

1 (h) = h2

(
1−(1−2ε)n

2

)
,

where ε = h2
−1(h), and the EXIT function for the [n+1,1,n+1] repetition code is

given by hMAP(h)= hMAP
1 (h)= ∑

n
i=0
(n

i

)
εn−iεi log2

(
1+(ε/ε)n−2i

)
where ε = h2

−1(h)
and ε = 1−ε, over BAWGNC, the EXIT function for the [n+1,1,n+1] repetition
code is given by hMAP(h) = hMAP

1 (h) = H(a�n
BAWGNC(h)) where H is the entropy operator

introduced in Definition 2.5 and aBAWGNC(h) is the Gaussian L−density.

In the rest of this chapter, when there is no risk of confusion, we skip the super-
scripts MAP for (MAP) EXIT functions.

3.2 EXIT Chart Method
EXIT functions were originally invented to be used in the so-called EXIT charts,
see [33]. The purpose of EXIT charts is to provide a practical tool to design
and optimize iterative coding systems. The original idea behind the EXIT chart
method is to approximate the decoding process using a suitable one-dimensional
representation of the densities. This approximation is then visualized on the basis
of two (or more) EXIT curves that represent the action of the different types of
nodes (variable node, function node or more). Possible alternatives to the stan-
dard EXIT chart method are presented, e.g., in [45, 117–121]. We can justify
the method as follows. From a formal standpoint, the first principle consists in
projecting the average trajectory of density evolution onto a 2-dimensional plane
using a linear operator. The trace of the decoding trajectory becomes a staircase
function (assuming that we are using the BP schedule described in Section 2.5)
between two EXIT curves. The second principle consists in approximating the
intermediate densities by a suitable family of densities: it is standard to use Gaus-
sian densities, which gives very good results in practice.

More precisely, let us start with the density evolution analysis, see [14, 15, 65],
and shortly review the main aspects. The ensemble performance of LDPC(λ,ρ) is
studied in average and in the asymptotic limit when first the blocklength n tends
to infinity and second the number of iterations ` goes to infinity. This average
performance can be computed on the associated infinite tree, called the computa-
tion tree. Concentration results (see similar statements in Appendix 4.A) indicate
further that this limiting object is the correct description of a particular instance
of transmission with high probability (going to one when n tends to infinity). The
density evolution analysis is in general simplified by the all-one codeword as-
sumption, the channel symmetry, and the decoder symmetry.

Let us now exemplify the density evolution analysis in our context, i.e., using the
EXIT projector. Assume that the all-one codeword is transmitted over a BMSC
using the dd pair (λ(x),ρ(x)). The channel outputs the L−density c. Consider
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Figure 3.2: Density evolution and the associated EXIT points for the (3,6)-regular ensem-
ble over BSC(0.07) at BP iteration ` = 1,2,3 and ` >> 1.

BP decoding and the average asymptotic behavior. During the decoding process,
function or variable nodes locally perform a MAP decoding that preserves the
symmetry of the L-densities (see Chapter 2 or [65]). It can easily be shown that
this symmetry is also preserved in the dual domain (see Fourier transform in Ap-
pendix 2.B). Therefore the densities of all the intermediate messages are sym-
metric. Let us denote a` (b`) to be the variable-to-function (function-to-variable,
respectively) density at iteration `. The initial density is a0 = ∆0, and for ` ≥ 0,
a`+1 = c�

(
∑ j λ jb

�( j−1)
`

)
with b` = ∑ j ρ ja

�( j−1)
` , where � denote the standard

convolution and � the convolution in the dual domain. Figure 3.2 depicts a pro-
jection of the decoding process using the entropy (or EXIT) operator of Definition
2.5. More precisely, let y`

M= H(b`) (x`
M= H(a`)) be the entropy of the messages

emitted at the function nodes (variables nodes) at the `th iteration. The sequence
{x`,y`}` is represented by a staircase function that reflects the trajectory of den-
sity evolution in the plane of the entropies. As an example consider transmission
over BSC(ε = 0.07) using the ensemble LDPC(x2,y5). Figure 3.2 depicts the den-
sity evolution process and its projection in the plane of the entropies.

In general (up to a few notable exceptions such as the erasure channel), the densi-
ties a` (or b`) do not have simple descriptions after a finite number of iterations.
This makes density evolution difficult to handle analytically. In a similar manner,
the entropies or EXIT functions associated with the true intermediate densities
are difficult to handle analytically. The main idea behind the EXIT chart method
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Figure 3.3: EXIT chart method over BAWGNC(σ): (3,6)-regular ensemble in the Gaussian
approximation for c and v. Left: σ = 0.816. Right: σ = 0.878.

therefore is to replace at each iteration ` the intermediate densities in the density
evolution process with an “equivalent” density chosen from some “suitable family
of densities.” The most “faithful” equivalence rule is to choose the element of the
channel family that has equal entropy. We further “hope” that the convergence of
iterative decoding is “robust” to such a replacement. This approximation is called
the EXIT chart method. In other words, instead of tracking the full density evolu-
tion process and projecting it as a staircase function between two boundary EXIT
curves (as in Figure 3.2), the EXIT chart method conjectures that two approxi-
mated boundary curves suffice to describe “faithfully” the decoding process.

It remains to choose a “suitable family of densities” that we want to parametrize
by a scalar. (This scalar is chosen to be the entropy in the context of the EXIT
chart method. It could also be obtained, however, from other linear operators, see,
e.g., Section 5.3.) It is standard to choose a family of symmetric Gaussian densi-
ties; the resulting approximation is called the Gaussian approximation.

Let us explicitly write down the equations for this case according to the EXIT
chart method. Assume that transmission takes place over BAWGNC(σ) such
that the L-density c is Gaussian with mean 2/σ2 and variance 4/σ2. Let gm
denote a generic L-density that is Gaussian with mean m and variance 2m, and
let f (m) M= H(gm) denote the associated entropy. With these notations, the chan-
nel has entropy H(c) = H(g2/σ2). First let y be the entropy entering a variable

node and define the function vσ(y) M= ∑ j λ j f
(
( j−1) f−1(y)+ 2

σ2

)
. The function

y 7→ vσ(y) describes the output entropy at a variable node. Consider a variable
node of degree i. Assume that the entropy y associated with the incoming mes-
sage density is a symmetric Gaussian L-density. Since all inputs are symmetric
Gaussian L-densities, the output is a symmetric Gaussian as well. Such a Gaus-
sian L-density is uniquely determined by its mean. By assumption the message
density has mean f−1(y) and the channel density has mean 2/σ2. The mean
of the output is therefore (i− 1) f−1(y) + 2

σ2 . Hence the associated entropy is
f
(
(i−1) f−1(y)+ 2

σ2

)
and the claim follows by averaging over the edge degrees.
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Now let x denote the entropy entering a function node. Similar to v, a function
c(x) describes the output entropy at a check node. The postulate of the EXIT
chart method is that the true entropy x` (y`) at the output of the variable (function)
nodes is well-approximated as the sequence x`+1 = vσ(c(x`)) (y`+1 = c(vσ(y`)))
where x0 = ∆0 or x1 = H(c) = H(g2/σ2).

In practice, instead of the true c(x), it is common to use the dual approximation3

c̃(x) M= 1−∑ j ρ j f
(
( j−1) f−1(1−x)

)
such that c(x)≈ c̃(x). The postulate of the

EXIT chart method is then that the true entropy x` (y`) at the output of the variable
nodes is well-approximated as the sequence x`+1 = vσ(c̃(x`)) where x0 = ∆0.

Example 3.2 [EXIT Chart Method for the (3,6)-Regular Ensemble] Strictly speak-
ing, an EXIT chart is a diagram as shown in Figure 3.3. It shows the density
evolution process according to the EXIT chart method for the two parameters
σ = 0.816 and σ = 0.878. To construct this chart, plot {(h,c(h))}h∈[0,1] which
describes the entropy evolution at the function nodes and {(h,v−1

σ (h))}h∈[0,1] =
{(vσ(h),h)}h∈[0,1] which describes the progress at the variable nodes. The ap-
proximate density evolution is now easily read off from this picture by construct-
ing the staircase function associated with the recursive sequence x`+1 = vσ(c̃(x`))
with x1 = H(c). For example x1 ≈ 0.3765 if σ ≈ 0.816. According to the EXIT
chart method, the entropy at the output of the function nodes is then c(0.3765)≈
0.8835. We can construct this value graphically if we look for the intersection of
the vertical line located at 0.3765 with the curve (x,c(x)). This entropy now en-
ters the variable nodes and according to the EXIT chart method the entropy at the
output of the variable nodes is equal to vσ=0.816(c(0.3765)) = vσ=0.816(0.8835) ≈
0.3045. Again we can construct this value graphically using the function v−1

σ (y).
If we iterate this procedure, the corner points of the resulting staircase function
describe the progress of density evolution according to the approximated EXIT
chart method. We see from Figure 3.3 that for σ ≈ 0.816 the staircase function
eventually reaches the point (0,0), corresponding to successful decoding. This
is no longer the case for σ ≈ 0.878, therefore σ ≈ 0.878 is the critical threshold
according to the EXIT chart method. Note that this parameter differs only slightly
from the true value of the BP threshold that is σBP ≈ 0.880.

The EXIT chart method is very popular because it gives immediate insight on how
to optimize iterative coding systems and it is easily computed in practice. In the
EXIT chart methodology the condition for progress is vσ(c(x)) < x at each itera-
tion. This formulation is linear in λ once the function nodes (and their distribu-
tion) are fixed. We can therefore optimize the left distribution by techniques from

3See also [118]. The dual approximation is motivated by the duality theorem; it is exact for the
BEC. The fact that we use an approximation of the output entropy rather than an exact expression does
little harm. The approximation appears to be accurate in practice and the EXIT method is anyway an
approximate method. The small additional error incurred by using the dual approximation is therefore
easily outweighed by the advantage of being able to write down a pleasing analytic expression.
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linear programming. (In the same manner we could first fix vσ and then optimize c
using linear programming.) Basically all known optimization methods so far rely
to some degree on this simple principle.4 See, e.g., [12–15,33,112,122–130]. The
excellent results given by EXIT optimizations in a first approach and the insight
they provide indicate that EXIT functions might be more than a simple practi-
cal optimization tool. The next section provides a first step towards a theoretical
justification.

3.3 Universal Bounds
Note that the first EXIT functions we depicted in Figure 3.1 were “ordered.” More
precisely, for a repetition code we get the highest extrinsic entropy at the output
for the channel family {BSC(h)}h∈[0,1] and we get the lowest such entropy if we
use instead the family {BEC(h)}h∈[0,1]. Indeed, the next theorem shows that these
two families are the least and most “informative” families of channels over the
whole class of BMSCs for a repetition code, as conjectured in [118] and proved
in [105, 106, 131–134]. The roles are exactly exchanged at a check node.

Theorem 3.1 [Extremes of Information Combining] Consider any two BMSCs
with L-densities a and b. For h ∈ [0,1], let dBEC(h) and dBSC(h) be the L-densities
associated with the BEC and BSC when the channel entropy is h. Then

H(a)H(dBEC(H(b)))=H(a�dBEC(H(b)))≤ H(a�b)≤ H(c�dBSC(H(b))),

1− (1−H(a))(1−H(dBEC(H(b))))=H(a�dBEC(H(b)))≥ H(a�b)≥ H(a�dBSC(H(b))).

Proof. We only need to show the result for the parity-check �-convolution. The
equivalent result for the regular �-convolution follows from the duality rule for
entropy in Lemma 2.6. For any parameter ε representing a cross-over error prob-
ability, let cBSC(ε) = dBSC(h2(ε)) be the L−density associated with BSC(ε). Any
BMSC can be written as an infinite convex combination of BSCs, i.e., there exist
two density functions wa(u) and wb(u) such that

a(z) =
Z 1

2

0
wa(u)cBSC(u)(z)du, and b(z) =

Z 1
2

0
wb(u)cBSC(u)(z)du.

Since the operator H and the �-convolution are linear in their arguments, we have

H(a�b) =
Z Z

wa(ua)wb(ub)H
(
cBSC(ua)�cBSC(ua)

)
duadub

=
Z

wa(ua)
(Z

wb(ub)h2(ub(1−2ua)+ua)dub

)
dua, (3.1)

4In Chapter 6 the direct optimization on the EBP GEXIT curve via linear programming is an
alternative in order to optimize iterative coding systems.



3.3. Universal Bounds 55

where the last equality comes from H
(
cBSC(ua)�cBSC(ua)

)
= h2(ub(1−ua)+ua(1−

ub)). To see this observe that, if BSC(ua) and BSC(ub) represent two densities
entering a check node, then the output density is again a BSC with parameter
ub(1−ua)+ua(1−ub).
Now it suffices to use twice the convexity of f (e) M= h2(h2

−1(e)(1− 2ua) + ua)
(which was first proved in [135]) to conclude the proof. This is done as follows.
First, after the change of variable ub ← eb

M= h2(ub) where eb is the entropy of a
BSC with cross-over probability ub, the convexity of f givesZ 1

2

0
wb(ub)h2(ub(1−2ua)+ua)dub =

Z 1

0
w̃b(eb)h2(h2

−1(eb)(1−2ua)+ua)deb

≥ h2

(
h2
−1(

Z 1

0
w̃b(eb)ebdeb)(1−2ua)+ua

)
= h2

(
h2
−1(H(b))(1−2ua)+ua

)
,

using the channel entropy
R 1

0 w̃b(eb)ebdeb = H(b). From Eq. (3.1) we get H(a�b)≥
H(a�cBSC(H(b))). Second, the convexity of f shows that any arc {e, f (e)} lies un-
der its chord, therefore if we consider the arc between the points (eb = 0, f (eb) =
h2(ua)) and (eb = 1, f (eb) = 1) we get f (e)≤ h2(ua)(1−e)+e for any e ∈ [0,1].
Applied for eb = h2(ub), we then have the upper bound

h2(ub(1−2ua)+ua)≤ h2(ua)(1− eb)+ eb = 1− (1−h2(ua))(1−h2(ub))

From Eq. (3.1) we finally get H(a�b) ≤ 1− (1−H(a))(1−H(b)). Notice finally
that the BEC fulfills the property H(a�dBEC(ε)) = H(a)H(dBEC(ε)) as we will show
again in Lemma 3.4.

Observe that a (or b) can itself be the �/�-convolution of any numbers of L-
densities. In the framework of iterative decoding, this implies the following: If at
a variable node we substitute an input density with a density representing a BSC
with equal entropy, then the output entropy is decreased. The rule is reversed if
instead we use a BEC with equal entropy or if we look at the check node side.
Such extremal densities have many applications. In particular they are useful in
deriving universal bound on thresholds. For example the idea to derive a univer-
sal lower bound on the BP threshold is the following. Consider the picture in
Figure 3.3 where density evolution is seen as a staircase function between two fic-
titious EXIT curves. Instead of replacing these fictitious curves with the Gaussian
approximation as for the EXIT chart method, we can replace them by extremal
EXIT curves obtained from the previous theorem, i.e., we consider that the in-
termediate inputs at the variable (parity-check) nodes densities are BSC (BEC)
densities and we obtain a lower bound on the smallest channel entropy c under
which we can guarantee that BP decoding is successful. For example, if we con-
sider LDPC(x2,x5) and BP decoding, then we can transmit reliably over any BMS
channel with entropy h < 0.3643. Further examples can be found, e.g., in [133].
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3.4 EXIT Analysis for the Erasure Channel
In the previous section we saw that rigorous statements using the extremes on
information combining could be obtained from EXIT charts. This gave us a way
to quantify the maximum deviation of the EXIT chart method from the actual
density evolution. Can we derive other rigorous statements? The original reason
behind EXIT charts is that if an iterative coding scheme is composed of several
component codes (e.g., serial or parallel concatenation), then we characterize each
component by its individual EXIT curve. There is a particular case where the
EXIT chart methodology is exact: For the BEC it is equivalent to the density
evolution equations. Let us first derive further properties of EXIT functions when
transmission takes place over the BEC. We will then present some consequences
in the framework of the EXIT chart (i.e., density evolution) analysis.

3.4.1 Further Properties of EXIT Functions
Let X be chosen with probability pX (x) from a code C of length n. Consider
the memoryless family {BECi(εi)} such that the ith bit is transmitted through
BECi(εi), and let Y (ε[n]) denote the received vector (typically, εi = ε1 for all i).

Let us list some useful characterizations of the EXIT function (which extend natu-
rally to the non-binary erasure case). Recall that, in the binary erasure case, the ex-
trinsic MAP estimate ΦMAP

i
M= φMAP

i (Y∼i) is a LLR that takes on values±∞ or 0. The
MAP decision is x̂MAP

i (y∼i)
M=sign(φMAP

i (y∼i)) if φMAP
i (y∼i) 6= 0, and x̂MAP

i (y∼i) = j

otherwise. Recall εi
M= 1− εi and ε

M= (ε1, · · · , εn).

Lemma 3.4 [Various Characterizations] The definition hi(ε)
M= H(Xi|Y∼i) is equiv-

alent to the following:

(i) hi(ε)
M= H(Xi|φMAP

i (Y∼i))

(ii) hi(ε)
M= Pr{x̂MAP

i (Y∼i) = j}

(iii) hi(ε)
M= ∑

K⊆[n]\{i}
∏ j∈[n]\({i}∪K )ε j ∏k∈K εk H(Xi|XK )

(iv) hi(ε)
M=

∂H(Xi|Y )
∂εi

If C is a binary linear code with parity-check (generator) matrix H (G, respec-
tively) from which X is chosen uniformly at random, then hi(ε)

M= H(Xi|Y∼i) is
also equivalent to the following:

(v) hi(ε)
M= ∑

E⊆[n]\{i}
∏ j∈Eε j∏k∈[n]\({i}∪E)εk

(
1+ rk(HE )− rk(HE∪{i})

)
(vi) hi(ε)

M= ∑
K⊆[n]\{i}

∏ j∈[n]\({i}∪K )ε j ∏k∈K εk
(
rk(GK ∪{i})− rk(GK )

)



3.4. EXIT Analysis for the Erasure Channel 57

Proof. Characterization (i) was discussed in Section 3.1. Characterization (ii)
comes from considering pXi|Y∼i as an erasure channel with erasure probability
Pr{x̂MAP

i (Y∼i) =?} = Pr{pXi|Y∼i(+1|Y∼i) = pXi|Y∼i(−1|Y∼i)}. Characterization (iv)
follows from a similar argument. We first write H(Xi|Y ) = Pr{x̂MAP

i (Y ) = j} =
Pr{Yi = j, x̂MAP

i (Y∼i) = j} = εihi(ε), then we take the partial derivative with re-
spect to εi. Characterization (iii) comes from the expansion of the conditional
entropy in Fact 3.2. This implies (vi) since for a binary linear code with equal
priors H(Xi|XK ) = rk(GK ∪{i})− rk(GK ) (which is either 0 or 1 when the ith bit is
reconstructible). Characterization (v) follows from a similar argument.

Discussion: Each one of the above characterizations has its own merit. Nev-
ertheless, as we will see in the remaining of this thesis, the most fundamental
one is characterization (iv). Moreover, observe that, for notational simplicity, we
have skipped the superscript MAP, as well as the potential observation Ω satis-
fying Ω → X → Y . Notice, however, that characterization (iv) for example ex-
tends naturally to any extrinsic DEC estimator. We have indeed hi(ε) = hMAP

i (ε) M=
∂H(Xi|Yi,Φ

MAP
i )

∂εi
. By extension, the DEC EXIT function will be characterized by

hDEC
i (ε) M= ∂H(Xi|Yi,Φ

DEC
i )

∂εi
.

Example 3.3 In this example, let ε ∈ [0,1] be the scalar such that εi = ε for all
i. Figure 3.4 shows EXIT functions for some standard codes. In all these cases
∀i, hi(ε) = h1(ε) = h(ε). The [n + 1,1,n + 1] repetition code has EXIT function
hi(ε) = εn. Its dual, the [n+1,n,2] single parity-check code, has hi(ε) = 1− (1−
ε)n. If we refer to characterization (ii), we see that the EXIT function for the [7,4]
Hamming code has already been depicted in Figure 2.6 of Chapter 2. Let us fur-
ther illustrate characterizations (v) and (vi) with the self-dual [8,4] extended Ham-
ming code [136] as well as with the [15,11] Hamming code and its dual. The [8,4]
self-dual code has h(ε) = 7ε3−21ε5 +21ε6−6ε7, the [15,11] Hamming code has
h(ε) = 7ε2 + 28ε3 − 49ε4 − 756ε5 + 3871ε6 − 9232ε7 + 13629ε8 − 13552ε9 +
9317ε10− 4396ε11 + 1365ε12− 252ε13 + 21ε14, and its dual has h⊥(ε) = 8ε7−
28ε11 +42ε13−21ε14.

The first characterization of Lemma 3.4 is used for practical computations in the
EXIT chart method. The second characterization provides a somehow more in-
tuitive insight into EXIT functions. For example, it is well-known that, over the
BEC, a linear code C can detect and correct up to dmin−1 erasures. If dmin ≥ 2, the
punctured code ker(H[n]\{i}) can therefore recover at least up to dmin−2 erasures.
If this is the case, i.e., if the entire extrinsic block is recovered, then the intrinsic
bit is also uniquely determined. Therefore the extrinsic (bit) erasure probability of
the second characterization should have at least minimum degree dmin−1. This is
stated in (the next) Theorem 3.2.

Theorem 3.2 [Minimum Distance Theorem] Let C be a proper binary linear code
of length n and minimum distance dmin. The EXIT function hi(ε), i ∈ [n], is a
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multivariate polynomial of minimum degree at least dmin−1 and the average EXIT
function h(ε) has minimum degree exactly dmin−1.

Proof. Consider characterization (v) of Lemma 3.4. Observe first that since the
code is proper hi(ε) is a non-zero multivariate polynomial. Let E be a subset
of cardinality |E | < dmin. As any dmin− 1 columns of H are linearly indepen-
dent, it follows that (1 + rk(HE )− rk(HE∪{i})) is zero for any such subset E .
Therefore hi(ε1, · · · , εn) does not contain multivariate monomials of degree less
than dmin− 1. Moreover, if E ∪{i} is chosen to correspond to the support of a
minimum distance codeword then (1 + rk(HE )− rk(HE∪{i})) is one and this will
contribute to a (monic) monomial of degree dmin−1. Since these monic minimum
degree terms cannot be canceled by any other terms, it follows that h(ε1, · · · , εn)
has minimum degree exactly dmin−1.

Example 3.4 The EXIT functions in

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.0
ε

h(ε)
[9,8] SPC

[15,11] H

[8,4] RM

[11,5] S

[9,1] R

Figure 3.4: EXIT curves (ε,h(ε)) over
BEC(ε): Single Parity-Check (SPC) code and
Repetition (R) code (or SPC dual), Hamming
(H) code and Simplex (S) code (or H dual).
Observe that the [8,4] first-order Reed Muller
(RM) code or extended Hamming code is
self-dual: Its curve is symmetric with respect
to the point ( 1

2 , 1
2 ).

Example 3.3 show that the minimum
distance of the [n+1,n] single parity-
check code is dmin = 2; its dual has
minimum distance d⊥min = n + 1. The
[15,11] Hamming code has dmin = 3;
its dual has d⊥min = 8. The [8,4] ex-
tended Hamming has dmin = 4.
Examples will be shown in Chapter 7
where the free distance of a convolu-
tional code is obtained.

The main interest of characterization
(v) in Lemma 3.4 is when it is com-
bined with characterization (vi) to give
the duality theorem [32, 137]. Recall
that, if G if a generator matrix for C,
then its dual is the code C⊥ M= ker(G).
Let us denote h⊥i (h⊥) the (average)
EXIT function associated with C⊥.

Theorem 3.3 [Duality Theorem] Assume C is a binary linear code with parity-
check (generator) matrix H (G, respectively) from which X is chosen uniformly
at random, then hi(ε1, · · · , εn) = 1−h⊥i (1− ε1, · · · ,1− εn).

Example 3.5 This property can be easily verified on EXIT functions from Exam-
ple 3.3. E.g., for the repetition code of length n+1, we have h(1−ε) = (1−ε)n =
1− h⊥(ε) where h⊥(ε) = 1− εn is the EXIT function of the single parity-check
code. For the [8,4] self-dual code, it can also be verified that h(ε) = h⊥(ε).
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Many other proofs of the duality theorem exist. E.g., a proof using the so-called
information functions is used in [32]. A common trend of all proofs is that they
exploit the relationship between a code and its dual. One of the key ingredients to
prove the MacWilliams identities is a small exercise in algebra (presented in Ap-
pendix 3.B). It shows that, for any subset S ⊆ [n], |S |−rk(GS ) = n−k−rk(H[n]\S )
where k is the dimension of C. In fact, this statement, together with either charac-
terization (iv) or (v) alone, would also suffice to prove (the duality) Theorem 3.3.
It is therefore not surprising that the dual decoding rule according to Hartmann et
al. [86,104] (which is derived from the MacWilliams identities and is reviewed in
Appendix 2.B) can also prove Theorem 3.3 directly from characterization (ii).
Note that characterization (vi) also permits us to state Lemma 3.5 which shows
that, in many cases, the code is such that for all i, hi = h1 (see “isotropy” in
Section 3.1).

Lemma 3.5 Assume C is a binary linear code of length n with parity-check (gen-
erator) matrix H (G, respectively) from which X is chosen uniformly at random.
Assume that the channel family {BEC(εi)} is such that for all i, εi = ε ∈ [0,1]. If
∀S ⊆ [n] rk(GS ) = rk(G[|S |]), then ∀i∈ [n], hi(ε) = h1(ε). Alternatively, if ∀S ⊆ [n]
rk(HS ) = rk(H[|S |]), then ∀i ∈ [n], hi(ε) = h1(ε).

So far we have listed the merits of all but one characterization in Lemma 3.4. All
of the induced properties concern individual EXIT function hi but trivially trans-
late to the average EXIT function h = 1

n ∑
n
i=1 hi. Nevertheless, if we look at the

average EXIT function h(h), an alternative characterization emerges. This is prob-
ably the most fundamental property of EXIT functions over the BEC and will be
stated as a theorem. From characterization (iv), observe that an alternative char-
acterization is hi(ε) = ∂H(X |Y )

∂εi
. To see this, use the chain rule to write H(X |Y ) =

H(Xi|Y )+H(X∼i|Y,Xi) = H(Xi|Y )+H(X∼i|Y∼i,Xi) where the last equality comes
from the memoryless nature of {BECi(εi)}i. We finally get ∂H(X |Y )

∂εi
= ∂H(Xi|Y )

∂εi
+0

and we can state this result for the BEC.

Theorem 3.4 [General Area Theorem – BEC] Let X be a binary random vector of
length n and assume that transmission takes place over a family {BECi(εi)}i. If
h M= (h1(ε∼1), · · · ,hn(ε∼n)) denotes the vector composed of the n individual EXIT
functions, then h is the gradient of the conditional entropy, i.e., h = ∇H(X |Y ) M=
( ∂H(X |Y )

∂ε1
, · · · , ∂H(X |Y )

∂εn
). Furthermore, if there exists a real-valued parameter p such

that the vector ε(p) = (ε1(p), · · · , εn(p)) is differentiable in p, then h · dε(p)
dp =

∇H(X |Y ) · ε′(p) = dH(X |Y (p))
dp where “·” denotes the standard scalar product. In

particular, if a parameter p can be chosen such that εi(p) = p for all i, then
h(p) = 1

n ∑
n
i=1 hi(εi) = dH(X |Y )

ndp where h(p) is the average EXIT function over
BEC(p).

Discussion: The particular case where εi(p) = p for all i is basically equivalent
to the original area theorem [32]. (See Appendix 3.C for historical details.) It is
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indeed trivial to deduce that in that case
R p

0 h(p)dp = H(X |Y (p))
n . For example, if

we use a coded transmission and p = 1, then the area under the EXIT curve equals
the rate of the code.

Example 3.6 From the EXIT functions of Example 3.3, we compute
R 1

0 h(ε)dε =R 1
0 εndε = 1

n+1 for the repetition code of length n+1 and
R 1

0 h(ε)dε =
R 1

0 1− (1−
ε)ndε = n

n+1 for the single parity-check code of length n+1. In a similar manner,
the area under the EXIT curve is 11/15 for the Hamming code, 4/15 for the
Simplex code, and 1/2 for the self-dual Reed Muller code.

Theorem 3.4 is more general than the original area theorem because it allows us
to consider any smooth path of the channel space. If we change the set of all
channels BECis from some starting state A characterized by {εA

i }i to some final
state B characterized by {εB

i }i, then the total change of entropy H(X |Y ) between A
and B is independent5 of the smooth way we follow and equals the sum of “local
changes in entropy” at each position. By “local change in entropy”, we mean the
variation of uncertainty at a bit position due to the variation of all channels, i.e.,
hi(p)ε′i(p) at the ith position. The total change of H(X |Y ) along different paths
between the initial state A and the final state B is of course the same, but the
individual contributions as hi(p)ε′i(p) might differ. This is illustrated by the next
two examples.

Example 3.7 [Contribution of Individual EXIT Functions] Consider the [2,1] rep-
etition code. Assume first that the channel family is {BECi(εi = p)}i∈{1,2}, i.e.,
each individual channel is parametrized by the same real-valued parameter p ∈
[0,1]. It is easy to see that the change of entropy H(X |Y (p)) is H(X)− 0 =
1 when the common channel entropy p varies from 0 to 1. Further we have
h1(p) = h2(p) = p so that

R 1
0 hi(p)dp = 1

2 for i = 1,2. This means that for this
parametrization both positions contribute one-half to the total change of entropy
rate. Assume now that the channel family is {BEC1(ε1 = min(1,p)),BEC2(ε2 =
max(0,1−p))} where p ranges from 0 to 2, i.e., we change each individual chan-
nel entropy from 0 to 1 successively and not simultaneously. The initial and fi-
nal state are the same as before; therefore the change of entropy rate is again
1. The contribution of the first channel to this total change of entropy is given
by

R 2
0 h1(p)ε′1(p)dp =

R 2
0 0dp = 0 while the contribution of the second channel isR 2

0 h2(p)ε′2(p)dp =
R 2

1 dp = 1. In other words, the uncertainty of the first position
contributes to zero, whereas the second position contributes to one to the total
change of conditional entropy.

The freedom of choosing any path between A and B is again exploited in (next)
Example 3.8. This is a pleasing example that provides an alternative way to com-
pute a particular area which will be called area under the EBP EXIT curve in the

5This fact is evident in our context where all functions are differentiable. However in the history
of thermodynamics, this kind of result has long been deduced from empirical observations that, e.g.,
have postulated the equivalence between “work” and “heat” (see first principle of thermodynamics).
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next sections.

Example 3.8 [Area Theorem and EBP EXIT Curve] Consider the [5,3] linear code
whose parity-check matrix is formed by the two row vectors (1,1,1,0,0) and
(1,0,0,1,1). Consider the function ε : x 7→ x

(1−(1−x)2)2 defined (by continuity)
over [0,1] and let the channel family be {BEC1(ε(p)),{BECi(p)}i6=1} where p
ranges from 0 to 1 (ε(p) ranges from 1/2 to 1). The local change in entropy at
the first position is I1

M=
R 1
p=0 h1(p)dε(p). This integral can be easily computed in

this example. As a game, assume however that we are not allowed to compute
it directly. Is there any other way to obtain its value? The answer is affirma-
tive if we take advantage of the general area theorem. The general area theorem
states that H(X) = I1 + ∑

5
i=2 hi(p)dp. Now since the code is a tree and because

of the particular choice of parametrization (which in fact corresponds to the fixed
points of density evolution), it is easy to check that hi(p) = 1− (1−p)2 such thatR 1

0 hi(p)dp = 2/3 for all i 6= 1. Then I1 = H(X)− 4 2
3 = 3− 8/3 = 1/3. We will

later see in Chapter 4 and Chapter 6 that 1/3 is in fact the design rate of the LDPC
ensemble whose computation tree of depth 1 is the considered [5,3] code.

Finally, note also that the additional observation Ω such that Ω → X → Y can
also be included in the statements of Theorem 3.4. This general form is given
in Chapter 5 and exemplified in Chapter 7. A few notes on the “history” of the
area theorem are collected in Appendix 3.C. In the next chapter, we will present
what is perhaps the most fundamental use of (G)EXIT functions. But before, let
us review some properties obtained from the previous theorems.

3.4.2 EXIT Charts
Density evolution [14, 15] or equivalently the analysis of the peeling algorithm
[12,13,38] reveals that the asymptotic behavior of (G)LDPC ensembles is charac-
terized by fε(x)

M= ελ(y(x)) where y(x) M= 1−ρ(1−x) for LDPC ensembles. The
function fε(x) represents the evolution of the fraction of erased messages emitted
by the variable nodes when transmission takes place over BEC(ε). The system
is said to be in state x when x is the current fraction of erased messages. In the
BP implementation, the fraction of erased messages is then given by the sequence
x`+1 = fε(x`) with x0 = 1. Various graphical representations of this recursive se-
quence are possible. Figure 3.5 shows three such standard representations: The
decoding process corresponds graphically to a staircase function bounded below
by fε(x) and bounded above by x in the classical (middle) picture. It is possible
and helpful to represent fε(x) as the composition of two non-decreasing (there-
fore invertible) functions, one which represents the extrinsic entropy emitted at the
variable nodes (i.e., the EXIT function for a repetition code), the other which rep-
resents the extrinsic entropy emitted by the function nodes (e.g., the EXIT function
for a single parity-check code in the case of a LDPC ensemble). Let us therefore
use vε(x)

M= ελ(x) and c(x) M= y(x) to write fε(x) = vε(c(x)). The sequence of
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erased messages emitted by a function node is then y` = c(x`), it is x`+1 = vε(y`)
at a variable node (y0 = 1 ,x0 = 1). Recall that the condition for convergence
reads fε(x) < x for x∈ (0,1) which can be written as c(x) < v−1

ε (x) for x∈ (0,1).
In other words, the function c(x) has to lie strictly below v−1

ε (x) over (0,1). The
BP threshold εBP is the supremum of all numbers ε for which this condition is ful-
filled. Note that the local condition around ε = 0 reads c′(0)≤ dv−1

ε (x)
dx |x=0 = 1

ελ′(0) .

This is of course the stability condition ρ′(1)λ′(0)≤ 1
ε for LDPC ensembles when

c′(0) = ρ′(1).
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Figure 3.5: Progress of density evolution: Three equivalent pictures represent the asymp-
totic decoding of LDPC(x3,x4) over BEC(ε = 0.58). Left: Original analysis in [12–15].
Middle: Classical representation. Right: EXIT chart. We have v−1

ε (x) = (x/ε)3 for
ε = 0.4, 0.5 and 0.58, and c(x) = 1− (1− x)4. The BP threshold is εBP ≈ 0.6001. The
evolution of the decoding is represented for ε = 0.58, i.e., slightly below threshold.

3.4.3 Matching Condition
Consider the EXIT chart associated with a given LDPC ensemble or, more gen-
erally, GLDPC ensemble. The case of multi-edge ensembles such as Turbo codes
will be considered, for completeness, in Chapter 7. A GLDPC ensemble is charac-
terized by a variable node distribution λ(x) and a collection of function nodes such
that the EXIT function c(x) represents the extrinsic entropy at the output of the
function nodes when transmission takes place over BEC(x). All function nodes
are assumed to be MAP decoded; c(x) is therefore averaged over all degrees and
all possible types of function nodes. For example, if we considered LDPC(λ,ρ),
then c(x) = ∑i λici(x) where ci(x)

M= 1− (1− x)i−1 is the EXIT function asso-
ciated with the [i, i− 1] single parity-check code. In the same manner, vε(x) is
the average EXIT function associated with the variable nodes when transmission
takes place over BEC(ε). We have vε(x) = ελ(x). The area theorem states that the
area “under the curve” c(x) equals the rate of the average function node, call it
rc. For example, it is Γ ′(1)−1

Γ ′(1) = 1−
R

ρ for the case of the ensemble LDPC(λ,ρ).
(Note that, for LDPC ensembles, this integral can alternatively be directly com-
puted.) In a similar manner, the area “to the left of the curve” vε(x) is equal to
ε/Λ′(1) = ε

R
λ. A necessary condition for successful BP decoding is that the two
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curves vε(x) and c(x) do not cross. In this case the areas do not overlap and we
get the following necessary condition for successful BP decoding:

1− ε
Z 1

0
λ(x)dx−

Z 1

0
c(x)dx > 0, or 1− 1− rcR

λ
< C(ε) M= 1− ε.

In other words, the design rate r(λ,c) M= 1− 1−rc
λ of any GLDPC ensemble that,

for increasing block lengths, allows successful BP decoding over BEC(ε) cannot
surpass the channel capacity. This necessary condition is called matching con-
dition and arises similarly in the context of multi-edge ensembles, see Chapter
7. Although the matching condition itself is trivial, its derivation is constructive
because it shows how the Shannon limit enters in the calculation of the asymp-
totic performance of iterative coding system. In particular, it shows that in order
to achieve capacity, the two EXIT curves have to be perfectly matched. We will
exemplify this point in the next subsection.

Notice that an argument very similar to the one above is introduced in [34, 138]
(albeit not using the language and geometric interpretation of EXIT functions and
applying a slightly different range of integration). It was the first bound on the per-
formance of iterative systems in which the Shannon capacity appeared explicitly
using only quantities of density evolution. A substantially more general version
of this bound can be found in [32, 137, 139]. See also [47, 61]. The extension to
parallel turbo schemes is addressed in [36, 47] and discussed in Chapter 7.

A generalization of the matching condition to BMS channels will be presented in
Chapter 6.

3.4.4 Capacity-Achieving Sequences
The quantity r− ε = (1− ε)− (1− r),
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Figure 3.6: Additive gap to capacity for the
ensemble LDPC(x3,x4).

which is the limiting additive gap to
capacity shown by the matching con-
dition, can be further quantified. Ob-
serve the EXIT chart in Figure 3.6,
which represents the case of transmis-
sion just below the BP threshold. For
the channel parameter ε = εBP, the two
EXIT functions are tangent in (xBP,yBP)
and the EXIT chart gives a graphical
representation of the limiting gap to
capacity: The additive gap C(εBP)− r
where C(εBP) M= 1− εBP is indeed represented by the entire white area D such that

C(εBP)− r = εSH− εBP =
DR
λ

, (3.2)
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where 1R
λ

= Λ′(1) is the average left degree. In other words, the area D is the

area between the left EXIT curve x 7→ λ−1(x/εBP) (at the BP threshold) and the
right EXIT curve x 7→ c(x) that is bounded away by the unit square, see, e.g., [32].
This expression has a straightforward consequence: the fact that “good” iterative
coding schemes do not require the use of “good” component codes (i.e., codes
with an associated EXIT function which becomes a step function, see Appendix
7.A). In order to make the gap to capacity as small as possible, one natural method
would be to consider a curve c(x) and to look if its inverse function has a Taylor
expansion with positive coefficients. See [12,13,122]. After some work, we hope
to make the gap to capacity (as well as the matching of the curves) very small.
It is shown in [35, 138] that no fixed dd pair (λ,ρ) has zero (multiplicative) gap
to capacity (where the multiplicative gap to capacity is (C(εBP)− r)/C(εBP)). We
then have to work with sequences of ensembles.

The next lemma presents such a construction: this is a variation from the standard
right-concentrated capacity-achieving sequences presented in [34, 140].

Lemma 3.6 [Right-Regular Capacity Achieving Sequence] Consider a fixed de-
gree r> 2 and let ρr(x)

M= xr−1 represent a right degree distribution. Assume that
transmission takes place over BEC(ε). Define

λ̃(x) M= 1− (1−x)
1

r−1 =
∞

∑
i=2

λ̃i>0︷ ︸︸ ︷( 1
r−1

i−1

)
(−1)i xi−1, λdr(x)

M=
1
ε

dr

∑
i=2

λ̃ix
i−1+ λ̃Lrx

Lr−1,

where dr > 2. Then, there exists dr satisfying ∑
dr
i=2 λ̃i ≤ ε and Lr >> dr suffi-

ciently large such that (λr(x),ρr(x)) is a valid dd pair. This dd pair allows for
asymptotically erasure-free transmission at design rate rr = 1− 1

r∑
dr
i=2 λ̃i/i

+oLr(1)

(where oLr(1) is arbitrarily small). Furthermore, limr→∞ rr = 1− r
r−1ε, which

shows that erasure-free transmission is (asymptotically) possible arbitrarily close
to capacity.

Discussion: Let us first indicate that the proof of this lemma follows from a few
geometric considerations using the convexity of λ−1, the concavity of c(x) and
the fact that the upper part of the residual area D tends to zero geometrically
as O((1− ε)r−1). Second, observe that, in order to adjust the weight of the left
degree distribution, we chose to put all the weight to a very high (think of it as
“infinite”) degree. This is a minor modification of the original right-regular con-
struction [34,35,140] that distributes the weight over all coefficients [34,35,140].
However in both cases the first coefficients of the Taylor expansion are used to
construct a sequence that performs close to capacity. In our case, these coeffi-
cients are perfectly matched. This might not be the optimum choice in terms, e.g.,
of complexity, but this is somehow closer to what a linear optimization program
would find out, see, e.g., [128].
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3.5 Conclusion and Discussion
This chapter has presented EXIT functions and their main properties. Most of
those properties are only valid for the particular case of the BEC. For this chan-
nel, the EXIT chart methodology permit us to derive capacity-achieving sequences
of dd pairs. Such sequences are obtained by matching the EXIT functions of the
individual component codes. From a theoretical point of point, this is done by
using the Taylor expansion of one (fixed) individual EXIT curve as shown in the
previous section. From a practical point of view, when we aim at optimizing a
given iterative coding system in order to approach channel capacity, we will read
off the “bottlenecks” between the two individual EXIT curves.

Although this might not be an optimal trade off between performance versus com-
plexity, the sequence presented in Lemma 3.6 shows already that one can indeed
read off the “bottlenecks” in the decoding process.
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Figure 3.7: Graphical interpretation of Theorem 4.10 (dynamic level). Left: Ensemble with
dd pair (λ(x),ρ(x)) = (x2,x3) (one-jump) and transmission at ε = εBP. Right: Ensemble
with λ(x) = 0.78x2 + 0.1x3 + 0.12x14 and y(x) obtained from a mixture of component
codes composed by 50% of [19,18] single parity-check codes, 35% of [7,4] Hamming
codes and 15% of [15,11] Hamming codes (edge perspective) at ε = εBP and at ε = ε2.

The (limiting) individual EXIT curves associated with this sequence match per-
fectly. This is not the case for iterative coding systems encountered in practice.
However it is possible to improve the performance of the system by identifying
the critical points. Once these critical regions have been identified, the individ-
ual component codes can be changed appropriately to improve the performance
of the system (see also Example 7.2 in Chapter 7). The degree of freedom for
this improvement is linked to the area gap (called D in Figure 3.6) between the
individual EXIT functions. The derivation of provable capacity-approaching or
capacity-achieving ensembles is a first application of EXIT charts over the BEC.
Other applications are possible; an important one is when we want to give (at
least in certain cases) lower bounds on the number of iterations for successful de-
coding. But the application of EXIT functions, perhaps the most surprising, is
obtained when we look at a single EXIT curve (and not a “chart”) on the erasure
channel. This topic is addressed in the next chapter. We will apply the area the-
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orem to the EXIT function that describes the average performance of the overall
LDPC ensemble. Surprisingly this will permit us to refine the statement of Eq.
(3.2). In other words, we will see that the area D in Figure 3.6 can be itself di-
vided into two parts where the subarea “below xBP” (denoted by D1 on the left
picture in Figure 3.7) represents the average gap between MAP and BP decoding.
The determination of LDPC codes for which BP decoding is MAP reduces then
again to a curve-matching problem, but now “below” xBP. See Figure 3.7... and
the next chapter!

In the next chapter, we will use EXIT functions to present the strong relation-
ship between iterative (BP) and optimal (MAP) decoding when transmission takes
place over the BEC. The second part of the thesis starting at Chapter 5 (with the
introduction of GEXIT functions) will extend the properties and applications of
EXIT functions to general BMSCs.

Appendix

3.A Technical Clarifications on the Additional Ob-
servation Ω

So far we have used several times the hypothesis Yi→ Xi→ Y∼i. As already dis-
cussed in Section 2.4, it is implied by a more general assumption, the memoryless
nature of the channel pY[n]|X[n]

. In fact, if a channel is memoryless, then ∀S ⊆ [n],
YS → XS → Y[n]\S .

In order to include cases such as, e.g., parallel concatenation in our framework,
we consider a further observation Ω such that Ω → X → Y as in Definition 3.1.
The next fact is needed to enlarge the domain of application of Example 2.9 to
such cases.

Fact 3.3 Assume Yi→ Xi→ Y∼i and Ω→ X → Y . Then Yi→ Xi→ (Y∼i,Ω).
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Proof. Assume for simplicity that the channels are discrete such that we have

p(yi|xi,y∼i,ω) =
p(yi,ω|xi,y∼i)
p(ω,xi,y∼i)

=
p(yi|xi,y∼i)p(ω|xi,y∼i,yi)

p(ω|xi,y∼i)
(a)
= p(yi|xi)

p(ω|xi,y)
p(ω|xi,y∼i)

= p(yi|xi)
∑x∼i p(ω,x∼i|xi,y)

p(ω|xi,y∼i)

= p(yi|xi)
∑x∼i p(ω|x,y)p(x∼i|xi,y)

p(ω|xi,y∼i)
(b)
= p(yi|xi)

∑x∼i p(ω|x)p(x∼i|xi,y)
p(ω|xi,y∼i)

where (a) uses Yi→ Xi→ Y∼i and (b) uses Ω→ X → Y .
The denominator can further be written as p(ω|xi,y∼i) = ∑x∼i p(ω,x∼i|xi,y∼i) =
∑x∼i p(ω|x,y∼i)p(x∼i|xi,y∼i) = ∑x∼i p(ω|x)p(x∼i|xi,y∼i) where the last equality

comes from p(ω|x,y∼i) = p(ω,y∼i|x)
p(y∼i|x) = ∑yi p(ω,y|x)

p(y∼i|x) = ∑yi p(ω|x,y)p(y|x)
p(y∼i|x) = p(ω|x) with

Ω→ X → Y . The denominator can finally be written ∑x∼i p(ω|x)p(x∼i|xi,y∼i) =
∑x∼i p(ω|x)p(x∼i|xi,y) observing Yi→ Xi→Y∼i. We then obtain p(yi|xi,y∼i,ω) =
p(yi|xi).

Discussion: Assuming Yi→ Xi→Y∼i and Ω→ X→Y , we also have p(yi|xi,ω) =
p(yi|xi). This means that the channel pΩ=ω(y[n]|x[n]) itself is memoryless. The ob-
servation Ω plays the role of an additional (and independent) channel observation,
i.e., we could formally define a received extrinsic vector Ỹ∼i = (Y∼i,Ω). The main
consequence of Fact 3.3 is that it shows that the random variable φMAP

i (Y∼i,Ω) con-
stitutes a sufficient statistic for estimating Xi. This follows from similar consider-
ations to those leading to Example 2.9. Therefore (with a slight abuse of notation)
H(Xi|Y∼i,Ω) = H(Xi|φMAP

i (Y∼i),Ω) = H(Xi|φMAP
i (Y∼i,Ω)). Moreover observe that

Yi and ΦMAP
i are conditionally independent random variables.

3.B A Touch of Algebra
The following simple exercise in linear algebra is used several times in this thesis.

Fact 3.4 Consider a [n,k] linear code. Assume it possesses a parity-check matrix
H and a generator matrix G. Then, for any subset S ⊆ [n], we have |S |− rk(GS ) =
(n− k)− rk(H[n]\S ).

Proof. Since C = ker(H) =Vect({(Gi1Gi2 · · ·Gin)}1≤i≤k), linear combinations of
rows do not change the rank. Consider a generator matrix G and choose a subset
S ⊆ [n]. The sub-matrix GS has |S | columns of rank rk(GS ). Therefore one could
find a new generator matrix G′ of the subspace C such that G′S = [QT 0]T has |S |
columns of rank rk(GS ) with a rk(GS )×|S | sub-matrix Q of same rank (0 can be
an empty submatrix). Consider the dual matrix Q⊥ of minimum rank such that
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Q(Q⊥)T = 0. The rank formula says rk(Q)+dim[Ker(Q)] = rk(Q)+ rk(Q⊥) =
|S |. Therefore Q⊥ (with |S | columns) has rank |S | − rk(GS ). Completing the
basis, we can find two submatrices U and V to form a (n− k)×n matrix H ′ such
that G′H ′T = 0 with H ′[n]\S = [0 V T ]T and H ′S = [Q⊥ UT ]T . The matrix [U V ] is a
(n− k + rkGS −|S |)×n matrix. We then conclude that rk(H[n]\S ) = rk(H ′[n]\S ) =
n− k + rk(GS )−|S |.

3.C A Brief History of Area Theorems

The first work with the flavor of the area theorem appears in [34, 138, 140]. The
main differences between this first work and the area theorem are that, first, the
range of integration in [140] is slightly different from the one in [32], and, second,
the results are mainly rooted by dynamical considerations (i.e., by the design of
capacity-achieving schemes). The first explicit statement that connects the area
under the EXIT function to an invariant quantity (the rate of the code) comes later
in [137, 139, 141, 142] and is published in [32]. The use of the area theorem for
parallel concatenation is treated in [36, 47].

The general area theorem, which we stated in this chapter, generalizes the origi-
nal version in [32]. The fundamental difference between the two is in the proof
technique.

The first partial justification of the area theorem is given in [141]. It uses the chain
rule and Riemann sums. (This is an idea similar to the one used in Appendix
7.B for the bi-infinite trellis.) A more formal result is presented for linear codes
in [142]: it consists of taking the integral of characterization (v) or (vi) of Lemma
3.4 to get a difference of two sums whose terms cancel pair-wise. An alternative
(slightly more general, but similar in essence) proof is provided in [32, 137, 139].
Let us present this version in the following.

Theorem 3.5 [Ashikhmin et al. Area Theorem] Let X be a binary vector of length
n chosen uniformly at random from a code C. Let Y (ε) be the result of passing X
through BEC(ε). Let Ω be a further observation of X so that Ω→ X → Y . Then

H(X ,Ω)
n

=
Z 1

0

1
n ∑

i∈[n]
H(Xi|Y∼i(ε),Ω)dε.
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Proof. We get

∑
i∈[n]

Z 1

0
H(Xi |Y∼i(ε),Ω)dε

(a)
= ∑

i∈[n]
∑

S⊆[n]\{i}
H(Xi |XS ,Ω)

Z 1

0
(1− ε)|S |εn−1−|S |dε

(b)
= ∑

i∈[n]
∑

S⊆[n]\{i}
H(Xi |XS ,Ω)

(n−1−|S |)!|S |!
n!

(c)
=

n−1

∑
s=0

∑
S⊆[n]:|S |=s

∑
i∈[n]\S

∑
π∈ΠS

(n−1− s)!
n!

H(Xi |Xπ(S),Ω)

=
n−1

∑
s=0

∑
S⊆[n]:|S |=s

∑
π∈ΠS

∑
i∈[n]\S

(n−1− s)!
n!

H(Xi |Xπ(S),Ω)

(d)
=

n−1

∑
s=0

∑
ι∈Υ[s]→[n]

∑
i∈[n]\ι([s])

(n−1− s)!
n!

H(Xi |Xι([s]),Ω)

=
n−1

∑
s=0

∑
ι∈Υ[s+1]→[n]

(n−1− s)!
n!

H(Xι(s+1) |Xι([s]),Ω)

(e)
=

n−1

∑
s=0

∑
ι∈Υ[s+1]→[n]

∑
π∈Π[n]\ι([s])

1
n!

H(Xι(s+1) |Xι([s]),Ω)

( f )
=

n−1

∑
s=0

∑
π∈Π[n]

1
n!

H(Xπ(s+1) |Xπ([s]),Ω)
(g)
= H(X |Ω),

where (a) uses Lemma 3.4 and characterization (iii), (b) is the integration of
the Beta function B(u,v) =

R 1
0 εu−1(1− ε)v−1dδ = (u−1)!(v−1)!

(u+v−1)! , (c) is obtained
by switching the sums and denoting ΠS the group of the permutations over S
(there exists |S |! such permutations), (d) uses the notation ΥS→[n] for the set of
all injections of a subset S into the set [n], (e) uses again the notation Π[n]\S
for the group of the permutations over the set [n] \ S , ( f ) constructs permuta-
tions over [n] by rearranging the s + 1 first elements in an initial stage and fi-
nally combining the remaining ones, and (g) uses the chain rule for entropy
H(X |Ω) = ∑

n
s=1(Xi|X1,X2, · · · ,Xs−1,Ω) and the n! ways of writing down this rule

such that H(X |Ω) = 1
n! ∑

n
s=1 ∑π∈Π[n]

H(Xπ(s)|Xπ([s−1]),Ω).

Observe that the observations Y and Ω represent what were called, in the original
theorem [137], the “extrinsic” information and the “channel,” respectively.
Let us now show how our formulation relates to the original statement, i.e., let us
make the bridge between the original area theorem and (the general area) Theorem
3.4. In Theorem 3.5 the integration ranges from zero (perfect channel) to one (no
information conveyed). The following is a trivial extension.

Theorem 3.6 [Area Theorem] Let X be a binary vector of length n chosen uni-
formly at random from a code C. Let Y (ε) be the result of passing X through
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BEC(ε). Let Ω be a further observation of X so that Ω→ X → Y . Then

H(X |Y (ε∗),Ω)
n

=
Z ε∗

0

1
n ∑

i∈[n]
H(Xi |Y∼i(ε),Ω)dε.

Proof. Let Y (1) be the result of passing X through BEC(ε) and Y (2) be the re-
sult of passing X through BEC(ε∗). Let Ω be the additional observation of X .
Applying Theorem 3.5, with Y = Y (1) and with additional observation (Y (2),Ω),
we have pΩ,Y (2) |X ,Y (1)(ω,y(2) |x,y(1)) = pΩ,Y (2) |X (ω,y(2) |x), as required, so that

we get H(X |Y (2)(ε∗),Ω) =
R 1

0 ∑i∈[n] H(Xi |Y
(1)
∼i (ε),Y (2)(ε∗),Ω)dε. Now note that

H(Xi |Y
(1)
∼i (ε),Y (2)(ε∗),Ω) = ε∗H(Xi |Y∼i(εε∗),Ω). This is true since the bits of

Y (1)
∼i (ε) and Y (2)(ε∗) are erased independently (so that the respective erasure prob-

abilities multiply) and since Y (2)(ε∗) contains the intrinsic observation of bit Xi,
which is erased with probability ε∗. If we now substitute the right-hand side of the
last expression in our previous integral and make the change of variables ε′= ε ·ε∗,
Theorem 3.6 follows.

Discussion: From this last expression we see that the area theorem is obtained
from the derivative of H(X |Y (ε∗),Ω) with respect to ε∗. We used this approach
in Section 3.4 to give an alternative proof of the area theorem and generalize
it slightly: It suffices to allow each Xi to be passed through a different channel
BEC(εi) to obtain (the general area) Theorem 3.4 by differentiating H(X |Y,Ω).
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4 The Bridge between MAP
and BP Decoding

Overview: The relationship between MAP and BP decoding
is described in the setting of transmission over the BEC and
infinite blocklengths. An (almost) complete characterization
is given.

As it was shown in the previous chapter, EXIT functions are handy tools for visu-
alizing the decoding process. Various consequences, for example, on complexity
issues or code optimization, have been pointed out. Perhaps more surprising and
more fundamental is the fact that, for the erasure channel, EXIT functions con-
nect the performance of a code under MAP decoding to that under BP decoding.
The reason is that they contain in essence a conservation law (the general area
theorem) on the entropy. A construction reminiscent of the Maxwell construction
in thermodynamics (see Chapter 1) constitutes the bridge between MAP and BP
decoding.
This chapter deals with transmission over BEC(ε), where ε denotes the erasure
probability.

4.1 Asymptotic EXIT Functions
Let C be a binary linear code of length n. Assume that we choose a codeword X
uniformly at random from C. Let Y (ε) be the result of transmitting X over BEC(ε).
Let G be a (fixed) graphical representation of the code and consider the BP sched-
ule described in Section 2.5. Assume that we use the extrinsic BP estimate at the
`th iteration, i.e., consider φBP,`

i (Y∼i) (which is independent of the ith received sym-
bol). Define the ith BP EXIT function at iteration ` to be hBP,`

i
M= H(Xi|φBP,`

i (Y∼i))
as stated in Definition 3.3. Using (the data processing) Theorem 2.1 and Example
2.9 we see that the BP EXIT function belongs to the general class of upper bounds
on the MAP EXIT function. Formally,

hMAP
i (Y∼i)

M= H(Xi|φMAP
i (Y∼i)) = H(Xi|Y∼i)≤ H(Xi|φBP,`

i (Y∼i)) = hBP,`
i (Y∼i).

At first glance it seems that not much more than this inequality can be stated about
the relationship between MAP and BP decoding. However, in the asymptotic limit
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and for sparse graphs, a fundamental connection between these two quantities
appears. Therefore we now turn our attention to the (average) performance of
such large graphs.

Definition 4.1 [(MAP) EXIT Function over BEC(ε)] The MAP EXIT function as-
sociated with the dd pair Ξ is defined as

hMAP(ε) M= limsup
n→∞

ELDPC(n,Ξ)
[1

n

n

∑
i=1

H(Xi|φMAP
i (Y∼i(ε)))

]
,

where the expectation is over instances of graph G taken uniformly at random from
LDPC(n,Ξ), X denotes a codeword chosen uniformly at random from G, Y (ε) is
the result of transmitting X over BEC(ε), and φMAP

i (Y∼i) is the ith extrinsic MAP
estimate.

Discussion: Taking the average over all positions i is not essential in this defini-
tion. In fact we can also write hMAP(ε) = limsupn→∞ ELDPC(n,Ξ)

[
HG(X1|Y∼1(ε))

]
since the quantity is averaged over all graphs in LDPC(n,Ξ) (and therefore all
possible permutations of columns). A more fundamental observation is that we
consider the average EXIT function (over the ensemble of graphs). The practical
interest of this technique is justified in Appendix 4.A. This is done in the usual
manner by showing that the particular instances 1

n ∑
n
i=1 HG(Xi|Y∼i(ε)) concentrate

around their expected value. Finally note that we use the limsup instead of the or-
dinary limit because it is not obvious a priori that the ordinary limit indeed exists.
Towards the end of this chapter we will show that in many cases the ordinary limit
is a well-defined object.

Definition 4.2 [BP EXIT Function over BEC(ε)] The BP EXIT function associ-
ated with the dd pair Ξ is defined as

hBP(ε) M= lim
`→∞

lim
n→∞

ELDPC(n,Ξ)
[1

n

n

∑
i=1

H(Xi|φBP,`
i (Y∼i(ε))

]
,

where the expectation is over instances of graph G taken uniformly at random from
LDPC(n,Ξ), X denotes a codeword chosen uniformly at random from G, Y (ε) is
the result of transmitting X over BEC(ε), and φBP,`

i (Y∼i) is the ith extrinsic BP
estimate at iteration `.

Contrary to hMAP, the MAP EXIT function hBP is a well-defined object and it can
be computed easily in a parametric way.

Theorem 4.1 The BP EXIT function associated with the dd pair Ξ is given
by hBP(ε) = max{0,H EBP(ε)} where y(x) M= 1− ρ(1− x) for LDPC(n,λ,ρ) and1

H EBP(ε) M= {Λ(y(x)) : x ∈ [0,1], ε(x) M= x
λ(y(x)) = ε}.

1The functions which define H EBP(ε) are composed from polynomials; therefore this set contains
a finite number of elements.
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Proof. Standard arguments from density evolution, see [12–15, 65], show that if
we first let n→ ∞ and second `→ ∞, then the erasure probability emitted by
the variable nodes converges to the value that we get if we run density evolution
on an infinite tree. This limit, call it x, is the largest fixed point of the density
evolution equations. More precisely, recall that the fixed point condition reads
x = ελ(y(x)) where y(x) M= 1−ρ(1−x) for the dd pair (λ,ρ) over BEC(ε). The
formal characterization of the asymptotic behavior is easy to understand: The
graph G is locally a tree with high probability. Therefore, it can be shown that, for
a fixed (large) number of iterations, when n→ ∞, the erasure probability after BP
decoding on the actual graph becomes equal (with probability one) to the erasure
probability after BP decoding on the associated infinite tree or computation tree.
(This argument extends naturally to GLDPC ensembles since the computation
tree remains the same if we replace check nodes by more complex constraints.)
Solving the fixed point equation for ε, we get ε(x) = x/λ(y(x)), x ∈ (0,1]. In
other words, for each non-zero fixed point x of density evolution, there is a unique
channel parameter ε. At this fixed point the erasure probability emitted by the
function nodes is y(x), therefore the extrinsic erasure probability, i.e., the BP
EXIT function equals Λ(y(x)).
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Figure 4.1: BP EXIT functions. Left: LDPC(λ(x) = x,ρ(x) = x3+4x7

5 ), with εBP = εSC =
5
31 ≈ 0.1613. Right: LDPC(λ(x) = x+4x3

5 ,ρ(x) = x3+4x7

5 ), with εBP ≈ 0.4273 (at xBP ≈
0.2524) and ε SC = 25

31 ≈ 0.8065.

Discussion: If ε(x) M= x
λ(y(x)) increases over the whole interval [0,1], then the BP

EXIT curve is given in parametric form by
(
ε(x),Λ(1−ρ(1−x))

)
. An example is

depicted in Figure 4.1 (left). Note that the value ε(0) = εSC M= 1
ελ′(0)y′(0) indicates

the stability condition threshold. For some ensembles, e.g., regular cycle-code
ensembles with dd pair (λ(x) = x,ρ(x)), ε(x) is indeed increasing2 over the whole
range [0,1], but this is not true in general. For the general case, the domain of
definition of the parameter x reduces to a subset D ⊆ [0,1] that is smaller than the
full interval [0,1]. The domain D describes all possible values for the fixed point
x of density evolution when BP decoding is not successful. Standard (simple)

2This follows from the fact that y(x) = 1−ρ(1−x) is concave with y(0) = 0.
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examples are LDPC with D = [xBP,1] like in Figure 4.1 (right) with 0 < xBP M=
argminx∈[0,1]{ε(x)} ≈ 0.2524. Such LDPC examples have an associated EXIT
function with one discontinuity (which appears at the BP threshold). This “jump”
is, in the vocabulary of thermodynamics, a phase transition. Regular LDPC codes
(except cycle-codes) are examples of ensembles that have a single jump at the BP
threshold (regular LDPC cycle-codes have no jump and are such that εBP = εSC).

Lemma 4.1 [BP EXIT Function for Regular LDPC Ensembles] The BP EXIT
function associated with the dd pair (xl−1,xr−1) is given in parametric form by

hBP(ε) =

{
(ε,0), ε ∈ [0, εBP),
( x

(1−(1−x)r−1)l−1 ,(1− (1−x)r−1)l), x ∈D = [xBP,1] ↔ ε ∈ [εBP,1],

where xBP denotes the location of the unique minimum of ε(x) = x

(1−(1−x)r−1)l−1 in
the range [0,1] and εBP = ε(xBP). Moreover, xBP = 0 if and only if l = 2, otherwise
xBP > 0.

Proof. Note that ε(1) = 1 and by direct calculation we see that ε′(1) = 1. There-
fore, either ε(x) takes on its minimum value within the interval [0,1] for x = 0
or its minimum value is in the interior of the region [0,1]. Computing explic-
itly the derivative of ε(x), we see that any minimum of ε(x) must be a root of
q(x) M= 1 + ((l− 1)(r− 1)− 1)(1− x)r−1 − (l− 1)(r− 1)(1− x)r−2. Using
Descartes rule of signs, we see that there are either exactly two or no roots for
1−x ≥ 0. Such a root is at x = 0. It remains to locate the second root. Observe
that q(0) = 0,q(1) = 1, q′(0) =−(l−2)(r−1). If l> 2, then q′(0) < 0, and the
existence of a root in (0,1) is shown by the intermediate value theorem. If l = 2,
then q′(0) = 0, and therefore q(x) > 0 for x ∈ (0,1] (otherwise q(x) would cross
the x-axis at least twice according to the intermediate value theorem and would
have strictly more than two roots). Therefore, there is exactly one root in [0,1]
which we call xBP. Finally, ε′(1) > 0 and ε′(0)≤ 0 show that xBP is a minimum of
ε(x). Further, ε(x) is decreasing over [0,xBP] and increasing over [xBP,1].

More complex examples have several phase transitions. This is typically the case
for “practical” codes obtained after optimization. Let J denote the number of such
“jumps” (more precisely, the number of discontinuities of the BP EXIT curve
obtained from density evolution). For example, the ensemble depicted in Figure
4.2 (right) has J = 2. The BP EXIT function is given in parametric form by

hBP(ε) =

{
(ε,0), ε ∈ [0, εBP),
( x

(1−(1−x)r−1)l−1 ,(1− (1−x)r−1)l), x ∈D ↔ ε ∈ [εBP,1],

with D =
S

i∈{0}∪[J][xi,xi)∪{1}, where the subdivision 0 < x1 < x1 < · · ·< xJ <

xJ = 1 characterizes the discontinuities of the BP EXIT function. The J disconti-
nuities appear at the points ε j

M= ε(x j) = ε(x j−1) for j ∈ [J]. The considered exam-
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Figure 4.2: BP EXIT functions. Left: LDPC(λ(x) = 4x+6x
10 ,ρ(x) = x6) such that εBP =

εSC = 5
12 ≈ 0.4167 is obtained for x = x0 = 0, i.e., εBP = εSC. Moreover the number of

discontinuities is J = 1. For x= x0 ≈ 0.04828, i.e., at ε1 ≈ 0.4691, a discontinuity appears
and x “jumps” to x1 ≈ 0.3309. Right: LDPC(λ(x) = 3x+3x2+4x13

10 ,ρ(x) = x6) such that
εBP = ε1 ≈ 0.48437 is obtained for x = xBP = x1 ≈ 0.09904. Moreover the number of
discontinuities is J = 2, one is at ε = ε1 = εBP and the second is at ε = ε2 ≈ 0.51553. The
function is then piece-wise continuous, first between ε = 0 and ε = εBP, second when the
parameter x is between xBP = x1 and x1 ≈ 0.22156, and third when x is between x2 ≈
0.37016 and x2 = 1.

ple has J = 2 but the previous characterization holds in general. Let us formally3

define x j recursively as x j = max
{
x ∈ (x j−1,1) : x minimizes ε(x) over (x j−1,1)

and ε(x) is locally strictly convex
}
, with x0 M= 0. This procedure will determine

a finite number of discontinuities J. The definition of x j is then simply, x j M=
min

{
x ∈ (x j,1) : ε(x) = ε(x j+1)

}
for all j ∈ {0} ∪ [J − 1] and xJ M= 1. Note

that the BP threshold is given by εBP M= ε(xBP) where xBP M= max
{
x ∈ (x0 = 0,1) :

x minimizes ε(x) over (x0 = 0,1)
}

. It is possible, for example in the case of cycle-
codes, that J = 0. In this case 0 = x0 = x0 = xBP, and the BP threshold equals the
stability condition threshold εSC M= ε(0) < 1. A more curious example is when the
BP threshold equals the stability condition but J ≥ 1. In this case 0 = x0 = xBP but
x > 0, and a jump occurs for x = x. An example of this is depicted in Figure 4.2
(left).
So far we have characterized the (asymptotic average) BP EXIT function. Can
we provide a similar characterization for the MAP EXIT curve? We know at least
one fundamental property of the MAP EXIT function, which is the value of its
integral (from the area theorem). This – combined with the obvious sub-optimality
of BP decoding – will give us a way to characterize the MAP EXIT function in
many cases. Since the integral “under” the curve (ε(x),Λ(y(x))) (that is called
the EBP EXIT curve) will appear frequently in the subsequent section, it is worth
to compute it once and for all. This is easily done by applying integration by

3We use “max” and “min” in order to eliminate trivial (not connected) points of the EXIT curve:
this technicality can be ignored for simplicity. Moreover, the fact that the subdivision exists and is
unique follows from the fact that ε(x) is an analytic and differentiable function for x ∈ (0,1].
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parts twice (see Appendix 4.B for details). We call this integral the trial entropy,
a choice which was first indicated in Chapter 2 and Eq. (2.3) and which will
hopefully become clear in the remainder of this chapter.

Definition 4.3 [Trial Entropy] Consider a dd pair (λ,ρ), define y(x) M= 1−ρ(1−x)
and ε(x) = x

λ(y(x)) . The associated trial entropy is defined as the polynomial

P(x∗) M=
Z x∗

0
Λ(y(x))ε′(x)dx

= ε(x∗)Λ(y(x∗))+Λ′(1)x∗(1−y(x∗))− Λ′(1)
Γ ′(1)

(1−Γ (1−x∗)).

Lemma 4.2 [BP/MAP EXIT Function for LDPC Ensembles with J = 0] Consider
a dd pair (λ,ρ) such that ε(x) M= x

λ(y(x)) is a non-decreasing function over [0,1].
(In other words, the associated number of discontinuities is J = 0.) Then the MAP
and BP EXIT functions are equal and are given in parametric form by

hMAP(ε) = hBP(ε) =

{
(ε,0), ε ∈ [0, εBP),
(ε(x),Λ(y(x)), x ∈D = [0,1] ↔ ε ∈ [εBP,1],

where εBP = ε(0). Moreover the expected conditional entropy rate converges and

lim
n→∞

ELDPC(n,λ,ρ)[HG(X |Y (ε))/n] =
Z ε

0
hMAP(ε̃)dε̃ = P(xε),

where xε is the unique non-zero root of x = ελ(y(x)).

Proof. Using the upper bound discussed in Example 2.9, we know that for any
G ∈ LDPC(n,λ,ρ) and any ` ∈ N we have

1
n

n

∑
i=1

H(Xi|φMAP
i (Y∼i(ε)))≤

1
n

n

∑
i=1

H(Xi|φ
BP(G),`
i (Y∼i(ε))).

Therefore

rλ,ρ ≤ rG =
Z 1

0

1
n

n

∑
i=1

H(Xi|φMAP
i (Y∼i(ε)))dε≤

Z 1

0

1
n

n

∑
i=1

H(Xi|φ
BP(G),`
i (Y∼i(ε)))dε.

If we take first the expectation over the ensemble LDPC(n,λ,ρ), then the limsup
when n→∞, and finally the limit when `→∞, the Fatou-Lebesgue theorem shows

rλ,ρ ≤
Z 1

0
hMAP(ε)dε≤

Z 1

0
hBP(ε)dε.
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A direct computation gives
R 1

0 hBP(ε)dε = P(1) = rλ,ρ. Therefore
R 1

0 hMAP(ε)dε =R 1
0 hBP(ε)dε = rλ,ρ. Since hBP(ε) is continuous over [0,1] (because J = 0) and h(ε)

is non-decreasing, it must be true that hMAP(ε) = hBP(ε) for ε ∈ [0,1].
It remains to show that limn→∞ ELDPC(n,λ,ρ)[

HG(X |Y (ε))
n ] exists (and is equal to the

trial entropy). We have seen that limn→∞

R 1
0 E[ 1

n ∑
n
i=1 HG(Xi|φMAP

i )]dε =
R 1

0 hMAP(ε)dε,
i.e., the asymptotic average rate converges to the design rate. This implies more
generally that for any subset U ⊆ [0,1] we have the equality

limsupn→∞

Z
U

E[
1
n

n

∑
i=1

HG(Xi|φMAP
i )]dε =

Z
U

hMAP(ε)dε.

This is true because the left-hand side is at least as large as the right-hand side
(Fatou-Lebesgue), and because we must have equality when U = [0,1]. Therefore,

limsupn→∞

Z ε

0
E[

1
n

n

∑
i=1

HG(Xi|φMAP
i (ε̃))]dε̃

=
Z ε

0
hMAP(ε̃)dε̃

= rλ,ρ−
Z 1

ε
hMAP(ε̃)dε̃

= rλ,ρ− limsupn→∞

Z 1

ε
E[

1
n

n

∑
i=1

HG(Xi|φMAP
i )]dε̃

= liminfn→∞

Z 1

0
E[

1
n

n

∑
i=1

HG(Xi|φMAP
i )]dε̃− limsupn→∞

Z 1

ε
E[

1
n

n

∑
i=1

HG(Xi|φMAP
i )]dε̃

= liminfn→∞

Z ε

0
E[

1
n

n

∑
i=1

HG(Xi|φMAP
i )]dε̃,

which shows that the limit exists and is equal to

lim
n→∞

ELDPC(n,λ,ρ)[
HG(X |Y (ε))

n
] =

Z ε

0
hMAP(ε̃)dε̃.

Discussion: The previous lemma means that BP decoding is asymptotically equal
to MAP decoding whenever the BP threshold is given by the stability condi-
tion (J = 0). In this case, the three thresholds coincide, i.e., εBP = εMAP = εSC M=

1
λ′(0)y′(0) = 1

λ′(0)ρ′(1) . This happens, for example, for cycle-codes codes that have
λ(x) = x.

Example 4.1 For the dd pair (λ(x) = x,ρ(x)), i.e., for an ensemble of LDPC
cycle-codes, we get εMAP = 1/ρ′(1). For example, when the ensemble is regular
with dd pair (λ(x),ρ(x)) = (x,xr−1), then εMAP = 1/(r−1).

Standard LDPC ensembles, such as regular ensembles, have a typically discontin-
uous BP EXIT function. In this case, a direct computation of the trial entropy (see
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Lemma 4.10) shows that the area under the BP EXIT function is strictly larger than
the design rate. Therefore, for J ≥ 1 and from the area theorem, we expect that the
MAP EXIT function will not be point-wise equal to the BP EXIT function. Let
us first focus on a class of ensembles which have a unique discontinuity (J = 1)
that occurs at the BP threshold εBP. For technical reasons, the notion of residual
graph introduced in Section 2.10 will appear below. Recall that the largest root
of x = ελ(y(x)), which we denote by xε, is the fixed point of density evolution
when transmission takes place over BEC(ε). If xε > 0 (i.e., above BP threshold),
then BP decoding gets stuck in a stopping set, which is asymptotically described
by the residual graph.

Lemma 4.3 [MAP EXIT Function for standard LDPC Ensembles with J = 1]
Consider a dd pair (λ,ρ) such that ε(x) M= x

λ(y(x)) (with y(x) M= 1− ρ(1− x)) is

non-decreasing over [xBP,1] (with xBP M= argmin[0,1](ε(x))). Let xε ∈ (0,1) be the
largest root of x = ελ(y(x)), and let (λε,ρε) be the dd pair of the correspond-
ing residual graph. If there exists a channel parameter ε∗ ∈ (0,1) with corre-
sponding x∗

M= xε∗ (largest root of x = ε∗λ(y(x))) such that P(x∗) = 0, and if
∀u ∈ (0,1), Θλε∗ ,ρε∗ (u) ≤ 0 (where Θλε∗ ,ρε∗ is defined in Section 2.3), then the
MAP EXIT function is given in parametric form by

hMAP(ε) a.e.=

{
(ε,0), ε ∈ [0, εMAP],
(ε(x),Λ(y(x)), x ∈D = (xMAP,1] ↔ ε ∈ (εMAP,1],

where εMAP M= ε(xMAP) with xMAP M= x∗. Moreover the expected conditional entropy
rate converges and

lim
n→∞

ELDPC(n,λ,ρ)[HG(X |Y (ε))/n] =
Z ε

0
hMAP(ε̃)dε̃ = P(xε).

Proof. We prove the lemma by establishing three results.

(i) ∀ε ∈ [0,1], hMAP(ε)≤ hBP(ε),

(ii)
Z 1

0
hMAP(ε)dε≥ rλ,ρ,

(iii) ∀ε ∈ [0, ε∗), hMAP(ε) = 0.

Let us first see how the lemma follows from these observations. We write

rλ,ρ

(ii)
≤

Z 1

0
hMAP(ε)dε

(iii)=
Z 1

ε∗
hMAP(ε)dε

and observe that the evaluation of the integral under the BP EXIT function (see,
e.g., Definition 4.3) gives

R 1
ε∗ hBP(ε)dε = P(1)−P(x∗) = P(1) = rλ,ρ. This shows
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R 1
ε∗ hBP(ε)dε ≤

R 1
ε∗ hMAP(ε)dε. We then use (i) to see that the opposite inequality is

true as well, therefore
R 1
ε∗ hBP(ε)dε =

R 1
ε∗ hMAP(ε)dε. Since hBP is continuous over

[ε∗,1] and hMAP(ε) is non-decreasing it must be in fact true that hMAP(ε) = hBP(ε) for
ε ∈ (εMAP,1].
As for in (previous) Lemma 4.2, we want now to show formally that the limit
limn→∞ ELDPC(n,λ,ρ)[

HG(X |Y (ε))
n ] exists and is equal to the trial entropy. By hypoth-

esis (using ε = 1 and Lemma 2.3) we see that the actual rate converges to the de-
sign rate. This means that limsupn→∞

R 1
0 E[ 1

n ∑
n
i=1 HG(Xi|φMAP

i )]dε =
R 1

0 hMAP(ε)dε.
The rest of the proof follows strictly similar steps as the second part of the proof
of Lemma 4.2.

It finally remains to show the three steps of the proof.
(i) Using the upper bound discussed in Example 2.9, we know that for any G ∈
LDPC(n,λ,ρ) and any ` ∈ N we have

1
n

n

∑
i=1

H(Xi|φMAP
i (Y∼i(ε)))≤

1
n

n

∑
i=1

H(Xi|φBP,`
i (Y∼i(ε))).

If we first take the expectation over the ensemble LDPC(n,λ,ρ), then the limsup
when n→ ∞, and finally the limit when `→ ∞, we get

∀ε ∈ [0,1] hMAP(ε)≤ hBP(ε). (4.1)

(ii) For any G ∈ LDPC(n,λ,ρ), by the area theorem we have

HG(X)
n

=
Z 1

0

1
n

n

∑
i=1

HG(Xi|Y∼i(ε))dε.

If we take the expectation over the elements of the ensemble and the limit when
n→∞, then HG(X)

n converges to the design rate rλ,ρ. To see this use the hypothesis
that Θλ,ρ(u) achieves its unique maximum at u = 1 and Lemma 2.3. Therefore
we can write

rλ,ρ = lim
n→∞

ELDPC(n,λ,ρ)
[Z 1

0

1
n

n

∑
i=1

HG(Xi|Y∼i(ε))dε
]

= lim
n→∞

Z 1

0
ELDPC(n,λ,ρ)

[1
n

n

∑
i=1

HG(Xi|Y∼i(ε))
]
dε.

Since the integrand is upper bounded (by 1), the Fatou-Lebesgue theorem shows

rλ,ρ = lim
n→∞

Z 1

0
ELDPC(n,λ,ρ)

[1
n

n

∑
i=1

HG(Xi|Y∼i(ε))
]
dε

≤
Z 1

0
limsupn→∞ELDPC(n,λ,ρ)

[1
n

n

∑
i=1

HG(Xi|Y∼i(ε))
]
dε =

Z 1

0
hMAP(ε)dε.
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(iii) Let ε > εBP denote the channel parameter, let x denote the corresponding fixed
point of density evolution, and define y M= 1−ρ(1−x). At this fixed point, the ex-
pected dd pair of the residual graph, call it Ξε = (Λε,Γε) from a node perspective,
has the form

Ξε =
(
Λε(z),Γε(z)

) M=
(

Λ(zy)
Λ(y)

,
Γ (1−x+xz)−Γ (1−x)−zxΓ ′(1−x)

1−Γ (1−x)−xΓ ′(1−x)

)
as shown in Section 2.10. Therefore the expected dd pair has design rate rΞε =
1− Λ′ε(1)

Γ ′ε(1) = P(x). Let us first notice that P(x) has a unique root in (εBP,1], which
is x∗, such that ∀x > x∗, P(x) > 0. To see this observe that ε(x) increasing over
(xBP,1] implies that P(x) increases over (εBP,1].
Consider ε = ε(x∗)↔ x = x∗. In this case, since the assumptions in Lemma 2.3
are fulfilled by hypothesis, we find that the expected residual graph (normalized
by n) has full rank. Since P(x∗) = 0, we see that, for this parameter, the residual
graph has in expectation the same number of variable nodes as check nodes. We
therefore conclude that a MAP decoder can completely recover all bits with high
probability. This means that the normalized conditional entropy must be zero.
Since the conditional entropy is non-decreasing, we conclude that ε∗ = ε(x∗) =
εMAP and that ∀ε≤ εMAP, limn→∞ ELDPC(n,Ξ)

HG(X |Y (ε))
n = 0. This implies that hMAP(ε)

must be zero for ε ∈ [0, εMAP) (otherwise we would reach a contradiction via the
area theorem).

Discussion: First, note that Lemma 4.3 applies to any regular ensemble, i.e., an
ensemble LDPC(xl−1,xr−1) with l ≥ 3. Unfortunately, we are not able to pro-
vide a sufficiently compact and elegant proof to write this general statement in
a simple form. (Although not technically difficult, our current proof based on a
general characterization of the technical condition given by the function ΘΞ is
lengthy and tedious.) In the remainder of this chapter, we will simply provide
examples for which the technical condition is fulfilled. Observe that this technical
condition is easy to check so that it can be viewed as a “plug and play” criterion.
Nevertheless it is worth recalling that the method based on Lemma 2.3 provides
only a sufficient condition. Based on Lemma 2.3, this condition guarantees the
system to be full rank. In theory we could relax this criterion and simply ask for a
full rank system. Our last remark is more technical and concerns the point (iii) of
the proof. Formally we are only interested in the average behavior of the residual
graph, and the asymptotic typical dd pair suffices to describe this expected resid-
ual graph. We will nevertheless see in Section 4.2.2 that the method we used (i.e.,
the assumptions in Lemma 2.3) is “robust” to variations of individual degree pro-
files. The dd pair of a particular residual graph is indeed itself a random variable
and we will see that the approach is still valid in this (practical) context.

Let us give some examples with J = 1 for which Lemma 4.3 applies.

Example 4.2 For the dd pair (λ(x),ρ(x)) = (x2,x3), we obtain εMAP = 102−7
√

21
108 ≈
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0.647426. Note that this dd pair has rate 1/4 so that the MAP threshold should be
compared to the Shannon threshold 3/4 = 0.75.

Example 4.3 For the dd pair (λ(x),ρ(x)) = (x2,x5), define a M= 7·5
2
3

(11+6
√

51)
1
3

and

b M=
(

55+30
√

51
) 1

3
, then

εMAP =
7−
√
−1−a+b−

√
−2+a−b+ 4√

−1−a+b

6

−1+

(
− 1

6 +
√
−1−a+b

6 +

√
−2+a−b+ 4√

−1−a+b
6

)5
2 ≈ 0.4882.

The Shannon threshold for this ensemble is 1/2.

Example 4.4 The following table compares the thresholds for various ensembles.
The threshold of the first ensemble is given by the stability condition. Its exact
value is 7/28≈ 0.1786.

λ(x) ρ(x) εBP εMAP εSH

x 2x5+3x6

5 0.1786 0.1786 0.3048
7x2+2x3+1x4

10
2x5+3x6

5 0.4236 0.4948 0.5024
2857x+3061.47x2+4081.53x9

10000 x6 0.4804 0.4935 0.5000
7.71429x2+2.28571x7

10 x4 0.5955 0.6979 0.7000
9x2+x7

10 x7 0.3440 0.3899 0.4000

4.2 Two (Tight) Bounds on the MAP Threshold
Let us now look at the general case. Although we will not be able to give a com-
plete characterization, we will see that the ideas introduced in Lemma 4.3 carry
over to a much wider setting. Let us come back to the points that have been used
in the proof of Lemma 4.3.

Points (i) and (ii) (area theorem combined with BP sub-optimality) give an upper
bound on the MAP threshold. This bound is obtained from a global upper bound
on the MAP EXIT function.

Point (iii) (counting argument) is specific to the BEC. The counting argument pro-
vides a similar upper bound on the MAP threshold as the area theorem and can be
further strengthened to show that the upper bound is in fact tight.
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In Lemma 4.3, for J = 1 and under a few specific hypotheses, the complemen-
tarity4 of the two upper bound techniques is the key ingredient that permits us
to describe (not only at the threshold) the MAP EXIT curve. In this section, we
clarify what we can gain from those two techniques. In other words, let us see up
to what extent we are able to characterize MAP EXIT functions, in particular for
ensembles with J ≥ 1.

4.2.1 Upper Bound via Area Theorem and Data Processing
The key argument here is to associate the area theorem with the inequality hMAP(ε)≤
hBP(ε) (see Eq. (4.1)) that shows the obvious sub-optimality of BP decoding. This
inequality is formally obtained from the data processing inequality in Chapter 2.

Because of the area theorem, the integral under hMAP(ε) is equal to (or potentially
larger than) the asymptotic rate r∞,Ξ

M= liminfn→∞ ELDPC(n,Ξ)[rG] (see (ii) in the
proof of Lemma 4.3). (In fact, if we ignore issues concerning the existence of
limits, we expect that the integral under hMAP(ε) equals the asymptotic rate.) Let
us use this fact to write the following straightforward lemma.

Lemma 4.4 [Upper Bound via Area Theorem] Consider a dd pair Ξ . Let hBP de-
note the associated BP EXIT function, rΞ denote the design rate, and r∞,Ξ

M=
liminfn→∞ ELDPC(n,Ξ)[rG] denote the asymptotic rate. Choose r ∈ [rΞ ,r∞,Ξ ]. Let
ε∗ be the unique number in [εBP,1] such that

R 1
ε∗ hBP(ε)dε = r. Then εMAP ≤ ε∗.

Discussion: Note first that if in addition ε∗ = εBP then εMAP = εBP, and in fact
∀ε ∈ [0,1] hBP(ε) = hMAP(ε) and r∞,Ξ = rΞ . In the same manner, if ε∗ = εMAP, then
∀ε > εMAP hBP(ε) = hMAP(ε) and r∞,Ξ = r. Second, a crucial observation is in or-
der: The upper bounding technique used in Lemma 4.4 is not specific to the BEC
case and we will see that it extends trivially to general BMS channels in Chapter 6.

Let us now choose r = rΞ . In that case, an upper bound on the MAP threshold is
found as ε∗ = ε(x∗) where ε(x) M= x

λ(y(x)) and x∗ is a root of the trial entropy under
some conditions. This is formalized in the next lemma.

Lemma 4.5 [Upper Bound via Area Theorem – Explicit Characterization] Consider
a dd pair Ξ . Define the polynomial y(x) M= 1− ρ(1− x) and, for x ∈ (0,1] the
function ε(x) M= x

λ(y(x)) . Assume that ε(x) is increasing over [xBP,1]. Let x∗ be the
unique root of the polynomial (trial entropy)

P(x) M= Λ′(1)x(1−y(x))− Λ′(1)
Γ ′(1)

[1−Γ (1−x)]+ ε(x)Λ(y(x)) ,

in the interval [xBP,1]. Then εMAP ≤ ε∗ = ε(x∗).
4The first two points of the proof of Lemma 4.3 were introduced in [48]. The third point of the

proof of Lemma 4.3 is a sharpened version of [37]. The bound tightness can be shown under some
technical conditions.
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This upper bound was found to be tight in Example 4.2, Example 4.3, and Exam-
ple 4.4 of (previous) Section 4.1. However this is not always the case, as shown by
the following counterexample. We have seen in Lemma 4.2 that the BP and MAP
EXIT functions are point-wise equal if J = 0. This shows that if J = 0, then the
MAP threshold is also given by the stability condition. The next example shows
that the converse is not necessary true. BP and MAP thresholds can be equal and
given by the stability condition, although their respective EXIT functions are not
point-wise equal.

Example 4.5 Consider the dd pair (λ(x),ρ(x)) = ( 4x+6x6

10 ,x6) and the correspond-
ing LDPC ensemble with design rate rλ,ρ = 1/2. Using Lemma 2.3 we can check
that rλ,ρ = r∞,Ξ . A quick look shows that the BP threshold is given by the sta-
bility condition, i.e., it is εBP ≈ 0.4167 obtained for x = x0 = 0. Figure 4.2 (left)
describes the BP EXIT function corresponding to this ensemble. Since the BP
threshold is determined by the stability condition, we obtain εMAP = εBP ≈ 0.4167
from Appendix 2.C. (An alternative explanation will be given by the counting
argument of Section 4.2.2.) This is true despite the fact that the integral under the
BP EXIT is strictly larger than rλ,ρ = r∞,Ξ (see Appendix 4.B).

More generally, the BP EXIT function has many discontinuities (J ≥ 2), this hap-
pens when ε(x) has more than one local minimum in (xBP,1]. In those cases, the
simple upper bound stated in Lemma 4.4 can no longer provide a tight bound.

In the next subsection, or alternatively in Section 4.4, it is shown that this upper
bound can be further refined as follows.

Lemma 4.6 [Upper Bound via Maxwell Construction – Explicit Characterization]
Consider a dd pair Ξ . Define the polynomial y(x) M= 1−ρ(1−x) and, for x∈ (0,1]
the function ε(x) M= x

λ(y(x)) . Let x∗ be a root of the polynomial (trial entropy)

P(x) M= Λ′(1)x(1−y(x))− Λ′(1)
Γ ′(1)

[1−Γ (1−x)]+ ε(x)Λ(y(x)) ,

in the interval [xBP,1]. Assume that there exists no x̃ ∈ (x∗,1] such that ε(x̃) =
ε(x∗). Collect all such x∗ in the subset S∗ M= {x∗ : P(x∗) = 0, @x̃ ∈ (x∗,1] ε(x̃) =
ε(x∗)}. Then εMAP ≤ ε∗ = ε(minS∗)

Discussion: Observe that the upper bound of Lemma 4.6 is obtained from the in-
tegration of the parametric curve (ε(x),Λ(y(x))) which will be called EBP EXIT
curve in the sequel.

In the next subsection, we provide a sufficient condition for tightness in Lemma
4.4 and Lemma 4.6. For a wide class of dd pairs the upper bound of Lemma 4.4,
or at least the one of Lemma 4.6, is tight. Nevertheless it might happen that there
exists x̃∈ (x∗,1] such that ε(x̃) = ε(x∗). In this case we expect the bound provided
by Lemma 4.6 not to be tight. This will be further discussed in Section 4.3.
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4.2.2 Tightness via Counting Argument
From Section 2.10 we know that the typical dd pair associated with the residual
graph has the form

Ξε =
(
Λε(z),Γε(z)

) M=
(

Λ(zy)
Λ(y)

,
Γ (1−x+xz)−Γ (1−x)−zxΓ ′(1−x)

1−Γ (1−x)−xΓ ′(1−x)

)
,

where x denotes the largest solution of x = ελ(1− ρ(1− x)) when the channel
parameter is ε and y

M= 1− ρ(1− x). The associated design rate is rΞε

M= P(x).
The corresponding function ΘΞε(u) of Lemma 2.3 gives a sufficient condition for
the rate of the residual graph to be asymptotically the design rate. This technical
condition is used in the next theorem, which is the main result of this subsection.

Lemma 4.7 [Residual Uncertainty] Consider a dd pair Ξ = (Λ,Γ ). Let G be cho-
sen uniformly at random from LDPC(n,Λ,Γ ). Assume that transmission takes
place over BEC(ε) and let HG(X |Y ) be the conditional entropy associated with G.
Let Ξε = (Λε,Γε) be the dd pair associated with the residual graph. Consider
ΘΞε(u). If ΘΞε(u) achieves its global maximum as a function of u ∈ [0,∞) at
u = 1, with Θ′′Ξε

(1) < 0, and that ε 6∈ {ε j, j ∈ [J]}. Then

lim
n→∞

1
n

ELDPC(n,Ξ)[HG(X |Y (ε))] = P(xε) , (4.2)

where xε ∈ [0,1] is the largest solution of x = ελ(1−ρ(1−x)).

Proof. Assume that transmission takes place over BEC(ε) using the code G. We
follow Section 2.10 and denote by G(ε) the (random) residual graph after BP de-
coding and by rG(ε) its rate. It is straightforward to verify that, over the erasure
channel, BP decoding does not exclude any codeword compatible with the re-
ceived vector. This means that HG(X |y(ε)) = nrG(ε) where y(ε) is a particular
received vector that has led to the residual graph G(ε). Recall that the design rate
of the typical dd pair of the residual graph is rΞε = P(x). Observe

1
n

ELDPC(n,Ξ)[HG(X |Y )] = ∑
Ξ̃=(Λ̃,Γ̃ )

Pr{ΞG(ε) = Ξ̃} ·ELDPC(nΛ̃(1),Ξ̃)[rG(ε)],

where the expectations are taken with respect to codes chosen uniformly at ran-
dom in the index set.
By assumption ΘΞε(u) achieves its global maximum at u = 1, with Θ′′Ξε

(1) < 0,
and ΘΞε(1) = 0. Therefore we can find a constant δ > 0 such that ΘΞε(u) ≤
−δ(1− u)2 for u ∈ [0,1]. We use now Appendix 4.C and Lemma 4.12 to find
ξ > 0 such that, for any dd pair Ξ̃ with d(Ξ̃,Ξε)≤ ξ, we have ΘΞ̃(u)≤−δ(1−
u)2/2 for u ∈ [0,1]. Let Nξ denote the closed ball Nξ

M= {Ξ̃ : d(Ξ̃,Ξε) ≤ ξ}. In
other words Nξ is the set of dd pairs Ξ̃ such that d(Ξ̃,Ξε) ≤ ξ where d denotes
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the L1 distance (which is defined as follows: ∀Ξa = (Λa,Γ a),∀Ξb = (Λb,Γ b),
d(Ξa,Ξb) = ∑l |Λa

l−Λb
l|+∑r |Γ a

r −Γ b
r |). Then

1
n

ELDPC(n,Ξ)[HG(X |Y )]
(a)
≤ ∑

Ξ̃∈Nξ

Pr{ΞG(ε) = Ξ̃} ·ELDPC(nΛ̃(1),Ξ̃)[rG(ε)]

+Pr{ΞG(ε) 6∈Nξ}

(b)
≤ ∑

Ξ̃∈Nξ

Pr{ΞG(ε) = Ξ̃} ·ELDPC(nΛ̃(1),Ξ̃)[rG(ε)]+on(ξ),

where (a) follows from rG(ε) ≤ 1 and (b) uses Appendix 4.C and Lemma 4.11 to
get limn→∞ on(ξ) = 0.
The main step of the proof is now to apply Lemma 2.3 to any ensemble whose dd
pair is in Nξ (since they all fulfill the required technical conditions). We get∣∣∣∣1nE[HG(X |Y )]− rΞε

∣∣∣∣≤ ∑
Ξ̃∈Nξ

Pr{ΞG(ε) = Ξ̃}|Ẽ[rG(ε)]− rΞ̃ |

+ ∑
Ξ̃∈Nξ

Pr{ΞG(ε) = Ξ̃}|rΞ̃ − rΞε |+on(ξ)

≤ ∑
Ξ̃∈Nξ

Pr{ΞG(ε) = Ξ̃}|rΞ̃ − rΞε |+o′n(ξ)

where o′n(ξ) = on(ξ)+C logn/n. Because of the continuity of the expression of
the design rate, notice that there exist B > 0 such that for any pair Ξa, Ξb we have
|rΞa − rΞb | ≤ Bd(Ξa,Ξb). Therefore,

lim
n→∞

∣∣∣∣1nELDPC(n,Ξ)[HG(X |Y )]− rΞε

∣∣∣∣≤ Bξ .

Observe that ξ can be chosen arbitrarily small, which concludes the proof.

One consequence of Lemma 4.7 is that it permits us to compute the exact MAP
threshold whenever the required conditions are verified. The next corollary gives
an explicit characterization.

Corollary 4.1 [Characterization of the MAP Threshold] Consider a dd pair Ξ =
(Λ,Γ ). Let G be chosen uniformly at random from LDPC(n,Λ,Γ ). Assume that
transmission takes place over BEC(ε) such that ε 6∈ {ε j : j ∈ [J]}. Assume that
xε > 0 is the fixed point of density evolution. Assume that P(xε) = 0, ΘΞε(u)≤ 0
for u ∈ [0,+∞), and Θ′′Ξε

(1) < 0. Let W M= {u ∈ [0,+∞) : u 6= 1,ΘΞε(u) = 0}, if,

for any u ∈W , ∂ΘΞε (u)
∂ε

<
∂ΘΞε (1)

∂ε
, then εMAP = ε.
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Proof. Let us first claim that there exists δ > 0 such that the hypothesis of Lemma
4.7 is verified for any ε̃ ∈ (ε,ε+δ), and let us see how we conclude the proof. For
any ε̃ ∈ (ε,ε+ δ) let xε̃ be the associated fixed point of density evolution. Then
limn→∞

1
nE[H(X |Y (ε̃))] = P(xε̃). Moreover P(xε) = 0 by hypothesis. Using the

definition of the trial entropy as the integral of Λ(y(xε̃)) with respect to ε(xε̃),
we get dP(xε̃)

dε̃ = Λ(y(xε̃)) > 0 for any ε̃ > ε. Therefore P(xε̃) > 0 for any ε̃ > ε.
This implies εMAP ≤ ε. On the other hand (E[H(X |Y (ε̃))])/n is increasing in ε̃.
This implies that ∀ε̃ ∈ [0, ε] limn→∞

1
nELDPC(n,Ξ)[HG(X |Y (ε̃))] = 0 which in turn

implies εMAP ≥ ε and, therefore, εMAP = ε.
It remains to prove the claim. By assumption ε is a continuity point of the BP
EXIT function. Therefore the residual dd pair Ξε̃ is also continuous at ε̃ = ε. Using
Appendix 4.C and Lemma 4.12, we see that it implies that, for any ξ > 0, there
exists δ > 0 such that ∀ε̃ ∈ [ε,ε+ δ), ∀u ∈ [0,1], |ΘΞε̃(u)−ΘΞε(u)| ≤ ξ(1−u)2.
Since Θ′′Ξε̃

(1) < 0, this shows that, if δ is small enough, u = 1 is a local maximum

of ΘΞε̃(u). The hypothesis ∂ΘΞε (u)
∂ε

for u ∈W indicates that it is in fact a global
maximum.

Discussion: The conditions of the previous corollary are relatively easy to verify.
This has been done for all the exact values of MAP threshold given in this thesis.
See, e.g., Example 4.4. Unfortunately, it has two main weaknesses. First, the tech-
nical condition is only a sufficient condition. Second, it only applies to the phase
transition occurring at the MAP threshold and does not characterize further poten-
tial phase transitions of the MAP decoding. The picture carried by the Maxwell
construction in the next chapter (although it can be only partially proved) will give
us more insight into the complete behavior of a MAP decoder. It will then be very
instructive to use the previous results to see which cases we can typically recover.
This will be the subject of Example 4.8 in the next chapter.

4.3 Maxwell Construction and EBP EXIT Curve
It is pleasing, but also surprising, that (at least in many cases) the MAP perfor-
mance can be derived from the behavior under BP decoding. We will see that
it has an interpretation that is analog to the Maxwell construction in statistical
mechanics. More interestingly, this interpretation has an operational counterpart,
called the Maxwell decoder in the next section. The central object of this section
will be the Extended BP (EBP) EXIT curve.

Definition 4.4 [EBP EXIT Curve over BEC(ε)] The EBP EXIT curve associated
with the dd pair Ξ is given in parametric form by

(ε,hEBP) = (ε(x),hEBP(x)) M=
(

x

λ(y(x))
,Λ(y(x))

)
, x ∈ (0,1],

where y(x) M= 1−ρ(1−x).
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Discussion: We see from the characterization of the BP EXIT function in Section
4.1 that the BP EXIT curve is the upper envelope of the EBP EXIT function.
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Figure 4.3: EBP EXIT functions. Left: LDPC(λ(x) = x,ρ(x) = x3+4x7

5 ) with εSC = 5
31 .

Right: LDPC(λ(x) = x+4x3

5 ,ρ(x) = x3+4x7

5 ) with ε SC = 25
31 .

The BP EXIT function is obtained when x corresponds to a fixed point of density
evolution (i.e., the largest solution of x= ελ(y(x))). However the EBP curve also
contains branches that correspond to unstable fixed points of the density evolution
equations (when ε(x) decreases) or to fixed points that are stable but not achieved
by density evolution (considering the standard BP algorithm). Figure 4.3 shows
the EBP EXIT functions corresponding to the first two dd pairs presented in this
chapter. The EBP EXIT curve has its own area theorem connecting the integral
of the curve to the (design) rate of the ensemble. This might be surprising at first
glance because, afterall, the EBP EXIT curve is defined in terms of the (in general)
suboptimal (BP) decoder, whereas the MAP EXIT curve to which the classical
area theorem applies concerns optimal (MAP) decoding. There is nevertheless a
connection between the two area theorems. This is shown in Example 3.8 where
an alternative proof for the EBP area theorem is given for the case εSC ≤ 1.

Theorem 4.2 [EBP Area Theorem – BEC] Consider a dd pair (λ,ρ) and transmis-
sion over the BEC. Let rλ,ρ be the design rate associated with the dd pair (λ,ρ),
then the EBP EXIT curve satisfiesZ 1

0
hEBP(x)dε(x) = rλ,ρ.

Proof. A direct computation gives
R 1

0 hEBP(x)dε(x) = P(1)−P(0) = P(1) = rλ,ρ

using the trial entropy defined in 4.3.

Example 4.6 [EBP EXIT Curve for the (3,6) Ensemble] Figure 4.4 shows the EBP
EXIT curve corresponding to the regular dd pair (λ(x),ρ(x)) = (x2,x5). Note that
for small values of x, the EBP curve goes “outside” the unit box. This is a conse-
quence of λ′(0)ρ′(1) = 0 < 1: for small values of x we have ελ(1−ρ(1−x)) =
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ελ′(0)ρ′(1)x+ o(x2) = o(x2). Therefore, ε(x) x→0→ 1/(λ′(0)ρ′(1)) = ∞. But in
general, even for ensembles for which λ′(0)ρ′(1) > 1, part of the EBP curve might
have “ε” coordinates larger than one.

Since part of the EBP EXIT curve lies
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0.4

0.6

0.8

1.0

0.0

h(ε)R
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)
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εSC→ ∞

Figure 4.4: EBP EXIT function for the en-
semble LDPC(λ(x) = x2,ρ(x) = x5).

outside the unit box it is slightly more
convenient here to regard the comple-
ment of this area, which is shown in
grey in Figure 4.4. As predicted by
Theorem 4.2, the grey area is equal to
1− rx2,x5 = 1−3/6 = 1/2.

Let us now combine Theorem 4.2 (the
area theorem for the EBP EXIT curve)
with Lemma 4.4, which gives a (prov-
ably tight) upper bound on the MAP

threshold. This combination gives rise to the Maxwell construction. Rather than
directly giving a formal description, let us first explain it by means of an example.

Example 4.7 [Maxwell Construction for the (3,6) Ensemble] Figure 4.5 shows the
Maxwell construction for the regular dd pair (λ(x),ρ(x)) = (x2,x5).

This construction is as follows. Con-
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Figure 4.5: Maxwell construction for the en-
semble LDPC(λ(x) = x2,ρ(x) = x5).

sider the associated EBP EXIT curve.
Take a vertical line and adjust its po-
sition in such a way that the area to
the left of the line and bounded to the
left by the EBP EXIT curve is equal
to the area to the right of this line and
bounded above by the EBP EXIT curve.
These two areas are shown in dark grey
in Figure 4.5. The claim is that the
unique such location of the vertical line
is exactly at ε = εMAP! This is a straight-

forward consequence of Theorem 4.2 and Lemma 4.4 and is obtained by a direct
computation whenever the MAP threshold upper bound is shown to be tight.

In the next chapter, we will give an operational interpretation of the latter two
areas. In short, the balance between the two areas will be viewed as a balance be-
tween entropies. Although we will only be able to entirely characterize the right
part of this balance, we conjecture that a local Maxwell construction based on the
EBP EXIT curve applies at each jump of the true MAP EXIT function.
Let us therefore describe a general recursive procedure to construct this non-
decreasing function, which we call Maxwell function and denote by hMaxwell(ε). The
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Maxwell function hMaxwell(ε) is expected to be the true MAP performance curve.
This construction is again reminiscent of the Maxwell construction in thermody-
namics when multiple phase transitions are observed.

Notice first (see, e.g., Appendix 4.B) that instead of x 7→ ε(x), we can alternatively
consider h 7→ ε(h) M=

(
y−1◦Λ−1

λ◦Λ−1

)
(h). The function ε(h) describes equivalently the

EBP EXIT curve. This view facilitates the description of the following recursive
procedure where we “walk” on the EBP EXIT function in the direction of increas-
ing x. Each time we can do so, we replace a “S”-shaped part of the EBP EXIT
curve (ε(x),hEBP(x)) by a straight (vertical) transition in order to locally satisfy
the Maxwell construction. It can happen that the final number of discontinuities
of the Maxwell curve differs from J (which is the number of discontinuities of the
BP EXIT function).
More formally, let us define recursively a sequence of functions εMax( j)(h), or
equivalently a sequence of curves (εMax( j),hMax( j)(εMax( j))) so that, after a finite
number of steps (equal to J in the standard case), the stationary limit (more pre-
cisely and if needed, the minimum between one and its stationary limit) is the
Maxwell curve εMaxwell(h) ↔ hMaxwell(ε). Choose εMax( j=0)(h) M= ε(h) (if needed,
we might consider h > 1, see discussion on Figure 4.16 in Section 4.5). Con-
struct the curve εMax( j+1)(h) as follows. Assume that the derivative of εMax( j)(h)
changes signs exactly p times (the value 0 being considered both negative and/or
positive). If p ≥ 1, then consider the subdivision 0 ≤ h1 < h

1
< h2 < h

2
<

· · · < hb
p+1

2 c < h
b p+1

2 c < hb
p+1

2 c+1 M= 1 such that εMax( j)(h) is (strictly) decreas-
ing over any interval [hi,h

i], and non-decreasing over any interval [hi
,hi+1] for

i ∈ [b p+1
2 c]. For h ∈ (h1,h

1), let Sh
M= {h̃ ∈ [0,+∞) : εMax( j)(h̃) = εMax( j)(h)} and

let ha
M= max{h̃ ∈ Sh : h̃ < h}, hb

M= min{h̃ ∈ Sh : h̃ > h}. Then there is a unique
h (to see this imagine that hEBP(x) describes the interval from increasing values of
x) and associated ha,xa,hb,xb such that

R xb
xa

hMax( j)(x)dε(x) = 0 (for construction
εMax(1)(h), we think of the line (−∞, limx→0(ε(x)] as part of the EBP EXIT curve).
Define εMax( j+1)(h) M= εMax( j)(hb) for any h ∈ (ha,hb), and εMax( j+1)(h) M= εMax( j)(h)
otherwise. Once the procedure has terminated, the function εMaxwell(h) is well-
defined over (0,1], it takes values in [0,1] and is such that it is constant over
J′ distinct non-trivial intervals, which we denote by I j

M= (h′j,h
′
j].

Definition 4.5 [Maxwell EXIT Function] The Maxwell function associated with
the dd pair Ξ is denoted by hMaxwell(ε). It is defined for h ∈ [0,1] such that it is
the inverse of the function εMaxwell(h) when h 6∈ I j for j ∈ [J′] and it is zero for
ε ∈ [0,minh{εMaxwell(h)}].

Discussion: Note that this function is not always continuous at ε = 1 (see discus-
sion on Figure 4.16 in Section 4.5). Nevertheless, it is in general the case so that,
by construction, the Maxwell function fulfills an area theorem and the area under
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this function equals the design rate.

We conjecture that the Maxwell function describes the MAP performance of iter-
ative coding systems. Let us see, with an example with multiple jumps, how far
we can prove this conjecture. In fact, in many cases, we can only formally prove
the first local Maxwell construction.

Example 4.8 [Maxwell versus MAP EXIT Function for an Ensemble with J = 2]
Consider the dd pair (λ(x),ρ(x)) = ( 3x+3x2+4x13

10 ,x6) and refer to Figure 4.6. The
corresponding BP EXIT curve was shown in detail in Figure 4.2. A further dis-
cussion of this ensemble will be found in Example 4.10.
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Figure 4.6: EBP EXIT function for a double-jump ensemble and function ΘΞ(u) for the
typical residual ensemble in A, B, C, E, F and G.

The recursive procedure described above “walks” on the EBP EXIT curve in the
direction of increasing x and allows us to construct the Maxwell function. Let us
now see where we can show that the Maxwell function coincides with the true
MAP EXIT function. With this aim, we will “walk” on the EBP EXIT curve in
the direction of decreasing x and we will apply Theorem 4.7, keeping in mind
that the total integral defined by the EBP EXIT curve (i.e., the double “S”-shaped
curve that describes all fixed points of the density evolution equations) equals the
design rate.
We start with εA = 1 (point A). The residual dd pair corresponds of course to
the ensemble itself. As shown in Figure 4.6 (top right picture) the hypotheses
of Lemma 4.7 are fulfilled and we conclude again that with high probability the
rate of a randomly chosen element from this ensemble is close to the design rate,
which is equal to r = 19/39≈ 0.4872. Now decrease ε smoothly. The conditions
of Lemma 4.7 stay fulfilled until we get to εB ≈ 0.5313 (point B). At this point a
second global maximum of the function ΘΞ(u) occurs. As shown in Figure 4.6
(left pictures), the hypotheses of Lemma 4.7 are again fulfilled over the whole seg-
ment from E (the first threshold of the BP decoder corresponding to εE ≈ 0.5156)
till G. In particular, at the point G, which corresponds to εG = εMAP ≈ 0.4913, the
trial entropy reaches zero, which shows that this is the MAP threshold.
We see that, for this example, Lemma 4.7 suffices to construct the MAP EXIT
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curve for the segment from A to B and the segment from E to G. Over both these
segments we have hMAP = hBP. In summary, we can determine the MAP thresh-
old and we can verify that a balance condition (i.e., a local Maxwell construction
shown in dark grey) applies “at the jump G” (MAP threshold). But the straight-
forward application of Lemma 4.7 does not provide us with means of determining
hMAP between the points B and E. Intuitively, hMAP should go from B to C (which
corresponds to εC ≈ 0.5156). At this point one would hope that a second local bal-
ance condition again applies and that the MAP EXIT curve jumps to the “lower
branch” to point D. It should then continue smoothly until the point G (the MAP
threshold) at which it finally jumps to zero.

When Lemma 4.7 applies, it suffices to show that at the MAP threshold the ma-
trix corresponding to the residual graph becomes a full rank square matrix. What
happens at the jump at point C? At this point we conjecture that the matrix cor-
responding to the residual graph takes, after some suitable swapping of columns

and rows, the generic form
(

U V
0 W

)
, where W is a full rank square matrix of

dimension εC(Λ(yC)−Λ(yD)). The MAP decoder can therefore solve the part of
the equation corresponding to the submatrix W .

In the next chapter, we provide an operational meaning of the Maxwell construc-
tion. We describe the so-called Maxwell decoder that performs MAP decoding.
Instead of looking at the balance of the two dark grey areas shown in Figure 4.7
(left picture) we can consider the balance of the two dark grey areas shown in
the middle and the right picture in Figure 4.7. These two areas differ only by a
constant from the previous areas.
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Figure 4.7: Maxwell construction for the dd pair (λ(x),ρ(x)) = (x2,x5) at ε = εMAP. Left:
Because the MAP threshold εMAP is found when the two dark grey areas are in balance.
Middle: The dark grey area is proportional to the total number of independent variables that
the Maxwell decoder introduces (in other words, the number of guesses that a sequential
Maxwell decoder has to perform). Right: The dark grey area is proportional to the total
number of independent equations that are obtained during the decoding process and are
used to resolve variables (in other words, the number of contradictions that a sequential
Maxwell decoder will achieve).
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The Maxwell decoder provides an operational interpretation and further justifies
our conjecture that the Maxwell function is the MAP EXIT function. A conse-
quence of this general conjecture is that it implies a second conjecture of practical
interest, i.e.,

εMAP = min{{ε∗ ∈ (0,1] : ε∗ = ε(x∗),P(x∗) = 0}∪{εSC}}.

4.4 Maxwell Decoder
Inspired by the statistical mechanics analogy, we explain the balance condition
that determines the phase transition of the MAP EXIT function by analyzing a
“BP/peeling decoder with guessing.” The state of the algorithm can then be as-
sociated with a point moving along the EBP EXIT curve. One consequence of
this analysis is a proof of Lemma 4.6. Because of this balance condition, we term
this decoder the Maxwell (M) decoder. Note that a similar algorithm is discussed
in [143] although it is used for some more practical5 concerns. Similar ideas can
be also found in practical implementations of iterative decoding.

Given a received word from BEC(ε), the M decoder proceeds iteratively as does
the standard peeling decoder described in Section 2.10. At each time step a parity-
check equation involving a single undetermined variable is chosen at random and
used to determine the value of the variable. This value is substituted in any parity-
check equation involving the same variable. If at any time the iterative decoding
process gets stuck in a non-empty stopping set, a position i ∈ [n] is chosen uni-
formly at random from the set of yet undetermined bits and a binary (symbolic)
variable xi representing the value of bit i is associated with this position. The de-
coder proceeds further as if position i was known with symbolic value xi. This
means that messages consist not only in values 0 or 1 but in general contain (lin-
ear combinations of) symbolic variables. In other words, the messages are really
binary linear equations that state how some quantities can be expressed in terms
of other quantities. It can happen that, during the decoding process, a yet unde-
termined variable is connected to several degree-one nodes. It will then receive
a message describing its value from each of these connected degree-one check
nodes. Of course, all these messages describe the same value (recall that over the
BEC, no errors occur). Therefore, if at least one of these messages contains a sym-
bolic variable, then the condition that all these messages describe the same value
gives rise to linear equations that have to be fulfilled. Whenever this happens, the
decoder resolves this set of equations with respect to some of the previously in-
troduced variables xi and eliminates those resolved variables in the whole system.
The decoding process finishes once the residual graph is empty. By definition of
the process, the decoder always terminates. At this point there are two possibili-
ties. Either all introduced variables {xi}i∈I , I ⊆ [n], were resolved at some later
stage of the decoding process (a special case of this being that no such variables

5Of course, for practical concerns, it might be advantageous not to guess a bit uniformly at random.
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Figure 4.8: Code of length n = 30 and Maxwell decoder. Assume that the all-zero codeword
has been transmitted. Whereas the peeling decoder in Figure 2.9 gets stuck in the stopping
set (iv), the Maxwell decoder succeeds in decoding all bits. The final step (xv) is indeed as
follows: Decoding bit 26−→ x12 = 0. The three successive resolutions x6 = 0, x2 = 0, and
x12 = 0 can be seen as contradictions in a pure “peeling with guessing” implementation.
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ever had to be introduced, i.e., when the peeling decoder is successful). In this
case, each bit has an associated value (either 0 or 1) and this is the only solu-
tion compatible with the received information. In other words, the decoded word
is the MAP estimate. The other possibility is that there are some undetermined
variables {xi}i∈I remaining. In this case each variable node either has already a
specific value (0 or 1) or by definition of the decoder can be expressed as linear
combination of the variables {xi}i∈I . In such a case each realization (choice) of
{xi}i∈I ∈ {0,1}|I | gives rise to a valid codeword and all codewords compatible
with the received information are the result of a particular choice. In other words,
we have accomplished a complete list decoding, so that |I | equals the conditional
entropy H(X |Y (ε)). All this is better illustrated in Figure 4.8. This shows an ex-
ample where the MAP decoder succeeds in recovering all transmitted bits whereas
the peeling decoder does not.
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Figure 4.9: List decoding performed by the M decoder in Figure 4.8. When the M decoder
gets stuck in a stopping set (before potentially introducing a new variable, i.e., guessing a
new bit), then the surviving paths are compatible with the sent codeword.

Analogously to the usual peeling/BP decoder for the erasure channel, the M de-
coder admits two equivalent descriptions: either as a sequential (i.e., node-by-
node in the spirit of the peeling algorithm described in Section 2.10), or as a
message-passing algorithm (i.e., based on the general BP schedule described in
Section 2.5).
The sequential approach is more intuitive and we chose it to introduce the M de-
coder. In particular, we can think of the M decoder as a peeling algorithm with
guessing such that various simultaneous copies of the decoding are performed. In
this implementation, each time that a bit i is guessed, the decoder duplicates6 the
decoding process and doubles the number of running copies. If a copy encounters
a contradiction (when a variable node receives non-erased messages from several
check nodes which are inconsistent), then the corresponding path terminates. This
intuitive approach is illustrated in Figure 4.9.
The message-passing approach allows for a simpler analysis. We follow this point
of view in the sequel. The main novelty of the new analysis is a second channel

6Here we describe the decoder as a ‘breadth-first’ search procedure: at each bifurcation we explore
in parallel all the available options. One can easily construct an equivalent ‘depth-first’ search: first
take a complete sequence of choices and, if no codeword is found, backtrack.
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parameter, call it γ, which represents the fraction of introduced variables (inde-
pendent or not).

4.4.1 Message-Passing with Storing
Consider a variable node of index i. Assume it receives the channel value µε

i from
a memoryless symmetric7 channel with output alphabet {0,j,g}. More precisely,
each variable node receives µε

i = 0 with probability 1−ε, µε
i = j with probability

ε(1−γ) and µε
i = g with probability εγ. The parameter γ represents the fraction

of introduced variables (i.e., the fraction of performed guesses).

The new message-passing algorithm employs left-to-right messages µx and right-
to-left messages µy, all of which take values in {0,j,g}. The meaning of the 0
message and the j message follows naturally from the classical BP setting. A 0
message indicates a known variable,7 a g message indicates that it carries one or a
linear combination of introduced variables. (I.e., a g message indicates that either
the bit from which this message emanates has been guessed or that the value of
this bit can be expressed as a linear combination of other bit values which have
been guessed.) Operationally, we can think of the message µi = g as being short-
hand for a non-empty set (or list) of indices Ii = { j1, . . . , jk}. This set (or list)
indicates that xi is expressible as xi = x j1 + · · ·+ x jk , i.e., as a linear combination
of introduced variables (guessed bits).

We can now write the update rules at the parity-check and variable nodes.
(i) Refer to Figure 4.10 and consider the update rule at a parity-check node of
degree r. Assume that the index set for the (r−1) messages that enter the check
node is R = [r−1]. Then

µy =


0, if ∀i ∈ R , µi = 0,

j, if ∃i ∈ R , µi = j,

g, if ∀ j ∈ R , µ j 6= j, and ∃i ∈ R , µi = g.

With respect to the classical iterative decoder, the only new rule is the one that
leads to µy = g. The reason is as follows: Assume that for all i∈R we have either
µx

i = 0 or µx
i = g and that at least one such message is g. This means that the con-

nected variables xi, i∈R , are either known, have been guessed themselves, or can
be expressed as a linear combination of guessed bits (and at least one such value
is indeed either a guess itself or expressible as a linear combination of guesses).
Since the variable connected to the outgoing edge is the sum of the variables con-
nected to the incoming edges, it follows that this variable is also expressible as a
linear combination of guesses. Therefore, µy = g in this case. Operationally, we
have r−1 lists (or sets) I1, . . . , Ir−1 (at least one of which is non-empty) entering

7 Recall that the analysis is simplified by the symmetry of the channel and intermediate densities,
which allows us to make the all-zero codeword assumption, see Lemma 2.4. With this assumption, the
known variables and messages are equal to 0.
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the check node. The outgoing list Iy is obtained as the union of the incoming lists,
where indices that occur an even number of times in the incoming lists are elimi-
nated. The list Iy provides a resolution rule for x1 + · · ·+ xr−1, and therefore for
the variable connected to the outgoing edge.

µy

µ1
µ2
...

µr−1

µx

µ1

...

µl−1 µε

Figure 4.10: Update rule. Left: Function node. Right: Variable node.

In the above description we have ignored the possibility that the union of the
incoming lists (at least one of which is non-empty) is empty. This can happen if a
complete cancellation occurs (every index appears an even number of times in the
incoming lists). Fortunately, as we will see, this assumption has no influence on
the proof of Lemma 4.6.
(ii) Refer to Figure 4.10 and consider the update rule at a variable node of degree
l. Assume that the index set for the l−1 messages entering the variable node is
L = [l−1]∪{ε}. Then

µx =


0, if ∃i ∈ L , µi = 0,

j, if ∀i ∈ L , µi = j,

g, if ∀i ∈ L , µi 6= 0 and ∃ j ∈ L , µ j = g.

Once again, it should be enough to explain the rule that leads to µx = g. Recall
that g indicates that the bit is not known but that it has either been guessed or that
the bit is expressible as a linear combination of guessed bits. Therefore, if none
of the incoming messages is 0, and at least one is g, then the outgoing message is
g. Operationally, this means that the outgoing list is equal to one of the incoming
non-empty lists. For example, if the bit itself has been guessed (i.e., µε

i = g) and
all other incoming messages are j then the outgoing message is {i}.
From the messages we can obtain estimates of the transmitted bits. Let µ̂i de-
note the estimate corresponding to the ith variable node. In order to obtain these
estimates we apply the same rule as for the variable node update with incoming
messages corresponding to all of the neighboring check nodes. Formally, for a
degree l variable node, we use L = [l]∪{ε} instead of L = [l−1]∪{ε}.
The consistency of the estimates implies a set of linear conditions8 on the guessed

8Conditions are equivalent in the present setting to contradictions. If one thinks of guessed bits as
i.i.d. uniformly random in {0,1} then each new independent condition, see Eq. (4.3) and Eq. (4.4), is
satisfied with probability 1/2.
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variables. Consider all messages µi entering the variable node i and the associated
(possibly empty) lists Ii = { ji

1, · · · , ji
k}. Let Lµ, µ ∈ {0,g,j} denote the subsets

of indices i with µi = µ.

1. If L0 6= /0 and Lg 6= /0, then, for any i ∈ Lg, we have the condition

x ji1
+ · · ·+ x jik

= 0 mod 2 . (4.3)

The total number of resulting conditions is |Lg|.

2. If L0 = /0 and |Lg| ≥ 2, then fix i ∈ Lg. For any l ∈ Lg\{i}, we have the
condition

x ji1
+ · · ·+ x jik

= x jl1
+ · · ·+ x jlk

mod 2 . (4.4)

The total number of resulting conditions is |Lg|−1.

The algorithm stores in memory each new condition produced during its execu-
tion. Notice that each condition involves uniquely guessed bits. (Recall that, if bit
i is guessed, then µε

i = g, and the variable xi is propagated.) It can happen that a
particular condition is either linearly dependent upon previous ones or is empty.
The last case occurs if the corresponding lists are empty, which in turn may be the
consequence of a previous parity-check node update. Given a set of guesses, any
subset of those whose values can be chosen freely without violating any of the
conditions produced by the M decoder, is said to be independent. Of course, the
maximal number of independent guesses is equal to the number of guesses minus
the number of linearly independent conditions.
Notice that, as the number of iterations increases, a given message can change
its status according to one of the transitions j→ g, and g/0→ 0. Therefore the
algorithm will stop after a finite number of iterations.

Density Evolution Analysis

Let us now perform a density evolution analysis as in [14, 15]. Let xt
µx (yt

µy )
denote the probability that a left-to-right (right-to-left) message at iteration ` is
equal to µx ∈ {0,j,g}.

(i) Function node: (ii) Variable node:

y`
0 = ρ(x`

0), x`+1
0 = 1− ελ(y`

g +y`
j),

y`
j = 1−ρ(x`

0 +x`
g) = 1−ρ(1−x`

j), x`+1
j = (1−γ)ελ(y`

j),

y`
g = 1−y`

0−y`
j = ρ(x`

0 +x`
g)−ρ(x`

0) x`+1
g = ελ(y`

g +y`
j)− (1−γ)ελ(y`

j)

Observe that, as expected, the sequences x`
j (y`

j) and x`
j + x`

g (y`
j + y`

g) sat-
isfy the same density evolution equations as the fractions of erased messages in
the standard BP decoder with erasure probabilities ε(1− γ) and γ respectively.
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When ` → ∞, density evolution converges to a fixed point. To settle our no-
tation, we write (x`

0,x
`
j,x`

g) −→
`→∞

(
x∞
0 (ε,γ),x∞

j(ε,γ),x∞
g (ε,γ)

)
and equivalently

(y`
0,y

`
j,y`

g) −→t→∞

(
y∞
0 (ε,γ),y∞

j(ε,γ),y∞
g (ε,γ)

)
. Notice that x∞

j(ε,γ) satisfies the

equation x = ε(1−γ)λ(1−ρ(1−x)), and x∞
0 (ε,γ) = x∞

0 (ε) satisfies the equation
u = ελ

(
1−ρ(1− u)

)
where u , 1−x. When `→ ∞, the algorithm provides es-

timates of the transmitted bits. Let us denote µ̂∞
i the estimate associated with the

ith variable node. The residual graph at the fixed point has the following structure.
The variable nodes such that µ̂∞

i = j or µ̂∞
i = g form a stopping set: this is the

largest stopping set contained in the set of variable nodes for which µε
i = j or

µε
i = g. Further, the set of variable nodes such that µ̂∞

i = j form a stopping set
contained in the previous set: this is the largest stopping set contained in the set
µε

i = j.
In the remainder of our analysis, given a node in the bipartite graph, we will com-
pute expectations with respect to the limiting (` = ∞) incoming messages. In those
computations, we will consider that the messages are i.i.d. random variables dis-
tributed according to

(
x∞
0 ,x∞

j,x∞
g

)
for the left-to-right messages and

(
y∞
0 ,y∞

j,y∞
g

)
for the right-to-left messages. As long as (ε,γ) is such that ε(1−γ) 6∈ {ε j : j ∈ [J]}
(i.e., as long as it corresponds to a continuity point of the BP EXIT function so
that

(
x∞
0 (ε,γ),x∞

j(ε,γ),x∞
g (ε,γ)

)
is continuous in (ε,γ)), this is justified by the

following argument. First consider messages after a finite number of iterations `.
For n large enough they are independent because the Tanner graph is locally a tree
with high probability. Since ε(1−γ) 6∈ {ε j : j ∈ [J]}, the number of messages that
change after the `th iteration is bounded by n · o`(`) with lim`→∞ o`(`) = 0. This
argument is essentially the same as in Lemma 4.11.

4.4.2 Entropy Balance
An analysis using density evolution can be applied to the considered message-
passing setting. However, density evolution itself does not deal with the storing
of variables. Although (strictly speaking) density evolution describes locally the
decoding behavior, the evolution of the number of resolved variable is global.
Therefore we need an additional (global) description of the system similar to the
Gibbs free energy in thermodynamics. We will see that it is relatively easy to de-
termine the number of introduced variables (guesses). The number of resolutions
(contradictions) is more difficult and we can only give an upper bound (which we
expect to be tight) on this number.

Introduction (Guessing) Work

In the M decoder, we can introduce variables (i.e., guesses) at our convenience
since the algorithm (when entirely performed) realizes a complete list decoding.

Guessing Strategy: Let us denote by µ̂i(∞,γ) the final estimate for variable i
assuming that a fraction γ of variables have been introduced (i.e., a fraction of γ
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guesses, potentially dependent, have been performed). We opt for the following
strategy: we increase step-by-step the fraction γ of guessed bits. We assume that
the message-passing decoding gets stuck at each step. Let us choose an explicit
notation and let ∆γ denote such a (very small) step. Set first γ = 0. Start with
the messages received via BEC(ε) and apply message-passing decoding until the
algorithm gets stuck. Then consider each of the bits not yet determined and and
set µε

i = g independently for each of them with probability ∆γ/(1−γ). Set γ
M=

γ +∆γ. Apply the message-passing decoder until it gets stuck. This procedure is
iterated until all variables have been either guessed or decoded.
The derivation of the number of guesses becomes simple (and a real implementa-
tion more efficient!) if we take ∆γ→ 0. This limit is always taken after n→ ∞.
We will see that the algorithm alternates between the following two phases that
are well separated. In the “guessing phase” the algorithm guesses a small fraction
of bits and processes the consequences that do not propagate too far and essen-
tially stay local. In the “contradiction phase” the algorithm “suddenly” discovers
many relationships (finds many contradictions) and the size of the residual graph
changes by a constant fraction which is independent of the step size ∆γ.

Useful Guesses: Consider a point (ε,γ). Assume it does not correspond to a
discontinuity point of the BP EXIT curve. Consider a variable node i, i ∈ [n].
The corresponding estimate provided by the M decoder is µ̂i(∞,γ). Consider
now moving to point (ε,γ +∆γ) (∆γ << 1) as follows. Assume the variable i is
chosen independently with probability ∆γ/(1−γ) to be guessed. If µ̂i(∞,γ) = j,
the channel observation on i is changed from µε

i = j to µε
i = g and the counter of

newly guessed variables is increased by one. By linearity of the expectation, we
get

E[∆G] =
1
n ∑

i∈[n]
Pr{i is chosen}Pr{µi(∞,γ) = j}

=
∆γ

1−γ
ε(1−γ)Λ(y∞

j) = εΛ(y∞

j)∆γ .

Notice that this computation assumes n→ ∞ and `→ ∞ afterwards. Recall that,
once γ has been changed into γ + ∆γ (introducing the n∆G new guesses), the
message-passing decoder is started again until a new fixed point is reached.

Confirmation (Contradiction) Work

At each step of the described strategy, it may happen that several g messages
are transmitted to the same variable node i. Each of these lists corresponds to a
distinct resolution rule for the variable xi. Their convergence on the same node im-
poses some non-trivial conditions on the variables, which appear in the resolution
rules. In this paragraph, we will estimate the number of independent conditions
by exploiting (the somehow intuitive) Lemma 4.15 in Appendix 4.D. This lemma
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shows how to upper bound the number of contradictions via a local counting. For-
mally, we will use Lemma 4.15 directly with the original graph. This supposes
that (i) we do not count contradictions generated at variable nodes receiving at
least one 0 message (either from the channel or from the graph) and (ii) we count
at the check node only those edges whose incoming messages are not 0. With
these two conventions one can check that Lemma 4.15 holds for a general graph
including degree-one check nodes as well as variable nodes that are known.9

Let (ε,γ) be a non-discontinuity point and denote by nC the number of contra-
dictions as estimated by the right-hand side of Eq. (4.10) of Lemma 4.15 (this
estimate is in fact an upper bound on the actual number of conditions). The first
term counts the number of conditions arising at that node. We get

E
[

∑i∈V max(|Li,g|−1,0)
n

]
= ε(1−γ)∑

l

ΛlEl

[
max(ng−1,0)In0=0

]
+ εγ∑

l

ΛlEl

[
max(ng,0)In0=0

]
,

where IA is the indicator function for the event A and where ng, n0, and nj count
the number of incoming g, 0, and j messages. Here the limits n→ ∞ and `→ ∞

are understood and El denotes expectation with respect to the multinomial vari-
ables n0,ng,nj with sum l and parameters y∞

0 ,y∞,y∞

j. Note that we use the indi-
cator function In0=0 because (as previously indicated) we consider only nodes “in
the residual graph” (i.e., nodes that have not been determined in the standard BP
phase as a consequence of the received bits). Let us temporarily adopt the short-
hand y0,y,yj for y∞

0 ,y∞
g ,y∞

j for the density of the right-to-left messages (and the
corresponding one for left-to-right messages). We get

E

[
1
n ∑

i∈V
max(|Li,g|−1,0)

]
= ε(1−γ)

[
Λ′(yj +yg)yg−Λ(yj +yg)+Λ(yj)

]
+ εγΛ′(yj +yg)yg . (4.5)

Let us now evaluate the correction term in Eq. (4.10) of Lemma 4.15. Consider a
check node j. Assume that its “residual” degree is r′j. I.e., r′j counts the number
of edges whose incoming messages are not zero. If the corresponding r′j outgoing
messages are all g (equivalently, the r′j incoming messages are all g), then the
same condition has been overcounted r′j− 1 times. Let C denote the set of such
check nodes. We have

E

[
1
n ∑

j∈C
(r′j−1)

]
=

Λ′(1)
Γ ′(1) ∑

r

ΓrEr

[
max(ng−1,0)Inj=0

]
,

9Notice that in Lemma 4.15 we assume µε
i ∈ {g,j}. In order to make contact with this assumption

we could first run the standard BP decoder until no further progress can be made. We could then
directly apply Lemma 4.15 to the residual graph. The disadvantage of this method is that in this
scheme it is not so straightforward to relate the progress of the M decoder on the residual graph to
the original density evolution equations. Alternatively we can use Lemma 4.15 directly to the original
graph under conventions (i) and (ii).
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where Er denotes expectation with respect to the multinomial variables n0,ng,nj

with sum r and parameters x∞
0 ,x∞,x∞

j. Once again, it is easy to compute the above
expectations, we get

E

[
1
n ∑

j∈C
(r′j−1)

]
=

Λ′(1)
Γ ′(1)

(
Γ ′(1−xj)xg−Γ (1−xj)+Γ (1−xj−xg)

)
.

(4.6)

Take the difference between Eq (4.5) and Eq. (4.6), a few algebraic manipulations
reveal finally that E[C] = F(x, ε,γ) , where

F(x, ε,γ) M= Λ′(1)[xj(1−yj)− (xj +xg)(1−yj−yg)]

− ε(1−γ)[Λ(yj +yg)−Λ(yj)]+
Λ′(1)
Γ ′(1)

[
Γ (1−xj)−Γ (1−xj−xg)

]
.

and where x is shorthand for the vector (xj,xg,x0,yj,yg,y0).
We can now change γ→ γ +∆γ and compute the number of new conditions on
the newly guessed variables. This computation is similar to the previous descrip-
tion. Call ∆C the upper bound on this number provided by Eq. (4.10) of Lemma
4.15. Repeating the previous derivation, we get

E[∆C] = F(x∞(ε,γ +∆γ), ε,γ +∆γ)−F(x∞(ε,γ), ε,γ +∆γ) .

Consider two distinct cases depending on the continuity or not of x∞(ε,γ′) in any
γ′ ∈ [γ,γ +∆γ].
(i) The function x∞(ε,γ′) is continuous (hence analytic) over [γ,γ + ∆γ]. Its
Taylor expansion shows

E[∆C] =−∂F
∂x

(x′, ε,γ +∆γ) · ∂x
∞(ε,γ)
∂γ

∆γ +O∆γ((∆γ)2) = O∆γ((∆γ)2),

where the second equality follows from evaluating the gradient of F at x′ =
x∞(ε,γ +∆γ) (a direct calculation shows that the gradient vanishes at this point).
(ii) The interval [γ,γ + ∆γ] includes a discontinuity point (i.e., a jump) at γj.
Observe that x j+1 = limγ↓γj x

∞(ε,γ) and x j = limγ↑γj x
∞(ε,γ) with the notations

of Section 4.1. Then

E[∆C] = F(x j+1, ε,γj)−F(x j, ε,γj)+O∆γ(∆γ) .

Work Balance

Recall our guessing strategy. For γ = 0, the received message is first decoded
with the standard message-passing (BP) decoder. Each variable is further chosen
independently with probability ∆γ/(1− γ) and is guessed if it has not yet been
determined (possibly in terms of former guesses). The M decoder is then applied
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until it gets stuck. The number of new guesses at this stage is ∆Gγ and the number
of new conditions is upper bounded by ∆Cγ . This operation is repeated until the
final estimate is µ̂i(∞,γ)∈{0,g} for all i. Without loss of generality, let us assume
this to happen at γ = 1. At this point each realization of the guesses compatible
with the conditions yields a codeword compatible with the received message. We
have

limsup
n→∞

ELDPC(n,Ξ)[HG(X |Y )]
n

≥∑
γ

E[∆Gγ ]−∑
γ

E[∆Cγ ]

=
Z 1

0
εΛ(yj(γ,ε))dγ−∑

γj

∆Fj +O∆γ(∆γ),

where the last sums runs over the jump positions γj and ∆Fj ≤ F(x j+1, ε,γj)−
F(x j, ε,γj) indicates the discontinuity of F at those positions. Finally, notice that
HG(X |Y ) does not depend upon ∆γ and we can therefore take the limit ∆γ → 0
discarding terms in O∆γ(∆γ). Moreover yj(γ,ε) = y(xε(1−γ)) where xε(1−γ) is
the fixed point of density evolution at erasure probability ε(1−γ), therefore

Z 1

0
εΛ(yj(γ,ε))dγ =

Z 1

0
εhBP(ε(1−γ))dγ =

Z ε

0
hBP(ε̃)dε̃ =

Z ε

0
Λ(y(ε̃))dε̃.

This quantity is the area under the BP curve. It is depicted in dark grey in Figure
4.7 (middle). Finally, consider a discontinuity point εj = (1−γj)ε so that x j+1 and
x j are the corresponding fixed points of density evolution (just above and below
the jump, see Section 4.1). Then

∆Fj = P(x j)−P(x j+1)

where Pε(x) is the trial entropy of Definition 4.3 so that ∆Fj is the area delimited
by the EBP EXIT curve and a vertical line through the jump. This area is depicted
in dark grey in Figure 4.7 (right).
The conditional entropy rate is therefore asymptotically equal to (or larger than)
the integral associated with the BP EXIT function minus the area corresponding
to each jump ∆Fj. The analysis furnished by the M decoder is more precise10 than
the upper bounding technique leading to Lemma 4.4. It shows that the presence of
jumps not only degrades the average performance (of BP decoding versus MAP
decoding), but, more precisely, each jump coincides with a local loss of perfor-
mance. This proves Lemma 4.6. More generally, we can now draw a complete
picture of the entropy balance, which is illuminated by the M decoder.

10This can also be compared to a related result shown in Appendix 4.B for the corresponding quan-
tities (area) at a dynamic level. The upper bound on the number of contradictions corresponds to the
area D1 in the EXIT chart depicted in Figure 3.7.
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4.4.3 Results
The Maxwell decoder provides a fundamental interpretation for the balance of
areas that we described in Section 4.3. Let us first summarize the previous analysis
with a lemma. We will give two illustrations in the next section.

Lemma 4.8 [Maxwell Interpretation] Consider a dd pair (λ(x),ρ(x)) and the as-
sociated EBP EXIT curve hEBP. Let the subdivision 0 < x1 < x1 < · · ·< xJ < xJ =
1 describe the discontinuities of the BP EXIT function, which means that J discon-
tinuities appear at the locations ε j

M= ε(x j) = ε(x j−1) for j ∈ [J] (see Characteriza-
tion of Theorem 4.1). Let G be chosen uniformly at random in LDPC(n,λ,ρ). As-
sume that transmission takes place over BEC(ε), and consider the M decoder. De-
fine y(x) M= 1−ρ(1−x), ε(x) M= x

λ(y(x)) , xε the largest fixed point of x= ελ(y(x)),

and εBP the BP threshold at location xBP ≥ 0. Let us further define I M= [xBP,x1]∪(
∪ j∈[J][x j,x j]

)
(with x1 M= 1 if J = 0) such that x ∈ I a.e.↔ ε(x) ∈ [εBP,1]. In the

same manner, let us define its complement C M= [0,1] \ I (C is possibly empty).
Let S(G, `) denote the size of the residual graph at the `th iteration (including in-
troduction of variables, i.e., including guesses). Let G(G, `) denote the number
of introduced variables (guesses). Let C(G, `) denote the number of resolutions
(contradictions), and let H(G, `) be the number of unresolved variables. Choose
x ∈ [0,xε], which we call state of the system, then

lim
n→∞

ELDPC(n,λ,ρ)

[
S(G,bxnc)

n

]
= s(x), limsup

n→∞

ELDPC(n,λ,ρ)

[
C(G,bxnc)

n

]
≤ c(x),

lim
n→∞

ELDPC(n,λ,ρ)

[
G(G,bxnc)

n

]
= i(x), liminf

n→∞
ELDPC(n,λ,ρ)

[
H(G,bxnc)

n

]
≥ h̄(x),

where the asymptotic characters are

s(x) M= min{1, ε(x)hEBP(x)}, i(x) M=
Z

u∈[x,xε]∩I
hEBP(u)dε(u),

c(x) M= min
{
i(x),−

Z
u∈[x,xε]∩C

hEBP(u)dε(u)+hEBP(x)
Z

u∈[x,xε]∩C
dε(u)

}
,

h̄(x) M= i(x)−c(x) = max
{

0,
Z

u∈[x,xε]
hEBP(u)dε(u)−hEBP(x)

Z
u∈[x,xε]∩C

dε(u)
}
.

Discussion: Numerous remarks are in order. First, as discussed in the previ-
ous section, the M decoding decomposes in distinct phases that correspond to
either introducing variables (guessing phase) or resolving equations (contradic-
tion phase). In general,11 the number of phases coincides with the number of

11Exceptions are when the number of discontinuities of the BP EXIT function is different from the
one of the Maxwell function. In this case, the number of phases is in fact equal to the number of
discontinuities of the Maxwell function.
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discontinuities of the BP EXIT curve. Furthermore (at least in cases where the in-
equalities are shown to be equalities, and the limsup and liminf are well-defined),
the individual instances

(
S(G,bxnc)/n,C(G,bxnc)/n,I(G,bxnc)/n, h̄(G,bxnc)/n

)
concentrate around this asymptotic limit. Finally, observe that, in the above for-
mulation, formulas are similar to those of the original Maxwell construction in
thermodynamics (see Section 1.1). The insight is indeed similar. Where the Van
der Waals curve explains the balance between the energy gained and spent in the
system (see Gibbs free energy in the introduction), the EBP EXIT curve explains
the balance between the extrinsic (information from the code) and intrinsic (infor-
mation from the channel) entropy at a variable node.

Consider a dd pair that fulfills the (sufficient) criterion of Lemma 4.7 and assume
ε≥ εMAP, then Lemma 4.8 provides a complete picture of the Maxwell decoding (as
a consequence, a complete description of the MAP performance). This is the case
of the dd pair shown in Figure 4.11 and presented in (the first) Example 4.9 of the
next section. Furthermore Example 4.9 will suggest that the picture remains valid
for ε < εMAP. For some cases like in Example 4.8, Lemma 4.7 does not apply and
we are not able to describe entirely the MAP EXIT curve. Although the Maxwell
analysis in this case is not more successful than Lemma 4.7, it strongly suggests
that the intuitive picture is true. This is moreover confirmed by the experiments in
(the second and last) Example 4.10 of Section 4.4.4.

0.0 0.2 0.4 0.6 0.8 1.0

0.1
0.2
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0.5

BEC(ε = 1.0)

h̄

0.5 0.6 0.7 0.8 0.9 1.0
-0.02
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BEC(ε = 0.5)

h̄
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Figure 4.11: Fraction of unresolved variables for the M decoder: asymptotic prediction
(solid curves) versus samples for n = 10000 (dashed curves). The channel parameters are
ε = 1.0,ε = 0.50,ε = εMAP≈ 0.4882 and εBP < ε = 0.46 < εMAP. Note that the case associated
with the channel parameter ε = 0.46 is not entirely covered by Lemma 4.3 and Lemma 4.8.
Nevertheless, there seems to be a good experimental agreement with the predicted curve.
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4.4.4 Experiments

The Maxwell decoder provides an operational interpretation for the balance of
the areas described in Section 4.3. This means that it is relatively easy to imple-
ment (although its exponential complexity makes the implementation somehow
tedious).

Example 4.9 [Regular-(3,6) LDPC ensemble] Consider the regular dd pair (λ(x),
ρ(x)) = (x2,x5) for which the Maxwell function is proved to be the MAP EXIT
function. Recall that, as discussed after Lemma 4.3, more generally the Maxwell
function for any regular LDPC ensembles can be proved to be the MAP EXIT
function. In this case, the asymptotic characters predicted by Lemma 4.8 are exact
for ε ≥ εMAP. Figure 4.11 compares the evolution of the number of unresolved
variables as a function of the fraction of bits determined by the decoding process
(i.e, one minus the size) as predicted by Lemma 4.8 with empirical samples for
ε = 1.0, ε = 0.5, ε = εMAP ≈ 0.4882 and ε = 0.46 ∈ (εBP, εMAP). We observe a good
agreement of the practical samples with the predicted curves, even for the last
case (εBP ≈ 0.4294 < ε < εMAP ≈ 0.4882) for which the tightness of c(x) is not
guaranteed to be tight.
Let us now exemplify the construction of the asymptotic curve, e.g., for this last
case (ε = 0.46). Figure 4.12 and Figure 4.13 show the number of unresolved
variables (i.e., the number of running copies) as a function of the fraction of bits
determined by the M decoder. After transmission, a fraction 1−ε = 0.54 of bits is

R
= h̄A

R
= h̄B

R
= h̄C

R
= h̄D

h̄A→

h̄B↓

h̄B− h̄C
↙

h̄B− h̄D
↙

nh̄

O

B
680

510

340

170

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.12: M decoder applied to the (3,6)-regular LDPC ensemble. Experiments for 15
channel and code realizations with ε = 0.46 and blocklength n = 34 ·103 are shown (dashed
curves) together with the analytic asymptotic curve (solid curve). The inserts show how the
entropy profile (number of unresolved variables) can be constructed from the EXIT curve.
The fraction of introduced variables (guesses) is shown in the 2 left-most inserts and the
fraction of resolutions (contradictions) is shown in the 2 right-most inserts.

known. The classical BP algorithm proceeds until it gets stuck at the fixed point
(xε,yε) ≈ (0.3789,0.9076) of density evolution. At this point (point O in Fig-
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ure 4.12), a fraction 1− εΛ(yε) ≈ 0.6561 of bits has been determined. Now the
guessing phase of the M decoder starts.

It ends at point B, which correspondsh̄
10−3
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Figure 4.13: M decoder applied to the (3,6)-
regular ensemble. Asymptotic expected en-
tropy (number of unresolved variables) as a
function of the fraction of determined bits at
ε = 0.46 (solid curve) and empirical average
profiles (grey curves). Simulations are shown
for n = 780 (average over 6 ·104 realizations),
n = 3125 (average over 16 ·103 realizations),
n = 12500 (average over 4 ·103 realizations),
n = 50000 (average over 103 realizations),
n = 200000 (average over 150 realizations).

to the BP threshold characterized by
xBP ≈ 0.2606 and yBP ≈ 0.7790). The
total fraction of variables (guesses) that
the M decoder has to introduce (per-
form) is

R xε

xBP h(ε(x))dε(x) = P(xε)−
P(xBP).

For our specific example we have the
trial entropy P(x) = − 5x2

2 + 10x3 −
25x4

2 +7x5− 3x6

2 , so that the total frac-
tion of guesses is equal to 0.0201509.
For a blocklength of n = 34000 this
corresponds to roughly 685 guesses.
At this point the BP decoding phase
resumes. More and more guesses are
confirmed. Because we are operating
below the MAP threshold, (essentially)
all guesses are eventually confirmed
and the M decoder comes to a halt.

Example 4.10 [Standard Double-Jump LDPC Ensemble] Consider the double-
jump dd pair (λ(x),ρ(x)) = ( 3x+3x2+4x13

10 ,x6), which was previously investigated
in Example 4.8.

Recall that corresponding LDPC ensemble has design rate r = 19
39 ≈ 0.4872 and its

BP EXIT curve has two jumps. In Example 4.8 we have discussed how large parts
of the MAP EXIT curve can be constructed from Lemma 4.7. The MAP threshold
is εMAP ≈ 0.4913 (at xMAP ≈ 0.1434). According to the Maxwell construction, the
second MAP discontinuity is conjectured to occur at εMAP,2 ≈ 0.5186 (at xMAP,2 ≈
0.2378, xMAP,2 ≈ 0.4121) .

Figure 4.14 shows the evolution of the fraction of unresolved variables for ε =
0.5313. This corresponds to the point B in Example 4.8, the first point at which the
counting argument no longer applies. By comparing the result of the simulations
to the analytic curve corresponding to the Maxwell construction, we can see that
at least empirically the Maxwell construction seems to be valid over the whole
range.
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Figure 4.14: M decoder applied to our standard double-jump LDPC ensemble. Asymptotic
entropy profile at ε = 0.5313 (point B in Example 4.8). Left: 15 channel and code real-
izations with blocklength n = 34000 are shown (dashed curves) together with the analytic
asymptotic curve (solid curve). Right: Convergence of the average entropy curves (grey
curves) to the analytic expected curve (solid curve). Simulations are shown for n = 780
(average over 6 ·104 realizations), n = 3120 (average over 16 ·103 realizations), n = 12480
(average over 4 ·103 realizations), n = 50017 (average over 103 realizations), n = 200500
(average over 250 realizations).

4.5 Conclusion and Discussion
We have seen in this chapter that the Maxwell construction associated with a suit-
able curve makes the bridge between the optimal MAP decoding and the iterative
BP decoding. More precisely, the curve that plays the role of the Van der Waals
equation is the EBP EXIT curve. The MAP phase transition is expected to be
obtained from the EBP EXIT curve via a (local) Maxwell-type construction. The
underlying law of a transfer of energy translates to a transfer of entropy. Opera-
tionally (when implemented as a Maxwell decoder), this transfer is expressed in
terms of guesses and contradictions.

It is relatively intuitive to understand the meaning of the fraction of guesses. What
about the fraction of contradictions? In a standard BP decoder, it might happen
that a variable node receives twice (or more) the same message. During the decod-
ing process (when the state of the system describes unstable fixed points) the total
information a variable node receives minus the information it needs to be known
represents the fraction of contradictions.12

In the next chapter, we will develop tools (called GEXIT functions) that will per-
mit us to extend many of the previous observations to more general BMSCs. For
the BEC, a few curiosities or peculiarities follow directly from our observations.

A first curiosity is when we investigate the analogy with thermodynamics. In
practice it is possible to warm up water slightly above 100oC (metastable regime).

12This view also makes the link between the EBP curve and the dynamical (EXIT chart) represen-
tation of the decoding process (see also the conclusion of Chapter 3).
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Surprisingly, a standard BP decoder works naturally in such a metastable regime if
ε ∈ (εBP, εMAP). Moreover, it is possible to think of a (purely theoretical) M decoder
with “negative” guess, i.e., a BP decoder with a unrevealing device instead of a
guessing device. This decoder is expected to follow hidden (stable or metastable)
branches of the EBP curve (i.e., it is expected to describe min(1,H EBP(ε))).
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Figure 4.15: EBP EXIT function and Maxwell construction for the dd pair (λ(x),ρ(x)) =

( 3x+3x2+14x50

20 ,x15) with design rate rΞ = 311
566 ≈ 0.5495. The numbers of BP and “MAP”

(Maxwell) jumps (respectively, J and J′) are different. Left: BP EXIT function with J = 1.
Right: Maxwell construction with with J′ = 2.

A second curiosity is based on the following example where the number of BP
jumps and the number of MAP jumps are different. Refer to the dd pair (λ,ρ) =
( 3x+3x2+14x50

20 ,x15) whose EBP EXIT curve is depicted in Figure 4.15. The BP
EXIT curve has a single jump at εBP ≈ 0.3531 (xBP ≈ 0.3008). Unfortunately
Lemma 4.7 shows the tightness of the M construction only up to point A (at
ε ≈ 0.5063 in Figure 4.15) . But it is quite natural to conjecture that the MAP
EXIT curve has two singularities, namely at εMAP ≈ 0.3986 (xMAP ≈ 0.0340) and at
ε(MAP,2) ≈ 0.4855 (x(MAP,2) ≈ 0.1096) as shown in Figure 4.15. This is validated by
the M decoder that gives a residual entropy (as a fraction of the blocklength) of
h̄
n ≈ 0.0121 at ε = 0.44. This value is exactly the value of the area (between ε = 0
and ε = 0.44) under the conjectured MAP EXIT curve.
This indicates that, between the two conjectured MAP phase transitions, the M de-
coder follows the part of the EBP EXIT function that is “hidden” from the BP
decoder. The Maxwell construction is conjectured to hold in this case.
This example provides some hints on the relationship between design rate and
asymptotic rate.
First, imagine that we use the typical residual dd pair obtained from the dd pair
(λ(x),ρ(x)) = ( 3x+3x2+14x50

20 ,x15) when transmission occurs at ε = 0.5. Figure
4.16 depicts this “pathological” case where the EBP curve goes out of the unit
box. The sufficient condition obtained from ΘΞ is not fulfilled for the new dd
pair. We conjecture, however, that the Maxwell construction holds: This means
that we conjecture that the design rate is still the actual rate.
Second, imagine now that we use the typical residual dd pair obtained from the dd
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pair (λ(x),ρ(x)) = ( 3x+3x2+14x50

20 ,x15) when transmission occurs at a point located
slightly to the left of the second phase discontinuity of the Maxwell function. It
corresponds to a state x with P(x) < 0,
i.e., it corresponds to a LDPC ensem-
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Figure 4.16: Maxwell construc-
tion for the dd pair obtained from
(λ(x),ρ(x)) = ( 3x+3x2+14x50

20 ,x15) at ε = 0.5
(rΞ ≈ 0.098976).

ble with “negative” design rate. How-
ever, we can choose this point such
that a “hidden” branch of the EBP curve
lies below the initial point. Suppose
that the Maxwell construction holds
in this case (as it is conjectured), then
the actual rate of the system is posi-
tive and the code is well-defined.
In fact, there is an even more explicit
case which shows that there are en-
sembles for which the design rate and
the actual rate are different. Imagine
an ensemble with an EBP EXIT curve
almost similar to the one in Figure 4.16 but such that (i) the BP threshold is given
by the stability condition and (ii) the area outside the unit box is larger than the
top grey area. Then, one can think of an example with design rate equal to zero
(if the area outside the unit box is equal to the top grey area plus the bottom area
inside the unit box). However, a simple application of Appendix 2.C shows that
the MAP threshold is equal to the BP threshold. We further expect (by a simple
use of the area theorem) the true asymptotic rate of the ensemble to be strictly
positive13 and therefore different from the design rate!

More than a third curiosity, we would like to point out a last but very important
remark. Beyond a global theory for our observation, a further interesting research
would be the analysis of more general combinatorial search problems through a
suitable Maxwell construction. An example consists in the problem of satisfiabil-
ity of random sparse linear systems (“XORSAT” problem) considered in [38,144].
This problem is extremely close to the topic of this thesis. E.g., it is straightfor-
ward to derive the Maxwell construction associated with the Poisson distribution
considered in [38]. The counting argument presented in Chapter 4 is in fact closely
related to the approach of these papers. Therefore we hope that ideas presented in
our work can be used to analyze the behavior of simple resolution algorithms (for
which numerical results are presented in [145]).

13This would be consistent with the hypothesis of non-uniform priors.
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Appendix

4.A Concentration of Entropy
The MAP performance of sparse graph codes in the asymptotic limit is investi-
gated in this thesis. In practice, our task is made much easier by realizing that we
can restrict our study to the average of such a performance. More precisely, let
G = G(n) be chosen uniformly at random from LDPC(n,λ,ρ), assume that X is
chosen uniformly at random from G, Y is the received word, and let HG(n)(X |Y ) be
the associated conditional entropy. The following theorems hold for general BMS
channels.

Theorem 4.3 [Concentration of Conditional Entropy] Let G(n) be chosen uniformly
at random from LDPC(n,λ,ρ). Assume that G(n) is used to transmit over a
BMS channel and let HG(n)

M= HG(n)(X |Y ) be the associated conditional entropy.

Then for any ξ > 0, Pr
{
|HG(n)−ELDPC(n,λ,ρ)

[
HG(n)

]
|> nξ

}
≤ 2e−nBξ2

, where
B = 1/(2(rmax +1)2(1− r)) and where rmax is the maximum check node degree.

Proof. The proof uses the standard technique. We first construct a (Doob’s) mar-
tingale with bounded differences and then apply the Hoeffding-Azuma inequality.
The complete proof can be found in [31]. It is reported in an adapted and stream-
lined form in the following arguments.
Fix an arbitrary order for the m = (1− r)n parity-check nodes, and let Gt , t ∈ [m],
be a random variable describing the first t parity-check equations. Furthermore,
let G0 be a trivial (empty) random variable. Define the (Doob’s) martingale Zt

M=
E[HG(n)|Gt ]. The martingale property E[Zt+1 |Z0, . . . ,Zt ] = Zt follows by construc-
tion. Let us write Zt = Z(Gt) to stress that Zt is a (deterministic) function of the
random variable Gt . Then Z0 = E[HG(n)] is the expected conditional entropy over

the code ensemble, and Zm = HG(n)
M= HG(n)(X |Y ) is the conditional entropy for

a random code G. Therefore Theorem 4.3 follows from the Hoeffding-Azuma
inequality, once we bound the difference |Zt+1−Zt |.
It remains to bound the difference |Zt+1−Zt |. Assume for the sake of definite-
ness that parity-check equations have been ordered by increasing degree. The
first m1 of them have degree r1, the successive m2 have degree r2, and so on,
with r1 < r2 < .. . . The (t + 1)th parity-check equations will therefore have a
well-defined degree, to be denoted by r. Consider two realizations Gt+1 and G′t+1
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of the first (t + 1) parity-checks that differ only in the (t + 1)th check. Let G
be a code uniformly distributed over LDPC(n,λ,ρ) whose restriction to the first
(t +1) parity-checks coincides with Gt+1. Construct a new code G′ whose restric-
tion to the first (t + 1) parity-checks is G′t+1, and which differs from G in at most
(r+1) parity-checks. This can be done by the “switching” procedure as described
in [14]. This procedure results in the “pairing up” of graphs. In order to obtain
the desired result, it is now enough to show that |HG(n)(X |Y )−HG′(n)(X |Y )| ≤ α,
for some constant α independent of n. Let us focus on the variation in condi-
tional entropy under the addition of a single parity-check. Let G be a generic
linear code and let G+1 be the same code with the added parity-check constraint
xi1 + · · ·+ xir = 0. Define the corresponding parity bit x̃ = xi1 + · · ·+ xir , Then
HG(X |Y ) = HG(X |X̃ ,Y )+HG(X̃ |Y )−HG(X̃ |X ,Y ) = HG(X |X̃ = 0,Y )+HG(X̃ |Y ) =
HG+1(X |Y ) + HG(X̃ |Y ) . The second equality follows by using the channel sym-
metry and the fact HG(X̃ |X ,Y ) = 0. The third step is a consequence of the def-
inition of G+ 1. Since X̃ is a bit, its entropy is between 0 and 1 and therefore
|HG(X |Y )−HG+1(X |Y )| ≤ 1 . Recall that G and G′ differ in at most (r+1) parity-
check equations, where r is upper bounded by rmax, the maximum check node de-
gree. Therefore the previous equation, which states |HG(X |Y )−HG+1(X |Y )| ≤ 1,
implies |HG(X |Y )−HG′(X |Y )| ≤ (r+1). This concludes the proof.

Let us now consider the concentration of the MAP EXIT function. Characteriza-
tion (iv) in Lemma 3.4 implies that the (G)EXIT curve is equivalently defined as
dHG(n)(X |Y (ε))

ndε when transmission takes place over BEC(ε). We state this concentra-
tion result in a somehow more general form when the channel is any BMSC.

Theorem 4.4 [Concentration of MAP GEXIT Function] Let G be chosen uniformly
at random from LDPC(n,λ,ρ) and let {BMSC(ε)}ε∈I denote a family of BMS
channels ordered by physical degradation (with BMSC(ε′) physically degraded
with respect to BMSC(ε) whenever ε′ > ε) and smooth14 with respect to ε. As-
sume that G is used to transmit over BMSC(ε). Let HG(n)

M= HG(X |Y ) be the asso-

ciated conditional entropy. Denote by
dHG(n)

dε the derivative14 of HG(n) with respect
to ε and let J ⊆ I be an interval on which limn→∞

1
nE
[
HG(n)

]
exists and is differen-

tiable with respect to ε. Then, for any ε ∈ J and ξ > 0 there exists an αξ > 0 such

that, for n large enough, Pr
{∣∣∣ dHG(n)

dε −ELDPC(n,λ,ρ)
[ dHG(n)

dε

]∣∣∣> nξ
}
≤ e−nαξ . Fur-

thermore, if limn→∞
1
nE
[
HG(n)

]
is twice differentiable with respect to ε ∈ J, there

exists a strictly positive constant A such that αξ > Aξ4.

Proof. Let hn(ε)
M= 1

n HG(n)(X |Y ) be the entropy rate, let h′n(ε)
M=

dHG(n)(X |Y )
ndε be

its derivative, and let h̄n(ε)
M= 1

nELDPC(n,λ,ρ)[HG(X |Y )] be its expected value. Since
the channel family {BMSC(ε)}ε∈I is smooth and ordered by physical degradation,

14 The derivative
dHG(n)

dε exists because of the explicit calculation presented in Chapter 5
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hn(ε) is a differentiable convex function of ε ∈ I. Therefore

1
∆

[hn(ε)−hn(ε−∆)]≤ h′n(ε)≤
1
∆

[hn(ε+∆)−hn(ε)] , (4.7)

for any ∆ > 0 such that [ε−∆,ε+∆] ∈ I. Because of Theorem 4.3, we also have
1
∆ [h̄n(ε)− h̄n(ε−∆)−2ξ̃]≤ h′n(ε)≤ 1

∆ [h̄n(ε+∆)− h̄n(ε)+2ξ̃] , with probability
greater than 1−Ae−nBξ̃2

(it follows from the proof in the previous subsection that
A and B can be chosen uniformly in ε). By averaging Eq. (4.7) over the code G,
and subtracting it from the last equation, we get |h′n(ε)− h̄′n(ε)| ≤ 1

∆ [h̄n(ε+∆)−
2h̄n(ε)+ h̄n(ε−∆)+2ξ̃] . Now by using the convexity of h̄n(ε) and fixing ∆ = ξ̃1/2

we get |h′n(ε)− h̄′n(ε)| ≤ [h̄′n(ε+ξ̃1/2)− h̄′n(ε−ξ̃1/2)]+2ξ̃1/2 . The functions h̄n are
differentiable and convex and (by hypothesis) they converge to h̄(ε) = hMAP(ε) =
limn→∞

1
nEHG(n)(X1|Y∼1) which is differentiable in J. It is a standard result in

convex analysis, see, e.g., [146], that the derivatives h̄′n converge to h̄′ uniformly
in J. Therefore, there exists a sequence δn→ 0, such that |h′n(ε)− h̄′n(ε)| ≤ [h̄′(ε+
ξ̃1/2)− h̄′(ε− ξ̃1/2)] + δn + 2ξ̃1/2 with probability greater than 1−Ae−nBξ̃2

. In
order to complete the proof, it is sufficient to let ξ̃∗(ξ) be the largest value of ξ̃,
such that [h̄′(ε+ξ̃1/2)− h̄′(ε−ξ̃1/2)] + 2ξ̃1/2 < ξ/2. Then the thesis holds with
αξ = Bξ̃2

∗(ξ)/2. In particular, if h̄(ε) is twice differentiable with respect to ε ∈ J,
then [h̄′(ε+ξ̃1/2)− h̄′(ε−ξ̃1/2)]≤ Ãξ̃1/2 and ξ̃∗(ξ)≥ Ã′ξ2.

Notice that Theorem 4.4 has two extra hypotheses with respect to Theorem 4.3.
First, we assumed that the channel family {BMSC(ε)}ε∈I is ordered by physical
degradation. This ensures that

dHG(n)
dε is non-negative. This condition is trivially

satisfied for the family {BEC(ε)}ε∈[0,1]. More generally, we can let ε be any differ-
entiable and increasing function of the erasure probability that takes values from
zero to one. The second condition, namely the existence and differentiability of
the expected entropy per bit in the limit, is instead crucial. The asymptotic MAP
EXIT function may have jumps which coincide with discontinuities in the deriva-
tive of the conditional entropy. At a jump ε∗, the value of the EXIT function may
vary dramatically when passing from one element G of the ensemble to the other.
Some (a finite fraction) of the codes G will perform well, and have an EXIT func-
tion close to the asymptotic value at ε∗− δ, whereas others (a finite fraction) may
have an EXIT function close to the asymptotic value at ε∗+ δ, for δ > 0.

Theorem 4.5 [Concentration of BP EXIT Curve] Let G be chosen uniformly at
random from the ensemble LDPC(n,λ,ρ). Assume that G is used to transmit
over a BMS channel and let Φ

BP(G),`
i = φ

BP(G),`
i (Y∼i) denote the extrinsic estimate

(conditional mean) of Xi produced by the BP decoder after ` iterations. Then, for
all ξ > 0, there exists αξ > 0, such that

Pr
{∣∣∣ n

∑
i=1

(
H(Xi|Φ

BP(G),`
i )−ELDPC(n,λ,ρ)

[
H(Xi|Φ

BP(G),`
i )

])∣∣∣> nξ
}
≤ e−αξn.
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Proof. The proof is virtually identical to those given in [12,14] where the bit/block
error probability is considered.

4.B Area and BP EXIT Function
The trial entropy is computed using integration by parts twice. This elementary
computation appears frequently in this chapter. Hence let us give some more de-
tails. Observe that the function x 7→ hEBP M= Λ(y(x)) is composed of two functions
y and Λ that are (strictly) increasing over [0,1]. Therefore, the inverse function
x(h) exists and h 7→ x(h) M= (y−1◦Λ−1)(h) is a continuous and (strictly) increasing
bijection from [0,1] to [0,1]. Then the values ε(x) M= x

λ(y(x)) can be equivalently

described by ε(h) M=
(
y−1◦Λ−1

λ◦Λ−1

)
(h).

Lemma 4.9 Given a dd pair (λ,ρ) and any xa,xb ∈ [0,1], let us define ε(h) M=(
y−1◦Λ−1

λ◦Λ−1

)
(h), hEBP(x) M= (Λ◦y)(x), ha

M= hEBP(xa), and hb
M= hEBP(xb). Then

Z hb

ha

ε(h)dh = Λ′(1)
(
xby(xb)−xay(xa)−

Z xb

xa

y(x)dx
)

.

Alternatively, define εa
M= ε(ha) = xa

λ(y(xa)) and εb
M= ε(hb) = xb

λ(y(xb)) . Then

Z xb

xa

hEBP(x)dε(x) = Λ′(1)
(
εb

Z y(xb)

0
λ(y)dy− εa

Z y(xa)

0
λ(y)dy

−xby(xb)+xay(xa)+
Z xb

xa

y(x)dx
)
.

Proof. In order to obtain the first equation, we integrate by parts after having
parametrized ε(h) = x

λ(y(x)) = ε(x), h = hEBP(x) and observing that ε(x) · dhEBP(x)
dx =

x
λ◦y(x) ·

(λ◦y)(x)·y′(x)R
λ

= xy′(x)R
λ

. Notice that 1R
λ

= Λ′(1) is the average right degree.
Finally, integrate by part

R xb
xa

hEBP(ε(x))ε′(x)dx and use the first equation to get the
second equation.

The previous lemma allows us to compute the area under the BP EXIT function.

Lemma 4.10 [Area under BP EXIT Function] Consider a dd pair (λ,ρ), the area
under the associated BP EXIT curve is

rλ,ρ +
1R
λ

J

∑
i=1

Di =
Z 1

0
hBP(ε)dε,
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where Di = Ai−Bi−Ci with Ai
M= xiy(xi)−xi−1y(xi−1), Bi

M= εi R y(xi)
y(xi−1) λ(y)dy,

and Ci =
R xi

xi−1 y(x)dx.

Proof. A straightforward computation givesZ 1

0
hBP(ε)dε =

Z εBP

0
hBP(ε)dε+

J

∑
i=1

Z εi+1

εi
hBP(ε)dε

(a)
= 0+

1R
λ

J

∑
i=1

([
ε(x)

Z h(x)

0
λ(y)dy

]xi

xi
−
[
xy(x)

]xi

xi
+

Z xi

xi
y(x)dx

)

=
1R
λ

((Z 1

0
λ(y)dy−

J

∑
i=1

[
ε(x)

Z h(x)

0
λ(y)dy

]xi

xi−1

)

−

(
1−

J

∑
i=1

[
xy(x)

]xi

xi−1

)
+

(Z 1

0
y(x)dx−

J

∑
i=1

Z xi

xi−1
y(x)dx

))
(b)
=

R
λ−1+

R
y

λ
+

1R
λ

J

∑
i=1

([
xy(x)

]xi

xi−1
− εi

Z y(xi)

y(xi−1)
λ(y)dy−

Z xi

xi−1
y(x)dx

)
(4.8)

where (a) comes from Lemma 4.9 and (b) uses εi = ε(xi−1) = ε(xi).

Discussion: First observe that Lemma 4.10 quantifies the average sub-optimality
of BP decoding compared to MAP decoding (if we assume that the asymptotic
average rate is the design rate). The area under the BP EXIT function is trivially
larger than or equal to the design rate because the Dis are non-negative. This
seems to indicate that performance loss occurs at each BP phase transition.
Second, Lemma 4.10 has a pleasing geometric interpretation that goes back to
the asymptotic analysis using EXIT charts (or density evolution). This has been
discussed in the previous chapter.

4.C Technical Lemmas for Counting Argument
We collect here a few technical tools that characterize the dd pair of the residual
graph. They show that there is no discontinuous behavior implied by the random-
ness of the residual graph.

Lemma 4.11 Consider a dd pair Ξ and transmission over BEC(ε) such that ε 6∈
{ε j : j ∈ [J]}. Let G(ε) denote the residual graph obtained after BP decoding and
let ΞG(ε) denote its dd pair. Let Ξε denote the typical dd pair. Then, for any ξ > 0,
limn→∞ Pr{d(ΞG(ε),Ξε) ≥ ξ} = 0 where d denotes the L1 distance, i.e., ∀Ξa =
(Λa,Γ a),∀Ξb = (Λb,Γ b), we have d(Ξa,Ξb) = ∑l |Λa

l−Λb
l|+∑r |Γ a

r −Γ b
r |.
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Proof. Let G(ε,`) denote the residual graph after ` iterations of the BP decoder,
and let ΞG(ε,`) be the associated dd pair. Moreover let Ξε,` be the typical dd pair
of G(ε,`). An explicit expression for this typical dd pair is easily obtained from
Section 2.10 if we take δ = x` where x` is an intermediate fraction of left-to-right
erased messages obtained from density evolution (y` is the fraction of right-to-left
messages). From the triangle inequality, we get

d(Ξε,ΞG(ε))≤ d(Ξε,Ξε,`)+d(Ξε,`,ΞG(ε,`))+d(ΞG(ε,`),ΞG(ε)) .

We claim that

(i) lim
`→∞

d(ΞG(ε,`),ΞG(ε)) = 0,

(ii) lim
n→∞

E[d(Ξε,`,ΞG(ε,`))] = 0,

(iii) lim
`→∞

lim
n→∞

E[d(Ξε,Ξε,`)] = 0,

which will imply the thesis via the Markov inequality.
(If lim`→∞ limn→∞ Ed(Ξε,ΞG(ε)) = 0, then, since d(Ξε,ΞG(ε)) does not depend
upon `, limn→∞ E[d(Ξε,ΞG(ε))] = 0.)
It remains to prove the three inequalities. (i) is a trivial consequence of the con-
vergence to the fixed point of density evolution. lim`→∞ x` = x, lim`→∞ y` = y,
together with the continuity of the dd pair in x,y. (ii) follows from the general
concentration analysis in [14]. In order to prove (iii), consider the ith variable
node of the residual graph. Assume we change its received value, and update
all the messages consequently. Consider the edges whose distance from variable
node i is larger than `, and denote by W (`)

i the number of messages on such edges
that change value after that the ith received symbol has been changed. It is clear
that E[d(Ξε,Ξε,`)]≤E[W (`)

i ]. The limit limn→∞ E[W (`)
i ] can be computed through

a branching process analysis. The calculation is similar to the one in [147] and we
do not reproduce it here. The result is that, as long as ελ′(y)ρ′(1−x) < 1, there
exist two positive constants A, b with b < 1 such that E[W (`)

i ]≤ Ab`. We conclude
the proof by noticing that the condition ελ′(y)ρ′(1−x) < 1 is satisfied whenever
ε is larger than εBP and not equal to a discontinuity point ε j for j ∈ [J].

Lemma 4.12 Consider the function ΘΞ(u) defined in Lemma 2.3. There exists
A > 0 such that for any two dd pairs Ξ and Ξ̃ we have ∀u ∈ [0,1], |ΘΞ(u)−
ΘΞ̃(u)| ≤ Ad(Ξ,Ξ̃)(1−u)2.

Proof. Let us write ΘΞ(u) = Θ
(1)
Ξ (u) + Θ

(2)
Ξ (u) + Θ

(3)
Ξ (u) where Θ

( j)
Ξ for j ∈

{1,2,3} is one of the three terms appearing in ΘΞ(u). The claim can be proved
for each of the three terms separately. We will restrict ourselves to Θ

(1)
Ξ (u). The

derivation is almost identical for the two other terms. Start by noticing that for
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any u ∈ [0,1] and any dd pair we have 1
2 ≤ ∑l

λl

1+ul ≤ 1 , and ∑l
λlul−1

1+ul ≤ 1 . Now
fix two dd pairs Ξ and Ξ̃ . Let v(u) and ṽ(u) be the corresponding functions. Then∣∣∣∣∑

l

λl−λl

1+ul

∣∣∣∣= ∣∣∣∣∑
l

(
1

1+ul
− 1

2

)
(λl−λl)

∣∣∣∣
≤ lmax

2
(1−u)∑

l

|λl−λl| ≤
1
2
l2

max(1−u)d(Ξ,Ξ̃).

Using these inequalities, some calculus shows that

1≥ v(u), ṽ(u)≥ 1−2lmax(1−u), |v(u)− ṽ(u)| ≤ 3l2
max (1−u)d(Ξ,Ξ̃) .

Define f (u,v) M= log2

[
2(1+uv)

(1+u)(1+v)

]
, then, for any u,v, ṽ ∈ [0,1], we have

| f (u,v)| ≤ (1−u)(1− v)
log2

, | f (u,v)− f (u, ṽ)| ≤ (1−u)
log2

|v− ṽ| .

Using these observations we finally obtain

|ΘΞ(u)−ΘΞ̃(u)| ≤max[ f (u,v), f (u, ṽ)] |Λ′(1)− Λ̃′(1)|
+max[Λ′(1), Λ̃′(1)] | f (u,v)− f (u, ṽ)|

≤ 2lmax

log2
(1−u)2|Λ′(1)− Λ̃′(1)|+ lmax

log2
(1−u)|v− ṽ|

≤ A1 (1−u)2 d(Ξ,Ξ̃) ,

where A1 = (2l2
max + 3l3

max)/ log2. This concludes the proof for Θ
(1)
Ξ (u). The

variations of Θ
(2)
Ξ and Θ

(3)
Ξ are bounded analogously.

Discussion: From Chapter 2 we know that the function ΘΞ defined in Lemma 2.3
takes its maximas on [0,1]. The previous lemma is therefore sufficient to describe
the regularity of ΘΞ over [0,∞).

4.D Maxwell Decoder: Tree and Elementary Con-
sequences

The analysis of a Maxwell decoder is simplified if the graph is a tree or a forest.
Recall from Section 2.5 that in this case the standard message-passing (BP) de-
coder (or its peeling version) performs MAP decoding. Some elementary results
are therefore stated when the graph is a tree. This is very instructive and leads to
a key result, given in Lemma 4.15.
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Lemma 4.13 [Sequential M Decoder and Number of Guesses] Consider a homo-
geneous15 system of binary linear equations with k degrees of freedom (i.e., k is
equal to the number of variables minus the rank of the system). Assume that the
Tanner graph associated with this system is a tree. Then the sequential M decoder
performs exactly k guesses during the decoding process and all these guesses are
independent.

Proof. Since the Tanner graph is a tree, the system itself (represented by a m×n
matrix H) has full rank m = n− k ≥ 0. Moreover there exists a submatrix that
is the identity matrix Im. It is therefore straightforward (e.g., by induction and
Gaussian elimination) to see that we need to fix exactly n−m = k variables to
solve the system. This is done sequentially (hence a proof by induction) by the
M decoder. We provide a more descriptive proof in [52].

What happens if we run the M decoder in a non-sequential way, i.e., if we guess
many/several bits each time we get stuck? In this case it can happen that some
of the guesses are dependent. Nevertheless, the number of independent guesses
remaining at the end of the process is still equal to the degrees of freedom of
the system of equations. More importantly, on a tree this number of independent
guesses can be computed in a local way.

Lemma 4.14 [Number of Independent Guesses] Consider a homogeneous system
of binary linear equations with k degrees of freedom (i.e., k is equal to the number
of variables minus the rank of the system). Assume that the Tanner graph associ-
ated with this system is a tree and that it contains no check nodes of degree one.
Then the number of independent guesses performed by the M decoder at the end
of the decoding process is equal to k. Further, let G denote the total number of
guesses of the M decoder, let lgi denote the number of incoming guessed (g) mes-
sages at variable node i (including, if applicable, the guess of the bit itself), and
let Cg be the subset of all check nodes whose incoming messages are all guessed
(g). Then

k = G− ∑
i∈V

(lgi −1)+ ∑
i∈Cg

(ri−1). (4.9)

Proof. By definition of the algorithm, at the end of the decoding process all bits
have been determined (i.e., guessed or expressed in terms of guessed bits). This
means that among the guesses performed by the M decoder there must be k inde-
pendent such guesses. Now note that the final state of the messages is independent
of the order in which the guesses are taken. It is convenient to imagine that we first
perform the k independent guesses and then apply the BP decoder. At the end of

15Recall that without loss of generality we can make the all-zero codeword assumption for our
analysis. Therefore we consider a linear system with the right side equal to zero
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this phase all bits are known. Further, from Lemma 4.13 we know that lgi = 1 for
all i∈ [n] and Cg is the empty set. Therefore, the stated counting formula is correct
at this stage. Assume now we proceed in iterations, adding one guess at a time
and propagating all its consequences. We will verify that the counting formula
stays valid. Assume therefore that the counting formula is correct at the start of an
iteration and add a further guess, e.g., guess variable i. This extra guess increases
lgi by one and increases the number of guesses by one, keeping the counting for-
mula intact. Consider now the ensuing BP phase. Consider an edge e emanating
from a variable node i, the check node connected to it, call it j and all the edges
and variable nodes connected to this check node. Assume that the message from i
to j is j (in the case that this message is already g, the message does not change
and there is nothing to prove). As a consequence the message from j to i must
be a g because of the argument above. Also, all the incoming messages into j
but the one form i must be g as well (otherwise the update rule would have been
violated at node j). Update all the corresponding edge messages. If the message
from i to j does not change, then neither does any of the messages outgoing at the
check node and the counting formula stays valid. If, on the one hand, the outgoing
message along edge e flips to g, then so do all the messages outgoing from the
check node j. Assume that the check node has degree r j. Then, Cg now contains
j. This increases the right-hand side of the counting formula by r j− 1. On the
other hand, it also increases lgl by one for all l ∈ V that are connected to check
node j but for node i (the corresponding message was already a g). In total this
decreases the right-hand side of the counting formula by r j−1.

Each part of (the counting) Eq. (4.9) has a pleasing interpretation. As stated, G
is the total number of performed guesses. If a variable node has lg incoming g
messages, then these correspond to lg linear equations, each of which determines
the same bit. This gives rise to (lg−1) linear conditions that the G guesses have
to fulfill. But not all these conditions are linearly independent.
Consider Figure 4.17. If a check node of degree r has all of its incoming messages
equal to g then the r equations that correspond to the r outgoing messages are
identical, i.e., r− 1 of them are linearly dependent. The last term in Eq. (4.9)
therefore corrects the over-counting of dependent conditions.

Example 4.11 Consider a code whose Tanner graph is a tree and whose leaves
are all variable nodes. Let the set of variables (checks) be indexed by [n] ([m]),
and let li, i ∈ [n], (ri, i ∈ [m]) be the degree of variable (check) node i. Assume
that the M decoder guesses all leaf (variable) nodes and then proceeds by message
passing. It is not very hard to see that in this setting the decoder proceeds with the
message-passing phase (starting from the leaf nodes) until all variables have been
determined and that no further guesses have to be made. Further, at the end of the
decoding process all messages are g. Let us determine the number of independent
guesses at the end of the decoding process using the counting formula (4.10). Note
that for each leaf node we have lg = 2 (one guess and one additional incoming g
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g3

g1

g2

g 2
−→
←−g

g
1−→←−g g
−→
←−
g3

iteration ` iteration `+1

Figure 4.17: Computation of the number of linearly independent conditions. Each of the
incoming edges corresponds to a list. To keep things simple and without loss of generality,
assume that Ii = {i}. The three outgoing lists are then I1 = {2,3}, I2 = {1,3}, and I3 =
{1,2}. Compare the incoming and outgoing lists at the first node: we get the condition
x1 = x2 + x3. But exactly the same condition appears at the second and third nodes. In
general, a check node of degree r whose incoming messages are all g, generates r− 1
linearly dependent conditions.

message). For all internal variable nodes we have lg = l. Finally, Cg = C . If we
let nl denote the number of leaf nodes, so that G = nl , we obtain that the number
of independent guesses equals

nl− ∑
i∈leaves

(2−1)− ∑
i∈[n]\leaves

(li−1)+ ∑
i∈[m]

(ri−1)

=− ∑
i∈[n]

(li−1)+ ∑
i∈[m]

(ri−1) = n−m.

This is of course the expected result since the system has exactly n−m degrees of
freedom.

So far we have only considered sets of equations whose Tanner graph is a tree.
What happens if we run the M decoder on a general system of equations? For
a general Tanner graph, the above counting of the total number of independent
guesses is not necessarily tight. The counting of the total number of conditions
generated by the M decoder is always correct. But it can happen that besides the
obvious over-counting at check nodes, there are other dependencies generated by
loops in the graph, which are not considered in the counting formula. Therefore,
in general we only get a lower bound. Let us state this explicitly.

Lemma 4.15 [Lower Bound on Independent Guesses] Consider a homogeneous
system of binary linear equations with k degrees of freedom (i.e., k is equal to
the number of variables minus the rank of the system). Assume that the Tanner
graph associated with this system contains no check nodes of degree one. Let G
denote the total number of guesses performed by the M decoder, let lgi denote
the number of incoming g messages at variable node i (including the guess if this
node has been guessed), and let Cg be the subset of all check nodes all of whose
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incoming messages are g. Then

k ≥G− ∑
i∈V

(lgi −1)+ ∑
i∈Cg

(ri−1). (4.10)
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5 GEXIT Functions

Overview: A new tool called the GEXIT function is devel-
oped. EXIT functions on the BEC become a particular in-
stance of GEXIT functions and the general area theorem ex-
tends to BMS channels.

In the previous two chapters we have seen that EXIT functions are powerful
tools for analyzing iterative decoding over the BEC. However, for more gen-
eral channels, their theoretical interest is restricted. This is mainly due to the
fact that they do not fulfill the area theorem. An easy way to see this is to con-
sider the extremality properties presented in Theorem 3.1. For example, for a
[n+1,n] single parity-check code over BSC(ε), the area under the EXIT function
is An

M=
R 1

0 hMAP(h)dh =
R 1/2

0 h2(
1−(1−2ε)n

2 )dε as discussed in Example 3.1. This
gives A2 ≈ 0.643704 < 2/3 for n = 2. Generalized EXIT (GEXIT) functions are
an extension of the EXIT concept to general BMS channels: GEXIT functions
satisfy the area theorem by definition and share most of the basic properties with
EXIT functions.

5.1 Definition and Linear Functional
The concept of GEXIT functions extends to non-binary channels in a natural way
as shown in Appendix 5.B. Nevertheless, in order to bring out the main message
of this thesis in a simple way, we focus here on the binary case. Before defin-
ing a measure that fulfills the general area theorem by assumption, let us ask the
question: What property of EXIT functions makes them fulfill the area theorem
on the erasure channel? We have seen that the answer follows trivially from char-
acterization (iv) of Lemma 3.4, which states that the EXIT function over the BEC
coincides with the derivative of the conditional entropy H(X |Y ). Let us therefore
define the GEXIT function using this characterization. Of course, some technical
hypotheses are required to ensure that the involved objects exist. They are, for
example, implied by the smoothness of the channel as defined in Section 2.9.

Definition 5.1 [(MAP) GEXIT Function] Let X be a binary vector of length n
chosen with probability pX (x). Assume that transmission takes place over a BMS
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channel family {BMSCi(hi)}i, i.e., for any i the ith bit is passed through a BMS
channel parameterized by a single scalar that is the channel entropy hi

M= H(Xi|Yi)∈
Pi ⊆ R. Let Ω be a further observation of X such that Ω → X → Y . Consider
i∈ [n]. Under the hypothesis that the channel family {BMSCi(hi)}hi∈Pi is smooth,
define

gMAP
i (h) M=

∂H(Xi|Yi,φ
MAP
i (Y∼i),Ω)

∂hi
,

where φMAP
i is the (extrinsic) MAP estimator defined in Chapter 2. The function

gMAP
i is the ith GEXIT function. If for all i ∈ [n] the family {BMSCi(hi)}hi is

smooth, then gMAP M= 1
n ∑i gMAP

i is the (uniformly averaged) GEXIT function, and

gMAP M= (gMAP
1 , · · · ,gMAP

n ) is the GEXIT vector.

Discussion: Note first that, without loss of generality, we have chosen to param-
eterize with respect to the channel entropy hi = H(Xi|Yi), but various alternative
parameterizations are possible. Also, recall from Chapter 2 (in particular Example
2.10) and Chapter 3 (Appendix 3.A) that H(Xi|Yi,φ

MAP
i (Y∼i),Ω) = H(Xi|Y,Ω).

Theorem 5.1 [General Area Theorem – BMSC] Let X be a binary random vec-
tor of length n and assume that transmission takes place over a smooth family
{{BMSCi(hi)}hi∈Pi}i, i.e., for any i the ith bit is passed through a (smooth family
of) BMS channel(s) parameterized by hi ∈ Pi ⊆ R. Let Y be the received vec-
tor and let Ω be a further observation of X such that Ω → X → Y . Then gMAP M=

(gMAP
1 , · · · ,gMAP

n ) = ∇H(X |Y,Ω) M= ( ∂H(X |Y,Ω)
∂h1

, · · · , ∂H(X |Y,Ω)
∂hn

). Furthermore, if there
exists a real-valued parameter p such that the vector h(p) = (h1(p), · · · ,hn(p)) is
differentiable with respect to p, then gMAP · dh(p)

dp = ∇H(X |Y ) · h′(p) = dH(X |Y (p))
dp

where “·” denotes the standard scalar product. In particular, if a parameter p can
be chosen such that hi(p) = p for all i, then gMAP(p) = 1

n ∑
n
i=1 gMAP

i (hi) = dH(X |Y,Ω)
ndp

where g(p) is the average GEXIT function over BMSC(p).

Proof. The chain rule for entropy reads

H(X |Y,Ω) = H(Xi|Yi,Y∼i,Ω)+H(X∼i|Y,Xi,Ω),

which gives H(X |Y,Ω) = H(Xi|Yi,Y∼i,Ω)+ H(X∼i|Y∼i,Xi,Ω) due to the memo-
ryless nature of the channel and Ω→ X→Y . By taking the partial derivative with
respect to hi, we get the result.

As for EXIT functions, the definition of GEXIT function extends naturally to any
extrinsic estimator φDEC

i (Y∼i).

Definition 5.2 [GEXIT Function] Let X be a vector of length n chosen with prob-
ability pX (x). Assume that transmission takes place over a BMS channel family
{BMSCi(hi)}i. Let Ω be a further observation of X such that Ω → X → Y . Let
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ΦDEC
i = φDEC

i (Y∼i) represent any estimator on Xi based on Y∼i. Consider i ∈ [n].
Under the hypothesis that the channel family {BMSCi(hi)}hi∈Pi is smooth, define

gDEC
i (h) M=

∂H(Xi|Yi,φ
DEC
i (Y∼i),Ω)

∂hi
.

The function gDEC
i is the ith GEXIT function associated with the extrinsic DEC esti-

mator. If for all i∈ [n] the family {BMSCi(hi)}hi is smooth, then gDEC M= 1
n ∑i gDEC

i is
the corresponding averaged GEXIT function. If the individual channel entropies
hi = H(Xi|Yi) are all parameterized by a scalar p ∈ P ⊆ R such that hi = hi(p),
then the functions become functions of a single scalar parameter.

The entropy operator (see Definition 2.5) is used to facilitate the evaluation of
EXIT functions in Chapter 3. Assume that the BMS channel is represented by
its L−density a. The associated entropy is then obtained as H(X |Y ) = H(a) =
EY [l(Y)] where y 7→ l(y) = log2(1 + e−y ) is called the EXIT kernel (here in the
L-domain). As a consequence the entropy operator acts as an “EXIT operator.”
Lemma 3.2 shows that the ith EXIT function can be computed as hMAP

i (h∼i) =
EY [l(Y)]. A similar linear functional exists for GEXIT functions. Its associated
GEXIT kernel is a channel-dependent function that measures the response of the
environment to small noise perturbations. In other words, the GEXIT kernel re-
flects the dependency of the GEXIT measure on the intrinsic channel.

Lemma 5.1 [MAP GEXIT: Operational Characterization] Let X be chosen uni-
formly at random from a proper binary linear code of length n. Assume that
transmission takes place over a BMS channel family {BMSCi(hi)}i equivalently
represented by the family of L-densities {c}i. Consider i ∈ [n]. Assume that the
channel family {BMSCi(hi)}hi∈Pi is smooth and let aMAP

i denote the L−density
associated with ΦMAP

i . Then

gMAP
i (hi,h∼i) = G(ci,a

MAP
i )

where G(c,a) M=
R

a(y)[
R dci(w)

dhi
log2(1 + e−w−y )dw]dy is called GEXIT operator.

The function y 7→ lci M=
R dci(w)

dhi
log2(1+e−w−y )dw is the GEXIT kernel associated

with the channel ci.

Proof. The channel outputs values in the L−domain. Let Yi denote the random
LLR that the channel outputs, and let Φi be shorthand for the extrinsic MAP es-
timate. We have seen in Chapter 2 and Chapter 3 that the channel symmetry is
preserved under addition of L−densities and under MAP decoding. Therefore

H(Xi|Y ) = H(Xi|Yi,Φi) = H(Xi|Yi +Φi) = H(ai�ci),

where the convolution ai�ci gives the density of the estimate Yi + Φi since, by
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hypothesis, Yi and Φi are conditionally independent. Further

H(ai�ci) =
Z
ỹ
(ai�ci)(ỹ)l(ỹ)dỹ =

Z
ỹ

Z
w
ai(ỹ −w)ci(w)l(ỹ)dwdỹ

=
Z
y

Z
w
ai(y)ci(w)l(y +w)dwdy .

Since the extrinsic estimate does not depend upon hi, we get

∂H(Xi|Yi,Φi)
∂hi

=
∂

∂hi

Z
y
ai(y)

Z
w
ci(w)l(y +w)dwdy

=
Z
y
ai(y)

Z
w

d
dhi

(ci)(w)l(y +w)dwdy

which concludes the proof since l(y +w) = log2(1+ e−y−w).

If Φi denotes any symmetric estimator ΦDEC
i , then the proof of Lemma 5.1 applies

in a more general context.

Lemma 5.2 [GEXIT: Operational Characterization] Let X be chosen uniformly at
random from a proper binary linear code of length n. Assume that transmission
takes place over a BMS channel family {BMSCi(hi)}i equivalently represented
by the family of L-densities {c}i. Consider an additional observation Ω such that
Ω → X → Y . Consider i ∈ [n]. Consider any estimator ΦDEC

i = φDEC
i (Y∼i,Ω) that

preserves channel symmetry. Let the density of ΦDEC
i under the assumption that

the all-one codeword was transmitted be aDEC
i . Assume that the channel family

{BMSCi(hi)}hi∈Pi is smooth. Then

gDEC
i (hi,h∼i) = G(ci,a

DEC
i )

where G(c,a) M=
R

a(y)[
R dci(w)

dhi
log2(1+e−w−y )dw]dy is the GEXIT operator (and

lci M=
R dci(w)

dhi
log2(1+ e−w−y )dw the GEXIT kernel associated ci).

Discussion: The following remark also applies to the kernel defined for EXIT
functions. Consider a generic kernel l(z) (for example an EXIT or a GEXIT ker-
nel). Because of the symmetry property of L-densities, for any such l(z), we
can write

R
∞

−∞
a(z)l(z) dz =

R
∞

0 a(z)(l(z)+ e−zl(−z))dz =
R

∞

0 a|L|(z) l(z)+e−zl(−z)
1+e−z dz.

This means that an expression for the kernel is uniquely specified on the absolute
value domain [0,∞] (or |L|-domain, see Appendix 2.B), but that for each z ∈ [0,∞]
we can split the weight of a (kernel) function l(z) in any desired way between +z
and −z so that l(z)+ e−zl(−z) equals the desired fixed value. In the remainder of
this section, we will use this degree of freedom to bring some kernels into a more
convenient form and we will sometimes omit to mention that they are equivalent
representations. Let us therefore define formally this equivalency relationship.
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Definition 5.3 [Equivalent Kernel] Consider two functions l1(y) and l2(y) over
R. If ∀y ∈ [0,∞), l1(y)+ e−y l1(−y) = l2(y)+ e−y l2(−y), then l1(y) and l2(y)
are said to be equivalent kernels.

To be more concrete, let us present some examples of GEXIT kernels and GEXIT
curves. Consider a smooth family {{BMSCi(p)}p∈P|}i, i.e., a family of smooth
(family of) channels parameterized by a common p ∈ P. As we have already re-
marked, the GEXIT functions gi(p) allow us to “locally” measure the change of
the conditional entropy of a system. This property is the essence of GEXIT func-
tions. For example, it is apparent in the representation of Lemma 5.1 where we
see that the local measurement has two components: (i) the kernel that depends on
the derivative of the channel seen at the given position and (ii) the distribution ai,
which encapsulates all our ignorance about the code behavior with respect to the
ith position. This representation is very intuitive. If we improve the observation of
a particular bit (derivative of the channel with respect to the parameter), then the
amount by which the conditional entropy of the overall system changes clearly de-
pends on how well this particular bit was already known via the code constraints
and the observations of the other bits (extrinsic posterior density). For example,
if the bit was already perfectly known, then the additional extrinsic observation
afforded will be useless, whereas if nothing was known about the bit, one would
expect that the additional reduction in entropy of this bit fully translates into a re-
duction of the entropy of the overall system. In the next three examples we com-
pute the kernels lcBMSC(h)(z), where the family of L-density {cBMSC(h)}h represents
the channel families {BEC(h)}h, {BSC(h)}h, or {BAWGNC(h)}h. We made the
choice to parameterize the channel family by the entropy h in order to measure
the “progress per dh”, and in the sequel to measure “exchanges of entropy”. If
we consider an alternative parameterization p such that h= h(p), then the GEXIT
kernel is simply obtained via the normalization1

lcBMSC(h)(z) =

R
∞

−∞

dcBMSC(h(p))(w)
dp log2(1+ e−z−w) dwR

∞

−∞

dcBMSC(h(p))(w)
dp log2(1+ e−w) dw

. (5.1)

Example 5.1 [GEXIT Kernel, L-Domain – {BEC(h)}h] Consider the channel fam-
ily {cBEC(h)}h where the parameter h denotes both, the channel (intrinsic) entropy,
i.e., h(p) = p, and the cross-over erasure probability, i.e., ε = p. A quick calcu-
lation shows that lcBEC(h)(z) = log2(1 + e−z) = l(z). In other words, the GEXIT
kernel associated with the family {BEC(h)}h is the standard EXIT kernel.

Example 5.2 [GEXIT Kernel, L-Domain – {BSC(h)}h] Consider the channel fam-

1To see this formula, refer to the proof of Lemma 5.2 and use ∂H
∂h

= ∂H
∂p / ∂h

∂p .
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ily {cBSC(h)}h parameterized by the channel entropy h. Some calculus reveals that

lcBSC(h)(z) = log

(
1+ 1−ε

ε e−z

1+ ε
1−εe−z

)
/ log

(
1− ε

ε

)
,

where ε = h2
−1(h). For a fixed z ∈ R and h→ 0, the kernel converges to 1 as

1+ z/ log(ε), whereas the limit when h→ 1 is equal to 2
1+ez .

Example 5.3 [GEXIT Kernel, L-Domain – {BAWGNC(h)}h] Consider the chan-
nel family {cBAWGNC(h)}h parameterized by the channel entropy h. If the noise has

variance σ2, then a convenient parameterization is p
M= 2/σ2. This means that

h = H(cBAWGNC(σ2=2/p)). After some steps of calculus shown in Appendix 5.C and
Lemma 5.8, we get

lcBAWGNC(h)(z) =

Z +∞

−∞

e
− (w−p)2

4p

1+ew+z
dw

/

Z +∞

−∞

e
− (w−p)2

4p

1+ew
dw

 .

In Appendix 5.C we also give alternative representations and/or interpretations
of this kernel. In particular, we discuss the relationship with the formulation
presented in [40, 148] using a connection to the MMSE detector, as well as the
formulation in [41] based on the Nishimori identity.

One convenient feature of standard EXIT functions is that they are fairly similar
for a given code across the whole range of BMS channels. Is this still true for
GEXIT functions? The extrinsic densities are the same as for the computation of
EXIT functions. But now, the kernels are also functions of the channel. Let us
therefore compare the shape of the various kernels. As indicated in Definition 5.3
it is most convenient to compare the kernels not in the L-domain but rather in a
domain where the kernel is uniquely defined, e.g., the |D|-domain of Appendix
2.B. A change of variables shows that in general the L-domain kernel lc(·) and
the associated |D|-domain kernel, denote it by |d|c(·), are linked by

|d|c(s) =
1− s

2
lc(log

1− s
1+ s

)+
1+ s

2
lc(log

1+ s
1− s

). (5.2)

Example 5.4 [GEXIT Kernel, |D|-Domain – {BEC(h)}h] We get |d|cBEC(h)(s) =
h2((1+ s)/2).

Example 5.5 [GEXIT Kernel, |D|-Domain – {BSC(h)}h] Some calculus shows
that |d|cBSC(h(ε))(s) = 1 + s

log((1−ε)/ε) log
( 1+2εs−s

1−2εs+s

)
. The limiting values are found

to be limh→1 |d|cBSC(h)(s) = 1− s2, and limh→0 |d|cBSC(h)(s) = 1.

Example 5.6 [GEXIT Kernel, |D|-Domain – {BAWGN(h)}h] With Example 5.3
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we get

|d|cBAWGNC(h)(s) =
1(R +∞

−∞

2e
− (w−p)2

4p

1+ew dw
) ∑

i∈{−1,+1}

Z +∞

−∞

(1− s2)e−
(w−p)2

4p

(1+ is)+(1− is)ew dw.

As shown in Appendix 5.C, the limiting values are the same as for the BSC, i.e.,
limh→1 |d|cBAWGNC(h)(s) = 1− s2, and limh→0 |d|cBAWGNC(h)(s) = 1.

In Figure 5.1 we compare the EXIT kernel (which is also the GEXIT kernel for the
BEC) with the GEXIT kernels for BSC(h) and BAWGNC(h) in the |D|-domain
for several channel parameters. These kernels are distinct but quite similar. In
particular, for h = 0.5 the GEXIT kernel with respect to BAWGNC(h) is hardly
distinguishable from the regular EXIT kernel. The GEXIT kernel for the BSC
shows more variation.
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Figure 5.1: Comparison of the kernels |d|cBEC(h)(s) (dashed line) with |d|cBSC(h)(s) (dotted
line) and |d|cBAWGNC(h)(s) (solid line) at channel entropy rate h= 0.1 (left), h= 0.5 (middle)
and h = 0.9 (right).

Let us now give a few examples of GEXIT curves. Recall that the considered
codes are isotropic, see Chapter 3. Therefore gMAP = gMAP

i for all i ∈ [n].

Example 5.7 [Repetition Code] Consider the [n,1,n] repetition code. Let {ch}h
characterize a smooth family of BMS channels. The GEXIT function for the
[n,1,n] repetition code is then given by gMAP(h) = d

dhH(c
�n
h ). An explicit expres-

sion over BEC(h) is gMAP(h) = hn = hMAP(h) where hMAP(h) is the EXIT function.
As a further example over BSC(h), gMAP(h) is given in parametric form by(

h2(ε),
∑ j=±1 j ∑

n
i=1
(n

i

)
εiεn−i log

(
1+(ε/ε)n−2i− j

)
n log(ε/ε)

)
,

where ε = h2
−1(h) and ε

M= 1− ε.

Example 5.8 [Single Parity-Check Code] Consider the dual code of the previous
example, i.e., the [n,n−1,2] parity-check code. Some calculations show that over
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BSC(h) the GEXIT function gMAP(h) is given in parametric form by

(
h2(ε),1− (1−2ε)n−1

log
( 1+(1−2ε)n

1−(1−2ε)n

)
log
( 1−ε

ε

) )
.

No simple analytic expressions are known for the case of transmission over the
BAWGNC.

Figure 5.2 compares EXIT to GEXIT curves for some repetition codes and their
dual codes.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.0
h

h, g

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.0
h

h, g

Figure 5.2: The EXIT (dashed line) and GEXIT (dotted line) function of the [n,1,n] rep-
etition code and the [n,n− 1,2] parity-check code, n ∈ {2,3,4,5,6}. Left: Transmission
takes place over BSC(h). Right: Transmission takes place over BAWGNC(h).

Example 5.9 [Hamming Code] Consider the [7,4,3] Hamming code. When trans-
mission takes place over BEC(ε), a tedious but conceptually simple exercise shows
that the EXIT function is hMAP(ε) = 3ε2 +4ε3−15ε4 +12ε5−3ε6, see Chapter 3.
In a similar way, using the derivative of the conditional entropy, one can give an
analytic expression for the GEXIT function assuming transmission takes place
over the BSC. Both expressions are evaluated in Figure 5.3 (left). A comparison
between GEXIT and EXIT functions for the Hamming code and the BSC is shown
in Figure 5.3 (right).

Example 5.10 [Simplex Code] Consider finally the dual of the Hamming code,
i.e., the [7,3,4] Simplex code. For transmission over BEC(ε), we have hMAP(ε) =
4ε3− 6ε5 + 3ε6. Figure 5.3 compares GEXIT and EXIT functions for this code
when transmission takes place over the BEC and over the BSC.

5.2 Further Properties of GEXIT Functions
We derive in this section a few further properties of GEXIT functions. We show
that GEXIT functions share many characteristics with EXIT functions (except of
course the extremality property since the area under the GEXIT curves is indepen-
dent of the channel). One such fundamental property is the partial order imposed
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Figure 5.3: Comparison of the GEXIT functions for the [7,4,3] Hamming code and its dual.
Left: Comparison between GEXIT functions when transmitting over the BEC (dashed line)
and over the BSC (solid line). Right: Comparison between GEXIT (solid line) and EXIT
(dashed line) functions when transmission takes place over the BSC.

by physical degradation.

Let us first examine how the GEXIT measure is related to the extrinsic bit error
probability. This will, in Chapter 6, justify the definition of the MAP threshold
stated in Chapter 2. Assuming that the potential probability mass at zero of a
channel L-density is equally distributed on both sides of zero, the error proba-
bility is obtained by integrating the negative part of this channel density. If the
L-density is symmetric, we can further define the resulting error probability op-
erator as follows, E(a) M= 1

2
R

∞

−∞
a(z)e−(|z/2|+z/2)dz. This definition avoids dealing

with a potential probability mass at zero.

Lemma 5.3 [GEXIT Kernel and Bounds on GEXIT Functions] Consider a smooth
family of BMS channels characterized by their family of L-densities {cBMSC(h)}h.
Let |d|cBMSC(h)(z) be the associated GEXIT kernel in the |D|−domain. Then the
function |d|cBMSC(h)(z) : [0,1]→ [0,1] is non-decreasing and concave. Moreover,
1−z≤ |d|cBMSC(h)(z)≤ 1, therefore, if a is a symmetric L-density, we have 2E(a)≤
G(cBMSC(h),a) =

R
∞

−∞
lcBMSC(h)(z)a(z)dz≤ 1 .

Proof. In Appendix 5.A, we show that |d|cBMSC(h)(z) is non-increasing and con-
cave. The upper bound follows from |d|cBMSC(h)(z) < |d|cBMSC(h)(z = 0) = 1. The
lower bound is proved in a similar way by using concavity and observing that
|d|cBMSC(h)(z = 1) = 0. The final claim now follows from the fact that the |D|-
domain kernel associated with E is equal to (1− z)/2.

Discussion: Notice that, if a represents an extrinsic L−density, then E(a) is the
extrinsic error probability.

The next theorem shows that GEXIT functions preserve partial order implied by
physical degradation. It is a powerful property when used in the next chapter to
give an upper bound on the MAP threshold of iterative coding systems. Before
stating this theorem let us derive an elementary lemma from (the data processing)
Theorem 2.1.
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Lemma 5.4 [Second Order Data Processing] Let X ,Y,Y ′,Φ,Φ′ be random vectors.
If X → Y → Y ′, X → Φ→ Φ′, and (Y,Y ′)→ X → (Φ,Φ′), then

H(X |Y ′,Φ)−H(X |Y,Φ)≤ H(X |Y ′,Φ′)−H(X |Y,Φ′).

Alternatively, I(X ;Y |Y ′,Φ)≤ I(X ;Y |Y ′,Φ′).

Proof. It is easy to check that H(X |Y ′,Φ)−H(X |Y,Φ)≤H(X |Y ′,Φ′)−H(X |Y,Φ′),
I(X ;Y |Y ′,Φ) ≤ I(X ;Y |Y ′,Φ′), or I(X ;Y |Y ′,Φ′,Φ) ≤ I(X ;Y |Y ′,Φ′) are equivalent
statements. Given (y′,φ′), the inequality I(X ;Y |Y ′ = y′,Φ′ = φ′,Φ)≤ I(X ;Y |Y ′ =
y′,Φ′ = φ′) is a simple application of the data processing theorem if we have Y →
X → Φ conditioned on (Y ′ = y′,Φ′ = φ′). It remains to demonstrate this hypothe-
sis to conclude the proof. The formula p(y,φ|x,y′,φ′) = p(y|x,y′,φ′)p(z|x,y′,φ′)
follows from p(φ|x,y′,φ′) = p(φ|x,y,y′,φ′). This last identity can be shown by
first applying the Bayes rule, then expanding all terms in the order x,φ′,y, and
y′, further canceling common terms and, finally, repeatedly using the assumptions
X → Y → Y ′, X → Φ→ Φ′, and (Y,Y ′)→ X → (Φ,Φ′).

Theorem 5.2 [GEXIT Monotonicity] Let X be a binary vector of length n cho-
sen with probability pX (x). Assume that transmission takes place over a BMS
channel family {BMSCi(hi)}i. Consider i ∈ [n]. Assume that the channel family
{BMSCi(hi)}hi is smooth and degraded with respect to hi. Consider two extrinsic
estimators Φi

M= φ(Y∼i) and Φ
′
i

M= φ
′
(Y∼i) such that X → Φi→ Φ′i. Then

∂H(Xi|Yi,Φi)
∂hi

≤ ∂H(Xi|Yi,Φ
′
i)

∂hi
.

Proof. The partial derivative is known to exist a.e., therefore the statement is
equivalent to saying that, for any h′i > hi, we have

H(Xi|Yi(h′i),Φi)−H(Xi|Yi(hi),Φi)≤ H(Xi|Yi(h′i),Φ
′
i)−H(Xi|Yi(h′i),Φ

′
i),

where Yi(hi) (Yi(h′i)) is the result of passing Xi through BMSC(hi) (BMSC(h′i),
respectively). Since

X → Yi(hi)→ Yi(h′i) from channel physical degradation
X → Φi→ Φ′i by hypothesis

(Yi(hi),Yi(h′i))→ X → (Φi,Φ
′
i) from channel memoryless assumption

The proof is concluded by using Lemma 5.4 and the obvious substitutions.
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Discussion: Note first that we restricted Theorem 5.2 to channels that are binary
and symmetric. As shown by the proof, those two hypotheses are in fact not re-
quired and the result holds in the more general context of memoryless channels
parameterized by a single scalar. Moreover observe that Lemma 5.4 plays for
GEXIT functions the same role as the data processing inequality does for EXIT
functions. Its consequence, i.e., Theorem 5.2, is also used to prove the mono-
tonicity of the function over a degraded channel family and the relative “sub-
optimality” of BP decoding versus MAP decoding.

Corollary 5.1 [Monotonicity over Ordered Channels] Let X be a binary vector of
length n chosen with probability pX (x). Assume that transmission takes place over
a BMS channel family {BMSCi(h)}i where the common parameter h indicates the
channel entropy. Consider i ∈ [n]. Assume that the channel family {BMSCi(h)}h
is smooth and degraded with respect to h. Then gMAP

i (h) is non-decreasing in
h. Moreover, if the family is complete, then gMAP

i (0) = 0 and gMAP
i (1) = 1. The

same is true for any GEXIT function gDEC
i (h) associated with an extrinsic estimator

φDEC
i (Y∼i) that preserves partial ordering imposed by physical degradation.

Proof. That gMAP
i (h) is non-decreasing follows from Theorem 5.2 using the sub-

stitutions Φi = ΦMAP(hi) and Φ′i = ΦMAP(h′i). If h= 0, then the associated L-density
corresponds to a “delta at infinity” (this is an easy consequence of the minimum
distance being at least 2). If h = 1, then the corresponding L-density is a “delta at
zero.” The same argument using Theorem 5.2 holds for any estimator φDEC

i (Y∼i) if
it preserves partial ordering imposed by physical degradation.

The minimum distance theorem has already been observed for EXIT functions
over the BEC. Let us see its general version.

Theorem 5.3 [Minimum Distance Theorem] Let C be a proper binary linear code
of length n and minimum distance dmin. Assume that transmission takes place
over an ordered and complete smooth BMS channel family {{BMSCi(h)}i}h∈[0,1].

Then, for all k < dmin, we have dk−1gMAP(h)
dhk−1 |h=0 = 0.

Proof. From Definition 5.2, the expression for the GEXIT function gMAP = 1
n ∑i gMAP

i

is given by gMAP(h) = 1
n

d
dhH(X |Y ). Therefore dk−1

dhk−1 gMAP(h) = 1
n

dk

dhk H(X |Y (h)).
Formally d

dh = ∑i
dhi
dh

∂

∂hi
= ∑i

∂

∂hi
such that

dk−1

dhk−1 gMAP(h) =
1
n ∑

i1...ik

∂k

∂hi1 · · ·∂hik
H(X |Y ).

In order to evaluate this expression for h = 0 such that hi = 0 for all i, we can of
course choose to first set hi to 0 for all bits that are not differentiated over. We get
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the expression

dk−1

dhk−1 gMAP(h)
∣∣∣
h1=0,··· ,hn=0

=
1
n ∑

i1...ik

∂k

∂hi1 · · ·∂hik
H(X |Yi1(hi1) . . .Yik(hik),X[n]\{i1,...,ik})

∣∣∣
hi1 =0,··· ,hik =0

where the terms ∂k

∂hi1 ···∂hik
H(X |Yi1(hi1), · · · ,Yik(hik),X[n]\{i1,...,ik}) need to be evalu-

ated at hi1 = · · · = hik = 0. If the code has minimum distance strictly larger than
k, then any n− k bits determine the whole codeword. Therefore

H(X |Yi1(hi1) . . .Yik(hik),X∼i1...ik) = 0,

which concludes the proof.

Finally we present a notion of duality different from the algebraic one in Appendix
2.B. This new notion is mainly operational; an application will be presented in the
next chapter.

Lemma 5.5 [GEXIT and Dual GEXIT] Let X be a vector chosen with probability
pX (x) from a binary code C of length n and rate rC, and such that pXi(xi) = 1/2
for all i. Assume that transmission takes place over a complete and smooth BMS
family {{BMSCi(hc(p))}i}p whose equivalent family of L-densities is {cp}p. The
entropy associated with cp is hc(p) ∈ [0,1], and the standard GEXIT function

is represented in parametric form by
{(

hc(p), 1
n ∑i∈[n]

∂H(Xi|Yi,Φ
MAP
i ))

∂hc
(p)
)}

p
. In a

symmetric manner let {ap}p denote the family formed by (uniformly averaged)
extrinsic MAP L−densities, and let ha(p) be the entropy associated with ap. Then
{ap} is a smooth and complete family, and we define the dual GEXIT curve in

parametric form by
{( 1

n ∑i∈[n]
∂H(Xi|Yi,Φ

MAP
i ))

∂ha
(p),ha(p)

)}
p
. For both, standard and

dual EXIT curve, the total area under the curve equals rC over the range [0,1].

Proof. By definition the first curve represents the standard GEXIT function. Let
us focus on the second curve, i.e., the dual GEXIT curve: The only statement that
requires a proof concerns the area under this curve. Consider the channel pΦi(p)|Xi

where Φi(p) is the extrinsic MAP estimate, and let hai(p) M= H(Xi|Φi(p)) denote its
entropy (extrinsic entropy or EXIT entropy). Consider the channel pYi(p)|Xi where

Yi(p) is the intrinsic estimate, and let hci(p) M= H(Xi|Yi(p)) denotes its entropy
(intrinsic entropy). By assumption p parameterizes the complete channel family
{pΦi(p)|Xi}p, i.e., it is in a one-to-one correspondence with the channel entropy
hci(p) which ranges from 0 to 1, see Section 2.8. Therefore hci , as well as hai (be-
cause of the monotonicity of the EXIT function and pXi(xi) = 1/2), are possible
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reparameterizations of the system over [0,1]. Furthermore,

d
dp

H(Xi|Yi(p),Φi(p))

=
∂H(Xi|Yi(hci),Φi(hai))

∂hai

dhai(p)
dp

+
∂H(Xi|Yi(hci),Φi(hai))

∂hci

dhci(p)
dp

. (5.3)

First, sum this identity over all i, divide by n, notice that the intrinsic density
is independent of the location i, and consider the average extrinsic density. In-
tegrate now this relationship over the whole range of p, which goes from “per-
fect” (channel) to “useless” (channel). The integral on the left-hand side equals
1. On the right-hand side the first term corresponds to the standard GEXIT func-
tion and its area equals rC by the area theorem. The roles of the two densities
are exchanged for the second term so that it corresponds to the GEXIT curve{(

ha(p), 1
n ∑i∈[n]

∂H(Xi|Yi,Φ
MAP
i ))

∂ha
(p)
)}

p
. Since the sum of the two areas equals one

and the area under the standard GEXIT curve equals rC, it follows that the area
under the second curve equals 1− rC. Finally, note that if we consider the inverse
of the second curve by exchanging the two coordinates, then the area under this
curve is equal to 1− (1− rC) = rC.

Discussion: Note first that both curves are “comparable” in the sense that the
first component measures the channel c and the second argument measures the
extrinsic density a. The difference between the two lies in the choice of measure
that is applied to each component.
Second, from an operational point of
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Figure 5.4: Standard and dual GEXIT func-
tion: [5,4,2] single parity-check codes code
and transmission over BSC(h).

view, it is more convenient to work
with linear operators (assuming that C
is a proper binary linear code). In this
case, whereas the standard GEXIT cur-
ve is given in parametric form by

{H(cp),G(cp,ap)},

the dual GEXIT curve is given in para-
metric form by

{G(ap,cp),H(ap)}.

In this operational representation, an alternative proof follows from the derivative
of H(cp�ap) which represents the total bit entropy conditioned on the observa-
tions. We further get the formula

dH(ap�cp) = G(cp,ap)dH(cp)+G(ap,cp)dH(ap)

which is the operational form of Eq. (5.3). The left-hand side is the total entropy
variation; it decomposes into a term due to the variation of the intrinsic entropy
and a term due to the variation of the extrinsic entropy.
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From the isotropy property discussed in Chapter 3, we know that the individual
extrinsic densities coincide in many cases with the average extrinsic density. This
is the case for single parity-check or repetition codes. An example is given in Fig-
ure 5.4, which shows the standard GEXIT function and the dual GEXIT function
for the [5,4,2] single parity-check code and transmission over the BSC. Although
the two curves have quite distinct shapes, the area under the two curves remains
the same.
In the next chapter, the duality notion is used to show that, inherently, iterative
coding systems cannot surpass capacity.

5.3 GEXIT Charts and Matching Condition
The upper bound on the MAP threshold, which we stated in Chapter 4 for the
erasure channel, and which we will state in the next chapter for general BMS
channels, cannot be larger than the Shannon threshold 1− r. This implies that
iterative coding systems do not allow to communicate reliably above channel ca-
pacity. Of course, this is a straightforward consequence of Shannon’s channel
coding theorem. However, although the final result is trivial, the method of proof
is well worth the effort because it shows how capacity enters in the calculation
of the performance of iterative coding systems. There is an even more satisfying
way to show why we can not surpass capacity: This is the matching condition in-
troduced for the BEC in Section 3.4.3. In the remainder of this section, we extend
the matching condition to general BMS channels and, with this aim, we intro-
duce GEXIT charts. The interest in this “matching” approach is three-fold. First,
compared to our upper bounding technique, it does not require the assumption of
communication over a smooth channel family. Second, it is based on a dynamical
description of the decoding process, and therefore uses only quantities appearing
in density evolution (and not just fixed points). Third, component codes (and their
“matching”) play a crucial role in the optimization of coding schemes for practical
issues.
In order to follow the proof technique of Section 3.4.3, we need a suitable one-
dimensional representation of density evolution, see Section 3.2. Such a conve-
nient chart, similar to EXIT charts but that takes further advantage of an area
theorem, is the GEXIT chart that measures the exact intermediate densities of the
decoding process and uses the GEXIT operator. Motivated by the geometric state-
ment observed for the BEC and the relationship between the derivative of the mu-
tual information and the MMSE introduced in [40, 148], a similar chart for BMS
channels is proposed in [46]. Assuming that the input densities to the component
codes are Gaussian, this chart again fulfills the area theorem. In order to apply
the MMSE chart in the context of iterative coding the authors propose to approx-
imate the intermediate densities that appear in density evolution by “equivalent”
Gaussian densities. This was an important first step in generalizing the matching
condition to the whole class of BMS channels. In the following we show how
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to overcome the need for making the Gaussian approximation by using GEXIT
functions and interpolating intermediate densities.
Let us first review the case of transmission over BEC(h) using a dd pair (λ,ρ)
as presented in Section 3.4.3. In this case, density evolution is equivalent to the
EXIT chart method and the condition for successful decoding under BP reads
c(x) M= 1−ρ(1−x)≤ λ−1(x/h) M= v−1

h (x). The area under the curve c(x) is equal
to 1−

R
ρ and the area to the left of the curve v−1

h (x) is equal to h
R
λ. A necessary

condition for successful BP decoding is then that these two areas do not overlap.
Since the total area equals 1 we get the necessary condition h ≤

R
ρR
λ

= 1− rλ,ρ.

In other words, the design rate rλ,ρ of any LDPC ensemble which, for increasing
blocklengths, allows for successful decoding over BEC(h), cannot surpass the
Shannon limit 1−h.
By turning this bound around, we can find conditions under which iterative sys-
tems achieve capacity as discussed in Section 3.4.4. In particular, it shows that the
two component EXIT curves have to be matched perfectly. Indeed, all currently
known capacity-achieving dd pairs for the BEC can be derived by starting with
this perfect matching condition and working backwards. Let us now show that, by
using component GEXIT functions, the matching condition holds in the general
case. This might in the future serve as a starting point to find capacity-achieving
(or at least capacity-approaching) dd pairs for general BMSCs. (Observe that, if
the design rate is shown to approach capacity, then necessarily, the actual asymp-
totic rate is potentially larger and therefore does at least as well.) We need one
preliminary definition.

Definition 5.4 [Interpolating Channel Families] Consider a dd pair (λ,ρ) and trans-
mission over a BMSC characterized by its L-density c. Let a0 = ∆0 and a1 = c
and set aα, α ∈ [0,1], to aα = (1−α)a0 +αa1. The interpolating density evolu-
tion families {aα}∞

α=0 and {bα}∞
α=0 are defined as bα = ∑i ρia

�(i−1)
α and aα+1 =

∑i λic�b
�(i−1)
α for α≥ 0.

Discussion: First note that, with the conventions of Section 3.2, a` (b`), ` ∈ N,
represents the sequence of L-densities of density evolution emitted by the variable
(check) nodes in the `-th iteration. By starting density evolution not only with
a1 = c (or equivalently a0 = ∆0) but with all possible convex combinations of
∆0 and c, this discrete sequence of densities is completed to form a continuous
family of densities ordered by physical degradation. The fact that the densities
are ordered by physical degradation can be seen as follows: note that the com-
putation tree for aα can be constructed by taking the standard computation tree
of adαe and independently erasing the observation associated with each variable
leaf node with probability dαe−α. It follows that we can convert the computa-
tion tree of aα to that of aα−1 by erasing all observations at the leaf nodes and
by independently erasing each observation in the second (from the bottom) row
of variable nodes with probability dαe−α. The same statement is true for bα.
Moreover, if lim`→∞ H(a`) = 0, i.e., if BP decoding is successful in the limit of
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large blocklengths, then the families are both complete.

Example 5.11 [Density Evolution and Interpolation] Consider transmission over
BSC(ε = 0.07) using a (3,6)-regular ensemble. Figure 3.2 in Section 3.2 depicts
the density evolution process for this case. Density evolution gives rise to the
sequences of densities {a`}∞

`=0, and {b`}∞
`=0. Figure 5.5 shows the interpolation of

these sequences for the choices α = 1.0,0.95,0.9 and 0.8 and the complete family
with α ∈ [0,1]: the resulting densities are projected onto a two-dimensional chart
using the EXIT operator.

α ∈ {1.0}

H(a)

H
(b

)
α ∈ {1.0,0.95}

H(a)
H
(b

)

α ∈ {1.0,0.95,0.9}

H(a)

H
(b

)

α ∈ {1.0,0.95,0.9,0.8}

H(a)

H
(b

)

α ∈ [0.0,1.0]

H(a)

H
(b

)

Figure 5.5: Interpolation of densities using the method of Definition 5.4 (EXIT projection).

Lemma 5.6 [Matching Condition] Consider a dd pair (λ,ρ) and transmission over
a BMS channel characterized by its L-density c so that density evolution converges
to ∆∞. Let {aα}∞

α=0 and {bα}∞
α=0 denote the interpolated families as defined in

Definition 5.4. Then the two GEXIT curves {H(aα),G(aα,bα)}, which depicts the
GEXIT curve for parity-check nodes, and {H(aα+1),G(aα+1,bα)}, which depicts
the inverse of the dual GEXIT curve for variable nodes, do not cross and faithfully
represent density evolution. Further, the area under the “check node” GEXIT
function is equal to 1−

R
ρ and the area to the left of the “inverse dual variable

node” GEXIT function is equal to H(c)
R
λ. It follows that rλ,ρ ≤ 1−H(c), i.e., the

design rate can not exceed the Shannon limit.

Proof. On the one hand, note that {H(aα),G(aα,bα)} is the standard GEXIT curve
representing the action of the check nodes: aα denotes the density of the messages
entering the check nodes and bα represents the density of the corresponding output
messages. On the other hand, {H(aα+1),G(aα+1,bα)} is the inverse of the dual
GEXIT curve corresponding to the action at the variable nodes: bα represents the
density of the messages entering the variable nodes and aα+1 denotes the output
density.
The fact that the two curves do not cross can be seen as follows. Fix an entropy
value. This entropy value corresponds to a density aα for a unique value of α. The
fact that G(aα,bα) ≤ G(aα,bα−1) now follows from the fact that bα ≺ bα−1 and
that for any symmetric aα this relationship is preserved by applying the GEXIT
functional according to Theorem 5.2.
The statements regarding the areas of the two curves follow from the general
area theorem and Lemma 5.5. The bound on the achievable rate follows in the
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same manner as for the BEC: the total area of the GEXIT box equals one and the
two curves do not overlap and have areas 1−

R
ρ and H(c). Therefore 1−

R
ρ+

H(c)
R
λ≤ 1, which concludes the proof.

We see that the matching condition still holds for general BMSCs. There are a few
important differences between the general case and the simple case of transmis-
sion over the BEC. For the BEC, the intermediate densities are always the BEC
densities that are independent of the degree distribution. This, of course, enor-
mously simplifies the task. Further, for the BEC, given the two EXIT curves, the
progress of density evolution is simply given by a staircase function bounded by
the two EXIT curves. For a general BMSC, this staircase function still has vertical
pieces, but the “horizontal” pieces have in general a non-vanishing slope. This is
true because the y-axis for the “check node” step measures G(aα,bα), but in the
subsequent “inverse variable node” step it measures G(aα+1,bα). Therefore, one
should think of two sets of labels on the y-axis, one measuring G(aα,bα), and the
second one measuring G(aα+1,bα). The “horizontal” step then consists of first
switching from the first y-axis to the second (so that the labels correspond to the
same density bα) and then drawing a horizontal line until it crosses the “inverse
variable node” GEXIT curve. The “vertical” step stays as before, i.e., it really
corresponds to drawing a vertical line. This is certainly best clarified by a simple
example.

Example 5.12 [GEXIT Chart] Consider the (3,6)-regular ensemble and transmis-
sion over BSC(0.07). The corresponding illustrations are shown in Figure 5.6.
The two pictures on the left show the standard GEXIT curve for the check node
side and the dual GEXIT curve corresponding to the variable node side. In order
to use these two curves in the same chart, it is convenient to consider the inverse
function for the variable node side. In the right-most picture (GEXIT chart) both
curves are shown together with the “staircase” like function that represents density
evolution. The two curves do not overlap and both have areas equal to the rate.

As remarked in the last section, one potential use of the matching condition is to
find capacity approaching dd pairs. Let us quickly outline a further potential ap-
plication. Assuming that we have found a sequence of capacity-achieving degree
distributions, how does the number of required iterations scale as we approach
capacity? It has been conjectured that the number of required iterations scales
like 1/δ, where δ is the gap to capacity. This conjecture is based on the geometric
picture that is implied by the matching condition. To make things simple, imagine
the two GEXIT curves as two parallel lines, let us say both at a 45 degree angle, a
certain distance apart, and think of density evolution as a staircase function. From
the previous results, the area between the lines is proportional to δ. Therefore, if
we half δ, the distance between the lines has to be halved and one would expect
that we need twice as many steps. Obviously, the above discussion was based on
a number of simplifying assumptions. It remains to be seen if this conjecture can
be proved rigorously.
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Figure 5.6: Faithful representation of density evolution by two non-overlapping
component-wise GEXIT functions that represent the “actions” of the check nodes and vari-
able nodes, respectively. As for the dynamical picture over the BEC, the area between the
two curves is proportional to the additive gap to capacity.

5.4 Conclusion and Discussion

We have seen in this chapter how to prove the empirical area rules observed for
EXIT curves. The price to pay was to replace the EXIT function by the GEXIT
function. GEXIT functions have a fundamental meaning that goes back to the nor-
malized conditional entropy and are, fortunately, as simple to compute as standard
EXIT functions.

This thesis is mainly dedicated to analyzing the relationship between MAP and
BP decoding. This relationship appears in the limit of large blocklengths and is
based on EXIT functions in the erasure case. In the next chapter we will see how
GEXIT functions apply in the general framework. We will begin by deriving an
upper bound on the MAP threshold (which we conjecture to be tight) based on the
general area theorem. We further present a general EBP GEXIT curve and prove
elements for generalizing the Maxwell construction to BMSCs.
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Appendix

5.A GEXIT Kernel and Concavity
We provide a direct calculus proof of Theorem 5.2, exploiting the explicit rep-
resentation provided by Lemma 5.2. As a byproduct we show that the GEXIT
kernel in the |D|-domain is non-increasing and concave. This fact is also used in
the proof of Lemma 5.3.
For our purpose it is convenient to represent all quantities in the |D|-domain.
Let {ch|D|}h denote the family of |D|-densities characterizing the channel fam-
ily {BMSC(h)}h. Let |d|BMSC(h)(w) denote the GEXIT kernel in the |D|-domain as
introduced in Eq. (5.2). We can rewrite it in the form

|d|BMSC(h)(w) =
Z 1

0

∂ch
|D|(z)
∂h

α(z,w)dz,

where we use α(z,w)= 1
4 ∑i, j=±1(1+iz)(1+ jw)β(iz, jw) with β(z,w)= log2

(
1+

e−2tanh−1(z)e−2tanh−1(w)). Finally, let a|D| and b|D| denote the two symmetric den-
sities in the |D|-domain. The claim of the theorem is then equivalent to the state-
ment that the GEXIT functional

R 1
0 |d|BMSC(h)(w)a|D|(w)dw preserves the partial

order implied by physical degradation. This means that if a|D| ≺ b|D| thenZ 1

0
|d|BMSC(h)(w)a|D|(w)dw≤

Z 1

0
|d|BMSC(h)(w)b|D|(w)dw.

It is shown in [65] that a |D|-domain kernel preserves the partial order implied by
physical degradation if it is non-increasing and concave on [0,1], i.e., if its first two

derivatives are non-positive. Therefore we need to show that
R 1

0
dch
|D|(z)
dh

∂iα(z,w)
∂wi dz≤

0, for i = 1,2. By the same theorem in [65] the above condition is verified if
both ∂iα(z,w)

∂wi for i = 1,2, are convex and non-decreasing. This in turn is true if
∂i+ jα(z,w)

∂wi∂z j ≥ 0 for i, j = 1,2. Now some further calculus shows that

∂α(z,w)
∂w

=
1
2 ∑

i=±1
izlog2(1+ iwz)− 1

2 ∑
i=±1

ilog2(1+ iw),

log(2)
∂2α(z,w)

∂w2 =
z2

1−w2z2 −
1

1−w2 .

Note that the last identity implies that ∂2α(z,w)
∂w2 has a positive expansion in z (ex-

cept for the constant term). Therefore the derivatives ∂2+iα(z,w)
∂w2∂zi , i = 1,2, are both
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positive and by symmetry of the function α(z,w) in its arguments z and w so is
∂3α(z,w)

∂w∂z2 . Finally,

log(2)
∂2α(z,w)

∂w∂z
=

1
2

ln
1+wz
1−wz

+
wz

1−w2z2 = 2wz ∑
i≥0

(i+1)(w2z2)i

2i+1
,

which has a positive Taylor series expansion as well. This confirms our claim that
the GEXIT kernel preserves the partial order implied by physical degradation.

5.B Non-Binary GEXIT Functions
Consider a (not necessarily binary) input alphabet X . The concept of GEXIT
functions extends naturally to the non-binary (non-symmetric) case.

Definition 5.5 [GEXIT Function over X ] Let X be a vector of length n chosen
with probability pX (x) from X n. Assume that the channel pY |X is memoryless.
Assume moreover that Yi is the result of passing Xi through a channel pεi

Yi|Xi
pa-

rameterized by εi ∈ [0,1]. Consider any (extrinsic) estimator ΦDEC
i (Y∼i) taking

value on the (|X |−1)-dimensional simplex. Let Ω be a further observation of X
such that Ω→ X→Y . Consider i∈ [n]. If {pεi

Yi|Xi
}εi is smooth, then the ith GEXIT

function associated with the given channel parameterization and given (extrinsic)
estimator is defined as

gDEC
i (ε) M=

∂H(Xi|Yi,Φ
DEC
i ,Ω)

∂εi
,

where the entropy uses the natural logarithm (i.e., log instead of the base two
logarithm denoted by log2).

Assume that the considered extrinsic estimator is any sufficient statistic of Xi given
Y∼i. For example, if the channel input alphabet is finite and discrete, one may
take φMAP

i (y∼i) = {pXi|Yi(xi|y∼i); xi ∈ X }, which takes value on the (|X | − 1)-
dimensional simplex, or any parameterization of it (see Section 2.11). Then, if
the (MAP) GEXIT function is defined for all i, and if all individual channels are
parameterized in a smooth way by a common parameter p, i.e., εi = εi(p), i ∈ [n],
then again the general area theorem holds. Notice that, in a slight generalization
of the notion of GEXIT function, this definition considers the GEXIT function as
a function of the channel parameter rather than the channel entropy.

Lemma 5.7 [GEXIT Function for General Memoryless Channels] Let X be a vec-
tor of length n chosen with probability pX (x). Assume that the (discrete) channel
pY |X is memoryless. Assume moreover that Yi is the result of passing Xi through
a channel pεi

Yi|Xi
parameterized by εi ∈ [0,1]. Consider any extrinsic estimator ΦDEC

i

taking value on the (|X | − 1)-dimensional simplex. If {pεi
Yi|Xi
}εi is smooth, then
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the ith GEXIT function associated with the considered channel parameterization
is given by

gDEC
i (ε) = ∑

xi

p(xi)
Z

p(φDEC
i |xi)

d
dεi

p(yi|xi) · log

∑
x′i

p(x′i|φDEC
i )p(yi|x′i)

p(xi|φDEC
i )p(yi|xi)

dyidφDEC
i .

Proof. We first expand the conditional entropy

H(Xi|ΦDEC
i ,Yi)

=−
Z

φDEC
i ,yi

∑
xi

p(xi,φ
DEC
i ,yi) log(p(xi|φDEC

i ,yi))dyidφDEC
i

=−
Z

φDEC
i ,yi

∑
xi

p(xi)p(φDEC
i |xi)p(yi|xi) · log

{
p(xi|φDEC

i )p(yi|xi)
∑x′i∈X p(x′i|φDEC

i )p(yi|x′i)

}
dyidφDEC

i .

This form has the advantage that the dependence of H(Xi|ΦDEC
i ,Yi) upon the chan-

nel at position i is completely explicit. Let us therefore differentiate the above
expression with respect to εi, the parameter that governs the transition probability
p(yi|xi). The terms obtained by differentiating with respect to the channel inside
the log vanish. For instance, when differentiating the p(yi|xi) at the numerator, we
get

−
Z

φDEC
i ,yi

∑
xi

p(xi)p(φDEC
i |xi)

dp(yi|xi)
dεi

dyidφDEC
i

=−
Z

φDEC
i

∑
xi

p(xi)p(φDEC
i |xi)

d
dεi

Z
yi

p(yi|xi)dyidφDEC
i = 0 .

When differentiating with respect to the outer p(yi|xi) we get the stated result.

Consider a BMSC, it is now a straightforward exercise to (re)derive Lemma 5.2.
See also [53].

5.C GEXIT Kernel for Gaussian Channels

This appendix contains a few useful results concerning the GEXIT kernel for
Gaussian channels.

Lemma 5.8 [Characterization of GEXIT Kernel, L-Domain – {BAWGNC(h)}]
Consider the family {cBAWGNC(h=h(σ))} of BAWGN channels, where h denotes the
channel entropy. Recall from Chapter 2 that the channel is modeled as Y = X +Z,
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where X takes values x ∈ X = {−1,+1} and Z is Gaussian with zero mean and
variance σ2. Then the following represents equivalent kernels:

(i) lcBAWGNC(h)(z) =

(
e−z

Z +∞

−∞

e
− (wσ2−2)2

8σ2

(cosh( w−z
2 ))2

dw

)/(Z +∞

−∞

e
− (wσ2−2)2

8σ2

(cosh( w
2 ))2

dw

)
,

(ii) l
′cBAWGNC(h)(z) =

1−E[E[X |Y,Φ = z]2]
1−E[E[X |Y ]2]

,

(iii) l
′′cBAWGNC(h)(z) =

1−E[E[X |Y,Φ = z]|X = +1]
1−E[E[X |Y ]|X = +1]

.

Hereby, Φ denotes a further observation of X conditionally independent of Y : It
is the result of passing X through a symmetric channel, and it is assumed to be in
the LLR form (if we use coding, Φ represents the extrinsic estimate of X).

Discussion: This lemma provides several equivalent representations of the ker-
nel for the BAWGN channel. The expression (ii) shows the relationship be-
tween conditional entropy and minimum mean-square error (MMSE) estimator
(see footnote in Section 2.3). To see this, observe first that the denominator is a
(z independent) scaling factor that depends on our parameterization of the chan-
nel through its entropy h. Second, observe that the numerator 1−E[E[X |Y,Φ =
z]2] = E[E[X2|Y,Φ = z]−E[X |Y,Φ = z]2] is the MMSE estimator (which in this
framework includes the decoding estimate z). This relationship, which connects
a fundamental information theoretic quantity to a measure widely-used in signal
processing, was first observed in [40,148]. In the above lemma, the channel inputs
are binary. In Lemma 5.10 we give an alternative way of deriving lcBAWGNC(h)(z) in
the more general context of non-binary channel inputs. The form (iii) provides a
further simplification. This expression, in which the numerator shows the mag-
netization was first stated in [41] using the Nishimori identity (in the context of
coding, this identity was first discussed in [31]).

Before proving Lemma 5.8, let us recall the following elementary fact used sev-
eral times in the proof Lemma 5.8. Let pY |X (y|x) be a BMSC and let f (y) be a
measurable function. If f (y) is even, then

E[ f (Y )] = E[ f (Y )|X = +1]. (5.4)

Proof of Lemma 5.8. The channel L−density is given by c(w) M= cBAWGNC(h)(w) =

σ√
8π

e−
(wσ2−2)2

8σ2 .
(i) The kernel as stated in Eq. (5.1) is expressed in terms of the derivative of c(w)
with respect to the channel parameter. Let us use the channel parameterization
p

M= 2/σ2. We get a pleasing analytic expression because, for the Gaussian case,

we can express this derivative via the identity ∂c(w)
∂p

=− ∂c(w)
∂w + ∂2c(w)

∂w2 . Then using
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twice integration by parts (as in [41]), we get

lcBAWGNC(h)(z) · log(2) · ∂h
∂p

=
Z +∞

−∞

∂c(w)
∂p

log(1+ e−w−z)dw

=
Z +∞

−∞

∂c(w)
∂w

e−w−z

1+ e−w−z dw −
Z +∞

−∞

c(w)
e−w−z

1+ e−w−z dw

=
Z +∞

−∞

c(w)
−1

(1+ ew+z)2 dw

=
−e−z

4

Z +∞

−∞

c(−w)
(cosh(w+z

2 ))2 dw.

The computation of ∂h
∂p

is exactly the same if we set z = 0. Therefore,

lcBAWGNC(h)(z) M=

e−z
Z +∞

−∞

e−
(w−p)2

4p

(cosh(w−z
2 ))2 dw

/Z +∞

−∞

e−
(w−p)2

4p

(cosh(w
2 ))2 dw

 .

(ii) First, we claim that the previous expression can be written as

lcBAWGNC(h)(z) = e−z 1−E[E[X |Y,Φ =−z]2]
1−E[E[X |Y ]2]

.

To see this, observe that

w+ z
(a)
= log

p 2Y
σ2 |X

(w|+1)

p 2Y
σ2 |X

(w|−1)
+ log

pΦ|X (z|+1)
pΦ|X (z|−1)

(b)
= log

p 2Y
σ2 ,Φ|X (w,z|+1)

p 2Y
σ2 ,Φ|X (w,z|−1)

(c)
= log

pX | 2Y
σ2 ,Φ(+1|w,z)

pX | 2Y
σ2 ,Φ(−1|w,z)

,

where (a) comes from the definition of w and z in Lemma 5.8, (b) from the in-
dependence of Y and Φ when X is given, and where (c) is the Bayes rule using
pX (+1) = pX (−1) = 1

2 . Therefore,

tanh(
w+ z

2
) =

1− e−w−z

1+ e−w−z =
pX | 2Y

σ2 ,Φ(+1|w,z)− pX | 2Y
σ2 ,Φ(−1|w,z)

pX | 2Y
σ2 ,Φ(+1|w,z)+ pX | 2Y

σ2 ,Φ(−1|w,z)

= E[X |y(Y ) = w,Φ = z]. (5.5)

This “soft bit” is a bit estimate in the D-domain and Eq. (5.5) is in fact a well-
known relationship. Observe now that 1− (tanh(w+z

2 ))2 = 1
(cosh( w+z

2 ))2 , therefore

lcBAWGNC(h)(z) = e−z 1−
R

∞

−∞
c(w)(tanh(w+z

2 ))2dw
1−

R
∞

−∞
c(w)(tanh(w

2 ))2dw

= e−z 1−E[(tanh( (2Y )/(σ2)+z
2 ))2|X = +1]

1−E[(tanh( Y
σ2 )2|X = +1]

,
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and the claim follows because, as discussed in Eq. (5.4), we can drop in the last
expression the conditioning on X = +1.
Second, the kernel is in general not unique in the L-domain and we can use this
degree of freedom to get equivalent kernels, see Definition 5.3. Denote f (z) M=
1−E[E[X |Y,Φ=−z]2]

1−E[E[X |Y ]2] and observe that lcBAWGNC(h)(z) = exp(−z) f (z) with this notation.

For any symmetric density a(z), the function l
′cBAWGNC(h)(z) M= f (−z) is also a valid

kernel for the L-domain since
R +∞

−∞
a(z)e−z f (z)dz =

R +∞

−∞
a(z) f (−z)dz. Therefore,

we get the equivalent kernel

l
′cBAWGNC(h)(z) =

1−E[E[X |Y,Φ = z]2]
1−E[E[X |Y ]2]

=

(Z +∞

−∞

e
− (wε2−2)2

8ε2

(cosh( w+z
2 ))2

dw

)/(Z +∞

−∞

e
− (wε2−2)2

8ε2

(cosh( w
2 ))2

dw

)
.

(iii) For any symmetric random variable L, a straightforward exercise shows that
E[tanh(L/2)] = E[(tanh(L/2))2]. See, e.g, [31, 41]. Applied to the random vari-
able y(Y ) = log p(Y |+1)

p(Y |−1) = 2
σ2 Y that is symmetric given X = +1, this gives us

E[E[X |Y ]2] = E[tanh(y(Y )/2)2]
(5.4)= E[tanh(y(Y )/2)2|X = +1]
= E[tanh(y(Y )/2)|X = +1] = E[E[X |Y ]|X = +1].

Therefore the denominator of l
′cBAWGNC(h)(z) can be easily written as 1−E[E[X |Y ]2]

= 1−E[E[X |Y ]|X = +1]. Observe that we cannot use directly this argument for
the term E[E[X |Y,Φ = z]2] = E[tanh( Y

σ2 + z
2 )2] at the numerator (the random vari-

able 2
σ2 Y + z being not symmetric). However, we can look for an equivalent ker-

nel. This is easily done by observing that the values z can be provided by the
symmetric random variable Φ given X = +1. The sum of two symmetric ran-
dom variables is again symmetric (see Chapter 2), therefore ŷ(Y,Φ) M= 2

σ2 Y +Φ
is a symmetric random variable given X = +1. As above, we can now use the
fact that E[tanh(ŷ(Y,Φ)/2)|X = +1] (5.4)= E[(tanh(ŷ(Y,Φ)/2))2|X = +1] to obtain
E[E[X |Y,Φ]2] = E[E[X |Y,Φ]|X = +1]. Therefore,

l
′′cBAWGNC(h)(z) =

1−E[E[X |Y,Φ = z]|X = +1]
1−E[E[X |Y ]|X = +1]

=

(Z +∞

−∞

e
− (wε2−2)2

8ε2

1+ew+z dw

)/(Z +∞

−∞

e
− (wε2−2)2

8ε2
1+ew dw

)

is an equivalent kernel (but pointwise different from lcBAWGNC(h)(z) and l
′cBAWGNC(h)(z)).

The last equality comes from the fact that 1−E[X |Y = y,Φ = z] = 1− tanh( y+z
2 ) =

2
1+ey+z . �
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One remark about the previous lemma and its proof is in order. Observe that
l
′′cBAWGNC(h)(z) uses the conditional expectation E[E[X |Y,Φ = z]|X = +1]. By chan-

nel symmetry, we have E[E[X |Y,Φ = z]|X = +1] = E[tanh( Y
σ2 + z)|X = +1] =

E[tanh(− Y
σ2 + z)|X = −1] = E[X tanh( Y

σ2 + zX)] = E[XE[X |Y,Φ = zX ]]. Now,
using the kernel equivalencies to replace the conditioning Φ = zX by Φ = z, we
obtain the equivalent kernel

l
′′′cBAWGNC(h)(z) =

1−E[XE[X |Y,Φ = z]]
1−E[XE[X |Y ]]

,

where the conditioning X = +1 has been dropped. In fact, this last expression
can also be proved directly by using the form (ii), the kernel equivalencies and
the relationship E[XE[X |Y ]] = E[E[X |Y ]2] that comes from the definition of the
conditional expectation.

GEXIT and EXIT curves are in general very similar. The next lemma illuminates
this fact: it shows that, in the limit of small SNR, the kernel for the BAWGNC
behaves similarly to the kernel for the BSC discussed in Example 5.2.

Lemma 5.9 [Limiting Behavior of GEXIT Kernel] Consider the family {cBAWGNC(h)}
of BAWGN channels, where h denotes the channel entropy: The additive noise N
in the model Y = X +N is Gaussian with zero-mean and variance σ2. Then

(i) lim
σ→∞
|d|cBAWGNC(h)(s) = 1− s2, (ii) lim

σ→0
|d|cBAWGNC(h)(s) = 1.

In the |D|-domain, the kernels are ordered between those two extremal functions.

Proof. First recall the transform formula (5.2) and 2tanh−1(s) = log 1+s
1−s .

(i) Characterization (iii) of Lemma 5.8 shows that

lc(2tanh−1(s)) =
1−

R +∞

−∞
c(l) tanh(l/2+ tanh−1(s))dl

1−
R +∞

−∞
c(l) tanh(l/2)dl

.

Let us restrict ourselves to the study of the term Iσ(s) M=
R +∞

−∞
c(l) tanh(l/2 +

tanh−1(s))dl. When σ2 → ∞, then the distribution of the channel inputs in the

L-domain c(l) = σ

2
√

2π
exp(−σ2(l−2/σ2)2

8 ) becomes a Dirac centered in 0 (since

its variance 4/σ2 → 0). For any function continuous in 0, e.g., for the func-
tion ks : l 7→ tanh(l/2 + tanh−1(s)), one can indeed replace, without committing
much error when σ2 → ∞, the integral

R +∞

−∞
c(l)ks(l)dl by

R +∞

−∞
c(l)ks(0)dl. See,

e.g., [149] for further details. Therefore Iσ(z) −→
σ→∞

tanh(0/2+ tanh−1(s)) = s. Us-

ing Eq. (5.2), we get |d|c(s) = 1−s
2

1+s
1 + 1+s

2
1−s

1 = 1− s2.
(ii) The case σ→ 0 corresponds to the full knowledge of the channel input. The
kernel in the |D|-domain converges pointwise to 1. In this case c(l) becomes a
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“Dirac at infinity” and a similar argument as for (i) can be applied.
Finally, observe that, for a fixed h ∈ (0,1), the kernels in the |D|−domain are or-
dered because of Theorem 5.2 and the fact that the Gaussian family is ordered.

So far we have restricted ourselves to the case of binary inputs. But the non-binary
case is not much harder. This is presented in Lemma 5.10.

Lemma 5.10 [AWGN(h)] Consider a length n code. Assume transmission takes
place over a family {AWGNC(hi)}i∈[n] where there is a global parameter ε such
that hi(ε) = h(ε) is the entropy associated with the ith channel for all i ∈ [n]. Let
this parameter be ε =−2snr

M=− 2
σ2 . Then

gMAP
i (G, ε) = E

[
E[X2

i |Y ]−E[Xi|Y ]2
]
.

In other words, the derivative of the conditional entropy with respect to the partic-
ular parameter ε is equal to the minimum mean-square error estimator.

Proof. We will prove the result in general settings when the input alphabet X can
be any subset of R. Temporarily, let Ỹ = X + Ñ represent our running Gaussian
channel model. Ñ is the additive white Gaussian noise with zero-mean and vari-
ance σ2. Now let us normalize this model by σ2 to obtain the equivalent model
Y =
√

snrX + N where snr = 1
σ2 and N is an additive white Gaussian noise with

zero-mean and unit-variance. In order to be a sufficient statistic, the extrinsic
MAP estimate φi = φi(y∼i) can no longer be a log-likelihood ratio but, in general,
a function of xi, i.e., φi : x 7→ φi(y∼i,x). Using Lemma 5.7 it follows that

gMAP
i (ε) =

Z
φi,yi,xi

p(xi)p(φi |xi)
d
dε

p(yi|xi) · log
(Z

x′i

p(x′i|φi)p(yi|x′i)
p(xi|φi)p(yi|xi)

dx′i

)
dxidyidφi.

To simplify the computations, a few remarks are in order. First recall that we have
chosen ε to be ε =−2snr = −2

σ2 . Second, observe that the Gaussian density permits

us to write dp(yi|xi)
dε = xi√

snr
d

dyi
p(yi|xi). Therefore, integrating by parts with respect

to yi, we get

gMAP
i (ε)

=
Z

p(xi)p(φi |xi)
xi√
snr

p(yi|xi) ·
d

dyi

{
log
(Z

x′i

p(x′i|φi)p(yi|x′i)
p(xi|φi)p(yi|xi)

dx′i

)}
dxidyidφi

=−
Z

p(xi)p(φi |xi)
xi√
snr

p(yi|xi)

R
x′i

√
snr(x′i− xi)p(x′i|φi)p(yi|x′i)dx′iR

x′i
p(x′i|φi)p(yi|x′i)dx′i

dxidyidφi,

after having used dp(yi|x′i)
dyi

=
dpZi (yi−

√
snrx′i)

dyi
= −(yi−

√
snrx′i)p(yi|x′i). Let us now

re-order as p(x′i|φi)p(yi|x′i) = p(x′i|φi,yi)p(yi|φi) and use (with a slight abuse of
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notation) yi+φi√
snr

= EXi [Xi|φi,yi] to get

gMAP
i (ε) =−

Z
φi,yi,xi

p(xi)p(φi |xi)xi p(yi|xi) ·
p(yi|φi)(

(yi+φi)√
snr
− xi)

p(yi|φi)
dxidyidφi

=
Z

φi,yi

p(φi,yi) ·
Z

xi

p(xi|yi,φi)
(

x2
i −

(yi +φi)xi√
snr

)
dxidyidφi

=
Z

φi,yi

p(φi,yi) ·
(
EXi

[
X2

i |φi,yi
]
−EXi [Xi|φi,yi]

2
)

dyidφi.

This concludes our proof since Φi is a sufficient statistic for Y∼i.

Discussion: Imagine now that we are considering binary inputs, then E[X2
i |Y ] = 1.

In this case, using the fact that for a measurable and even function f (y) we have
EY [ f (Y )] = EY |X=1[ f (Y )], we can use Lemma 5.10 to re-derive Lemma 5.8.

A standard relationship, called de Bruijn’s identity, is equivalent to the above con-
nection between conditional entropy and MMSE for the Gaussian case. This is
shown in the next section.

5.D A Long History of Gaussian Channels
The connection between minimum mean-square error and mutual information
over Gaussian channels is due to [40, 148, 150]. This observation is pleasing (and
somewhat surprising) because it connects a quantity well-used in detection theory
to a fundamental information-theoretic measure – two notions which are a priori
independent. The result has motivated further research, see, e.g., [42].

In hindsight, it is interesting to note that the relationship presented in [148] is –
together with several alternative formulations, see [41, 151–155] – equivalent to
de Bruijn’s identity (meaning one can prove one from the other one, or vice versa).
A formal treatment can be found in [154], see also [156]. For appropriately well-
behaved functions (see, e.g., Section 2.9), let us show, as in [150], how the deriva-
tion of the relationship between minimum mean-square error and mutual informa-
tion derive from de Bruijn’s identity.

Refer first to [55, pp. 494-496] or [151]. Recall that de Bruijn’s identity between
entropy and Fisher information can be stated as follows.

Lemma 5.11 [de Bruijn’s Identity] Consider the channel Y = X + Z where the
Gaussian noise has zero-mean and variance σ2. Assume X has finite variance.

Then dH(Y )
dσ = 1

2 J(Y ), where J(Y ) M=
R

f (y)
( d f (y)

dy
y

)2

dy is the Fisher information

associated with a random variable Y with density f (y).

Let us now show how to get the desired relationship from de Bruijn’s identity.
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First, observe that I(X ;Y ) = H(X)−H(X |Y ) and I(X ;Y ) = H(Y )−H(Y |X) =
H(Y )−H(Z) imply

dH(X |Y )
d(σ2)

=
dH(Z)
d(σ2)

− d(Y )
d(σ2)

(5.6)

where dH(Z)
d(σ2) = 1

2σ2 since H(Z) = 1
2 log(2πeσ2). Without loss of generality and

to make the connection with the expressions of this thesis, let us further assume
that X is a binary random variable with equal priors. Then f (y) = 1

2 pZ(y|−1)+
1
2 pZ(y|+ 1), such that d f (y)

dy = −1−y
2σ2 pZ(y| − 1) + 1−y

2σ2 pZ(y|+ 1), and pZ(y|1)
pZ(y|−1) =

exp( 2y
σ2 ). We get

σ2 ·
d f (y)

dy

f (y)
=
(
(−1− y)+(1− y)e

2y
σ2
)
/
(
1+ e

2y
σ2
)

= tanh(y/(σ2))− y = E[X |Y = y]− y = E[X−Y |Y = y],

where the last equality has been shown, e.g., in Eq. (5.5). It remains to estimate
the Fisher information

J(Y ) =
1
σ4 E

[
E[X−Y |Y ]2

] (a)
=

1
σ4 E

[
E[X |Y ]2−2XY +Y 2]

=
1
σ4

(
E[E[X |Y ]2]+σ2−E[X2]

)
=

1
σ2 −

1
σ4 E[X2−E[X |Y ]2], (5.7)

(b)
=

1
σ2 −

1
σ4 E[(X−E[X |Y ])2],

where (a) uses the fact that E[YE[X |Y ]] = E[XY ] by definition of the conditional
expectation, and (b) uses the fact that E[E[X |Y ]2] = E[XE[X |Y ]] by again def-
inition of the conditional expectation. Since X2 = 1 = E[X2|Y ] in the binary
case, Eq. (5.7) gives the (binary) GEXIT kernel. Finally, with Lemma 5.11
and Eq. (5.6), we obtain dH(X |Y )

d(σ2) = 1
2σ2 − 1

2 J(Y ) = 1
2σ4 E[E[(X −E[X |Y ])2]. If

we take the parameter snr = 1
σ2 (snr being in this case the associated signal to

noise ratio), we get dH(X |Y )
dsnr = − 1

2E[(X −E[X |Y ])2], where the right-hand side
term E[(X −E[X |Y ])2] = E[E[X2|Y ]−E[X |Y ]2] is the minimum mean-square er-
ror. See also [70].
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6 MAP versus BP for Mem-
oryless Symmetric Channels

Overview: The Maxwell construction is extended to BMS
channels. Unfortunately many interesting questions are left
open.

As it is shown in the previous chapter, GEXIT functions share many properties
with EXIT functions. It is therefore natural to ask if the connection between MAP
and BP decoding also carries over to the more general context of memoryless
symmetric channels. The upper bound on the MAP threshold presented in Chapter
4 extends in a simple way to this framework. Furthermore, we will see that a
Maxwell construction holds in general if we look at a suitable EBP GEXIT curve.
This chapter deals with transmission over BMSC(h), where h denotes the channel
entropy. The channel family is in general assumed to be smooth, ordered and
complete.

6.1 Asymptotic GEXIT Functions
Let C be a binary linear code of length n. Assume that we choose a codeword
X uniformly at random from C. Let Y (h) be the received vector when transmis-
sion takes place over a smooth and ordered family {BMSCi(hi = h)}h. Let G be
a (fixed) graphical representation of the code and consider the BP schedule de-
scribed in Section 2.5. Assume that we use the extrinsic BP estimate at the `th

iteration, i.e., consider φBP,`
i (Y∼i). Define the ith BP GEXIT function at iteration `

to be gBP,`
i

M= ∂

∂hi
H(Xi|Yi,φ

BP,`
i (Y∼i)) (see Definition 5.2). By analogy with Section

4.1, we state that

gMAP
i (h) M=

∂H(Xi|Yi,φ
MAP
i (Y∼i))

∂hi
=

∂H(Xi|Y )
∂hi

≤
∂H(Xi|Yi,φ

BP,`
i (Y∼i))

∂hi
= gBP,`

i (h).

Although the above inequality in the setting of EXIT functions treated in Section
4.1 is quite intuitive, its above counterpart for GEXIT functions requires a slightly
more elaborate argument. This is shown in Theorem 5.2. For the BEC this in-
equality is the first step for showing the fundamental connection between MAP
and BP decoding that appears in the asymptotic limit of large blocklengths when
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considering sparse graph codes. We follow a similar path as in Chapter 4 and turn
our attention to the (average) performance of such large graphs.

Definition 6.1 [(MAP) GEXIT Function over BMSC(h)] Assume that transmis-
sion takes place over a smooth family {BMSCi(hi = h)}h. The MAP GEXIT
function associated with the dd pair (λ,ρ) is defined as

gMAP(h) M= limsup
n→∞

ELDPC(n,λ,ρ)

[
1
n

n

∑
i=1

∂H(Xi|Yi(hi),ΦMAP
i (h∼i))

∂hi

∣∣∣
h1=h,··· ,hn=h

]
,

where the expectation is over instances of graph G taken uniformly at random from
LDPC(n,λ,ρ), X denotes a codeword chosen uniformly at random from G, Y (h)
is the result of transmitting X over BMSC(h), and ΦMAP

i (h∼i) = φMAP
i (Y∼i) is the ith

extrinsic MAP estimate.

Discussion: Similar observations as in Section 4.1 are in order. First we can also
write gMAP(h) = limsupn→∞ ELDPC(n,λ,ρ)

[
gMAP

1 (h)
]

since the quantity is averaged
over all graphs in LDPC(n,λ,ρ). Moreover, we consider the average (over graphs
from a given ensemble) of all GEXIT functions. This is justified in Appendix
4.A where we show that both, entropy rate (via Theorem 4.3) and MAP GEXIT
function (via Theorem 4.4), concentrate around their average. Finally, note that
we use the limsup, instead of the ordinary limit, in order to work with a well-
defined limiting object. Proving the existence of the limit seems to be a difficult
task. As discussed in Chapter 4, i.e., even in the simple case of transmission
over the erasure channel, the existence of the corresponding limit is not known, in
general, but only follows from the explicit construction of the Maxwell decoder
in all the cases where the Maxwell construction can be shown to result in MAP
performance.

Definition 6.2 [BP EXIT Function over BMSC(h)] Assume that transmission takes
place over a smooth family {BMSCi(hi = h)}h. The BP GEXIT function associ-
ated with the dd pair (λ,ρ) is defined as

gBP(h) M= lim
`→∞

lim
n→∞

ELDPC(n,λ,ρ)

[
1
n

n

∑
i=1

∂H(Xi|Yi(hi),Φ
BP,`
i (h∼i))

∂hi

∣∣∣
h1=h,··· ,hn=h

]
,

where the expectation is over instances of graph G taken uniformly at random from
LDPC(n,λ,ρ), X denotes a codeword chosen uniformly at random from G, Y (h)
is the result of transmitting X over BMSC(h), and ΦBP,`

i (h∼i) = φBP,`
i (Y∼i) is the ith

extrinsic BP estimate at iteration `.

Discussion: Contrary to gMAP the existence of the BP GEXIT function is well-
established. This follows from density evolution, see (next) Theorem 6.1 (ii). The
fact that the “average” has a practical meaning is also justified by Theorem 6.1 (i).

Theorem 6.1 [Limit and Concentration of BP GEXIT Functions] Consider a dd
pair (λ,ρ) and the sequence {LDPC(n,λ,ρ)}n. Assume that transmission takes
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place over a smooth family {BMSCi(hi = h)}h. Choose an element G(n) of length
n uniformly at random in LDPC(n,λ,ρ). Let gBP(G(n)),`(h) = 1

n ∑
n
i=1 gBP(G(n)),`

i (h)
denote the associated (averaged) BP GEXIT function at iteration `. Then

(i) ∀ξ > 0,∃αξ > 0,∃N ∈ N,∀n > N,

Pr
{∣∣∣gBP(G(n)),`(h)−ELDPC(n,λ,ρ)[g

BP(G(n)),`(h)]
∣∣∣> nξ

}
≤ e−αξn,

(ii) and there exist the limits
gBP,`(h) = lim

n→∞
ELDPC(n,λ,ρ)[g

BP(G(n)),`(h)] and gBP(h) = lim
`→∞

gBP,`(h).

Proof. (i) The proof of the concentration is along the same lines as the proof in
[65], which shows the concentration of the probability of error under BP decoding,
or the proof in Appendix 4.A, which relates to the concentration of the BP EXIT
function. We will therefore skip the details.
(ii) Note that for a fixed iteration number `, the distribution of Φ

BP(G(n)),`
i (where the

node i is chosen uniformly at random in [n]), assuming that the all-one codeword
was sent, converges (at a speed of 1/n) to the corresponding distribution of density
evolution obtained from the corresponding spanning tree, denote it by a`. See,
e.g., [65]. The result now follows by noting that gBP,` is the result of applying a
bounded linear operator to the distribution a`, see Lemma 5.2 and Section 2.9.

For simple codes, such as single parity-check codes or repetition codes, EXIT
or GEXIT functions are relatively easy to compute. Lemma 3.3 or Lemma 5.2
give an operational way to determine the quantities via the corresponding EXIT
or GEXIT linear operators. In general though, it is not a trivial matter to determine
the density of ΦMAP

i required for the calculation. What we “can” easily compute in
practice are the BP estimates. In the asymptotic limit the extrinsic BP estimates
are obtained from density evolution, and gBP,` and gBP have a convenient repre-
sentation in terms of the asymptotic extrinsic BP densities. More precisely, the
bounded linear operator of Lemma 5.2 shows that

gBP,`(h) =
Z

∞

−∞

aBP,`(z)lcBMSC(h)(z) dz, gBP(h) =
Z

∞

−∞

aBP(z)lcBMSC(h)(z) dz,

where cBMSC(h) is the channel density, and where aBP,` is the limiting density of

Φ
BP(G(n)),`
i (where the node i is chosen uniformly at random in [n]) under the all-

one codeword assumption as n tends to infinity and averaged over LDPC(n,λ,ρ).
This density can easily be computed by density evolution. In a similar manner, aBP

denotes the corresponding fixed point density of density evolution.

Figure 6.1 shows BP GEXIT functions for a sample of regular LDPC ensembles.
They are compared with the corresponding BP EXIT functions. We see that the
curves are quite similar.
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Figure 6.1: BP GEXIT (solid curves) versus BP EXIT (dashed curves) for several regular
LDPC ensembles. Left: BSC(h). Right: BAWGNC(h).

6.2 Upper Bound on the MAP Threshold

Consider a complete and ordered family {BMSC(h)}h and a dd pair (λ,ρ). Re-
call from Section 2.8 that the MAP threshold is defined as hMAP M= min{h ∈ [0,1] :
liminfn→∞ EG[H(X |Y (h))]/n > 0}. As discussed in Section 2.8, this definition
captures the notion of threshold for the bit error probability. This (MAP) thresh-
old is the value of the channel entropy h at which the considered GEXIT function
becomes non-negative (see Lemma 5.3).

We now follow the method presented in Section 4.2.1 to derive an upper bound
(which we conjecture to be tight in many cases) on the MAP threshold. We need
two intermediate results in order to extend Lemma 4.4 to BMS channels. (i) The
first one is of course the general area theorem. (ii) The second is the following
asymptotic version of Theorem 5.2.

Lemma 6.1 [Upper Bound gMAP ≤ gBP] Consider a dd pair (λ,ρ) and transmis-
sion over a smooth and ordered family {BMSCi(hi = h)}h. Let gMAP(h) and
gBP(h) denote the corresponding asymptotic MAP and BP GEXIT functions. Then
gMAP(h)≤ gBP(h).

Proof. From Theorem 5.2 we know that, for any G ∈ LDPC(n,λ,ρ) and ` ∈ N,
we have gMAP

G (h) ≤ gBP,`
G (h). If we take first the expectation over the elements of

the ensemble, then the limsup on both sides with respect to n, and finally the limit
`→ ∞, we get the desired result.

Theorem 6.2 [Upper Bound on MAP Threshold] Consider a dd pair (λ,ρ) with
design rate rλ,ρ. Assume that transmission takes place over a complete and or-
dered smooth family {BMSCi(hi = h)}h. Let gBP(h) denote the associated BP
GEXIT function. Then

liminf
n→∞

1
n

ELDPC(n,λ,ρ)[HG(X |Y (h))]≥ rλ,ρ−
Z 1

h
gBP(h′) dh′ .
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Furthermore, if h denotes the largest positive scalar so thatZ 1

h
gBP(h) dh = rλ,ρ,

then hMAP ≤ h, where hMAP denotes the MAP threshold.

Proof. The asymptotic rate is potentially larger than the design rate. Therefore

rλ,ρ− liminf
n→∞

1
n

ELDPC(n,λ,ρ)[HG(X |Y (h))]

≤ limsup
n→∞

1
n

ELDPC(n,λ,ρ)[HG(X |Y (1))−HG(X |Y (h))]

(i)= limsup
n→∞

ELDPC(n,λ,ρ)

[Z 1

h
gMAP
G (h′) dh′

]
,

where (i) is obtained from the general area theorem. We can exchange the expec-
tation and the integral by Fubini’s theorem since gMAP

G is measurable and bounded
by 0 and 1. We can furthermore exchange the limit and the integral by the Fatou-
Lebesgue lemma so that

liminf
n→∞

ELDPC(n,λ,ρ)[H(X |Y (h))]
n

≥ rλ,ρ−
Z 1

h
gMAP(h′) dh′

(ii)
≥ rλ,ρ−

Z 1

h
gBP(h′)dh′,

where (ii) follows from Lemma 6.1. It remains to show how to derive an upper
bound on the MAP threshold. This follows from the observation that the right-
hand side of the last inequality is non-decreasing in h.
Therefore limsupn→∞ ELDPC(n,λ,ρ)[HG(X |Y (h))]/n is bounded away from 0 for
any h > h. Combined with the definition of hMAP, this concludes the proof.

Example 6.1 The following table presents the upper bounds on the MAP thresh-
old for transmission over BSC(h) as derived from Theorem 6.2 for a few regular
ensembles with dd pair (λ(x),ρ(x)) = (xl−1,xr−1). The corresponding thresh-
olds were first computed using the (non-rigorous) replica method from statistical
mechanics in [157]. In [31], they were shown to be upper bounds for r even, us-
ing an interpolation technique. The present proof applies also to the case of odd
r. It can be proved that the three characterizations of the threshold are indeed
equivalent, i.e., they give exactly the same value.

l r hBP h
MAP

h
MAP ( [24, 158]) hSH

3 4 0.6507(5) 0.7417(1) 0.743231 3/4
3 5 0.5113(5) 0.5800(3) 0.583578 3/5
3 6 0.4160(5) 0.4721(5) 0.476728 1/2
4 6 0.5203(5) 0.6636(2) 0.663679 2/3
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Also shown is the result of the information theoretic upper bound given in [24],
which in turn is an improved version of the bound developed in [158]. For the
specific case of transmission over BSC(ε) and regular LDPC ensembles this upper
bound on the MAP threshold is given by h2(ε), where ε is the unique positive root
of the equation rh2(ε) = lh2((1− (1−2ε)r)/2).

6.3 Maxwell Construction and EBP GEXIT Curve

As discussed in Chapter 4 for the case of transmission over the BEC, the fun-
damental relationship that appears in the limit of large blocklengths between the
MAP and the BP decoder is best described in terms of the Extended BP (EBP)
EXIT curve. For the BEC this curve is given in parametric form by(

x

λ(1−ρ(1−x))
,Λ(1−ρ(1−x))

)
,

where x takes values in a union of a finite number of intervals I ⊆ [0,1] such that
x≤ λ(1−ρ(1−x)), see, e.g., Lemma 4.8. Such an explicit characterization is in
general not available for non-trivial BMS channels.

6.3.1 EBP GEXIT Curve

The families {fx}x
M= {BEC(x)}x and {cx}x

M= {BEC( x
λ(1−ρ(1−x)) )}x, x ∈ I , have

the property that, for each x ∈ I , fx constitutes a fixed point density (of density
evolution) for the channel cx. Furthermore, both channel families are smooth and
satisfy H(fx) = x. Moreover, if εSC M= 1

λ′(0)ρ′(1) < 1, then I = [0,1] and the families
are complete (i.e., x and cx describe the full range [0,1]).

Definition 6.3 [Complete Fixed Point Family] Consider a dd pair (λ,ρ). The fam-
ilies {fx}x and {cx}x, x ∈ [0,1], are said to form a complete fixed point family for
(λ,ρ) if

(i) there exists a complete and ordered family {BMSC(h)}h such that ∀x ∈
[0,1], cx ∈ {BMSC(h)}h

(ii) for each x∈ [0,1], fx is a fixed point density with respect to the dd pair (λ,ρ)
and the channel cx; this means that for each x ∈ [0,1], fx = cx�λ(ρ(fx))

M=

cx�∑ j λ j

(
∑k ρk(fx)�(k−1)

)�( j−1)

(iii) {fx}x and {cx}x are smooth with respect to x

(iv) H(fx) = x.
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The previous characterization of a complete fixed point family permits us to define
the EBP GEXIT curve in the general case.

Definition 6.4 [EBP GEXIT Curve] Recall Definition 6.3. Let ax(y)
M= Λ(ρ(fx)).

The EBP GEXIT curve is given in parametric form by

(h(x),gEBP(x)) M= (H(cx),G(cx,ax)),

where H is the entropy operator and G the GEXIT operator.

Discussion: Several remarks are in order. First, notice that the function gBP coin-
cides a.e. with the “upper envelope” of the EBP GEXIT curve.
Second, notice that we have used x to parameterize the channel families and the
function gEBP(x) and we have assumed that H(fx) = x (rather than H(cx) = x). The
reason is that, in general, the EBP GEXIT curve is not a single-valued function of
the channel entropy, but is a single-valued function of the fixed point entropy. By
using the parameter x (and not the channel entropy), we remind ourselves that the
channel cx is the channel that belongs to the family of fixed point densities {fx}
(and not a channel ch defined uniquely by a fixed channel entropy). Complete
fixed point families do not always exist. If, for instance, λ2 = 0, then x cannot
be chosen arbitrarily close to 0. This is easily seen for transmission over the BEC
because, in this case, the stability condition threshold is infinite.
Third, it is not immediately obvious that for a given dd pair (λ,ρ) and a complete
and ordered family {BMSC(h)}h, a (complete or incomplete) fixed point family
always exists, or that it is unique. For the BEC we have an explicit formula for the
family, but in the general case the existence is far from trivial. We will get back to
this point in the sequel.

One important aspect of EBP GEXIT
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gBP(h)
= gEBP(h)
= gMAP(h)

hBP = hMAP

Figure 6.2: Cycle-code ensemble with
dd pair (x,x5). The EBP GEXIT curve, BP
GEXIT curve and MAP GEXIT curve coin-
cide.

curves is that they encode the connec-
tion between MAP and BP decoding.
As mentioned above, the BP GEXIT
function is obtained as the “upper en-
velope” of the EBP GEXIT curve.
More precisely, one has to choose, for
each value of the channel entropy h,
the branch of the EBP curve whose
GEXIT value is the largest, as stated
in Theorem 4.1 for the BEC. In Chap-
ter 4, we have seen many cases where
the Maxwell function (i.e., the func-
tion obtained from the EBP GEXIT
using the Maxwell construction, see Definition 4.5) is proved to coincide a.e. with
the MAP GEXIT function. In a strictly similar way as in Chapter 4 for the BEC,
we construct a Maxwell function from the EBP GEXIT curve for general BMS
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channels. We then conjecture that the Maxwell function coincides with the MAP
GEXIT function a.e. for a general BMSC.

Let us first say that (beyond the simple BEC case in Chapter 4), we can further
(almost) prove this conjecture in the following case. If the BP GEXIT does not
jump, i.e., if it is a non-decreasing continuous function, then the BP and EBP
curves are equal. (For any value of the channel entropy h, a single fixed point
density – apart from the “delta at infinity” – is found. Also: a single fixed point
density exists for each value of the density entropy x.) Using Corollary 6.1 it is
further possible to show that the BP, EBP, and Maxwell GEXIT curves in fact co-
incide. For example, consider the dd pair (λ,ρ) = (x,x5) and the corresponding
LDPC ensemble with design rate r = 2/3. Assume that transmission takes place
over the family {BSC(ε)}. Recall that for this code the BP threshold is given by
the stability condition. From Figure 6.2 we see that, according to the numerical
calculation, the EBP GEXIT curve is a monotone function. It follows that the EBP
GEXIT is equal to the BP GEXIT curve for this example.

A few typical examples are presented below. In each of them the complete fixed
point family is computed via a numerical procedure explained in the next section.

Example 6.2 [(3,6) LDPC Ensemble – BSC] Consider the dd pair (λ,ρ) = (x2,x5)
and the corresponding LDPC ensemble with design rate r3,6 = 1/2. We assume
that transmission takes place over the family {BSC(h(ε))}. Figure 6.3 (i) shows
on the left the EBP GEXIT curve and the corresponding BP GEXIT curve, which
has one jump. The picture on the right shows the conjectured MAP GEXIT curve
according to the Maxwell construction. For this ensemble, we have hBP ≈ 0.416.
The (conjectured) MAP threshold implied by the Maxwell construction coincides
with the upper bound provided by Theorem 6.2 that reads εMAP ≈ 0.472.

Example 6.3 [LDPC(2/5x+3/5x5,x5) – BSC] Consider the dd pair ( 2x+3x5

5 ,x5)
and the corresponding LDPC ensemble with design rate rλ,ρ = 4/9. We assume
that transmission takes place over the family {BSC(h(ε))}. Figure 6.3 (ii) shows
on the left the EBP GEXIT curve and the corresponding BP GEXIT curve, which
has one jump. The picture on the right shows the conjectured MAP GEXIT curve
according to the Maxwell construction. The BP threshold is given by the stability
condition. As a consequence of this and our conjecture on the Maxwell function,
we find hBP = hMAP .

Example 6.4 [LDPC( 3x+6x2+11x17

20 ,x9) – BSC] Consider the dd pair ( 3x+6x2+11x17

20 ,

x9). We assume that transmission takes place over the family {BSC(h(ε))}. Fig-
ure 6.3 (iii) shows on the left the EBP GEXIT curve and the corresponding BP
GEXIT curve (with two jumps). The picture on the right shows the conjectured
MAP GEXIT curve (with two jumps) according to the Maxwell construction.

Example 6.5 [( x+2x2+2x13

5 ,x5) – BSC] Consider the dd pair ( x+2x2+2x13

5 ,x5) and
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the corresponding LDPC ensemble. We assume that transmission takes place over
the family {BSC(h(ε))}. Figure 6.3 (iv) shows on the left the EBP GEXIT curve
and the corresponding BP GEXIT curve (with two jumps). The picture on the
right shows the conjectured MAP GEXIT curve (with one jump) according to the
Maxwell construction.

(i) Example 6.2
dd pair (x2,x5)
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(iii) Example 6.4
( 3x+6x2+11x7

20 ,x9)
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(iv) Example 6.5
( x+2x2+2x13

5 ,x5)
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Figure 6.3: Examples of LDPC ensembles over the BSC with the (conjectured) MAP
GEXIT function. Left: BP and EBP GEXIT curves. Right: Maxwell GEXIT curve.
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6.3.2 EBP Computation

Let us now explain how the EBP GEXIT curves of the previous examples have
been computed. Notice that ordinary density evolution at a fixed initial chan-
nel parameter cannot be applied. First, EBP curves include “unstable branches”
where the GEXIT curve is a non-increasing function of the channel entropy. These
branches are expected to correspond to locally unstable fixed point densities of the
density evolution equations. This is confirmed analytically for the erasure chan-
nel, and numerically for a generic BMS channel. As a consequence, these fixed
points cannot be approximated by iterating density evolution with a generic initial
condition (if we consider a static channel). Moreover, for a fixed channel param-
eter, multiple locally stable fixed point densities might coexist. Therefore (if we
consider a static channel) different initial conditions are required to achieve each
of these densities by density evolution.

Different ways for constructing the EBP densities can be imagined. In this the-
sis, we overcome the issue of the initial conditions by noticing that EBP GEXIT
curves are naturally parameterized by the intermediate densities, and in particular
by the entropy of the fixed point density. More precisely, consider a smooth and
degraded family {BMSC(h)} and x ∈ [0,1]. Then, we expect that there exists at
most one value of the channel parameter h = h(x) and one density fx, such that
H(fx) = x and (cx

M= BMSC(h(x)), fx) forms a pair of fixed point densities. This
naturally suggests running density evolution at fixed density entropy.

Let Th denote the ordinary density evolution operator at fixed channel BMSC(h).
Formally Th(a)

M= c�λ(ρ(a)) where c
M= BMSC(h). For any x ∈ [0,1], we de-

fine the density evolution operator at fixed entropy x, Rx as Rx(a)
M= Th(a,x)(a)

where h(a,x) is the solution of H(Th(a)) = x if such a solution exists, other-
wise H(Th(a)) is undefined. Since, for a given a, the family Th(a) is ordered by
physical degradation, H(Th(a)) is a non-decreasing function of h. Therefore the
equation H(Th(a)) = x has at most one solution. Furthermore, since the chan-
nel family BMSC(h) is smooth, H(Th(a)) is continuous. Note that H(T0(a)) = 0,
i.e., if the channel is noiseless, then the output density at a variable nodes is
noiseless as well. Therefore, a necessary and sufficient condition for a solu-
tion h(a,x) to exist (assuming that the family {BMSC(h)}h is complete) is that
H(T1(a)) = H(λ(ρ(a)))≥ x.
Any fixed point of Rx, i.e., any f such that f = Rx(f) is also a fixed point of
ordinary density evolution for BMSC(h) with h = h(f,x), and corresponds to a
point on the EBP GEXIT curve. Furthermore, if a sequence of densities such that
a`+1 = Rx(a`) converges (weakly) to a density f, then f is a fixed point of Rx and
has entropy x.

This motivates the following numerical procedure.

(i) Set the initial condition a0
M= BMSC(x).
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(ii) For ` ≥ 0 compute a`+1 = Rx(a`). (Possible implementations are based on
sampling or on Fourier Transform. Due to the monotonicity of H(Th(a`)) in
h, the value of h(a`,x) can be determined efficiently by bisection.)

(iii) The current estimate of the EBP GEXIT curve is given in parametric form
by (h`,gEBP

` ), where h`
M= h(a`,x) is the estimate of the channel entropy, and

gEBP
`

M= G(BMSC(h`),b`) =
Z

∞

−∞

b`(y) lBMSC(h`)(y) dy, with b`
M= Λ(ρ(a`)).

(iv) Halt when some convergence criterion is met and return the current esti-
mate (h`,gEBP

` ). (In practical implementations one can require that a prop-
erly defined distance between a` and a`+1 becomes smaller than a certain
threshold.)

The described procedure is found to converge rapidly in practice. Moreover, the
limit is found to be (within numerical precision) independent of the initial condi-
tion a0. Proving these statements for this particular procedure seems a challenging
task (notice that unlike in ordinary density evolution, the sequence {a`} is in gen-
eral not ordered by physical degradation). However it is possible to show that,
if x is such that Rx is “well-defined”, then this procedure has at least one fixed
point. This is shown in Appendix 6.A based on a new application of the extremes
of information combining presented in Theorem 3.1.

6.3.3 EBP Area Theorem

Recall from Chapter 4 that a key ingredient for proving the Maxwell construction
over the BEC is (the EBP area) Theorem 4.2. This theorem states that the integral
associated with the EBP curve equals the design rate. Combined with the upper
bound on the MAP threshold (based on the standard area theorem), it shows the
Maxwell construction in the various cases where the upper bound is proved to be
tight.

Let us assume that the EBP GEXIT curve obtained from the previous procedure
“behaves well” so that we can compute the associated integral. What is the value
of this integral? Is it again equal to the design rate of the considered dd pair? The
original proof of the EBP area theorem follows from a straightforward computa-
tion. It is therefore not possible to proceed in a similar fashion for BMS channels
because no analytic expression of the EBP curve is available in general. Let us
therefore look at the alternative proof presented in Example 3.8 for BEC(ε) un-
der the hypothesis that εSC ≤ 1. Following this proof we can extend the EBP area
theorem to general memoryless symmetric channels.

Theorem 6.3 [EPP Area Theorem – BMSC] Consider a dd pair (λ,ρ) and trans-
mission over the smooth and ordered family {BMSC(h)}. Let gEBP denote the
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corresponding EBP GEXIT function. Assume that the corresponding {fx}x and
{cx}x, x ∈ [0,1], form a complete fixed point family. ThenZ 1

0
gEBP(x)dh(x) = rλ,ρ

M= 1−
R

ρR
λ

.

Proof. We proceed as in Example 3.8. First, let us assume that the ensemble is
(l,r)-regular. Consider a variable node and the corresponding computation tree
of depth one as shown in Figure 6.4.

Let us assume that the bit associated

leaves

root

Figure 6.4: Computation tree of depth one for
the (2,4)-regular LDPC ensemble.

with the root node is passed through
the channel characterized by cx, while
those associated with the leaf nodes
are passed through a channel charac-
terized by fx. Apply the general area
theorem. Let X =(X1, . . . ,X1+l×(r−1))
be the transmitted random codeword
whose values are chosen uniformly at
random from the tree code. Let Y (x)
be the result of passing the bits of X

through their respective channels with parameter x. Note that H(X |Y (x = 1))−
H(X |Y (x = 0)) = H(X). This follows since by assumption the fixed point family
is complete. In particular this implies that the channel for x = 0 is the “noiseless”
channel so that H(X |Y (x = 0)) = 0. By the general area theorem, this difference
is equal to the sum of the integrals of the individual gMAP

i curves, where the integral
extends from x= 0 to x= 1. There are two types of individual gMAP

i curves, namely
the one associated with the root node, call it gr, and the l(r−1) ones associated
with the leaf nodes, call them gMAP

l . To summarize, the general area theorem states

H(X) =
Z 1

0
gMAP

r (x)
dh(x)

dx
dx+l(r−1)

Z 1

0
gMAP

l (x)dx.

Note that H(X) = 1 + l(r− 1)− l = 1− l(r− 2) since the computation tree
contains 1+l(r−1) variable nodes and l check nodes. Moreover,

R 1
0 gMAP

l (x)dx=R 1
0 1− ρ(1− x)dx = (r−1)/r. This follows by applying the area theorem once

again to a [r,1,r−1] single parity-check code. Collecting these observations and
solving for

R 1
0 gMAP

r (x) dh(x)
dx dx, we getZ 1

0
gMAP

r (x)
dh(x)

dx
dx = 1−l/r = rl,r,

as claimed since gMAP
r = gEBP. The irregular case follows in the same manner: we

consider the ensemble of computation trees of depth one where the degree of the
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root note is chosen according to the node degree distribution Λ and each edge
emanating from this root node is connected to a check node whose degree is cho-
sen according to the edge degree distribution ρ. As before, leaf nodes experience
the channel characterized by fx, whereas the root node experiences the channel
characterized by cx. We apply the general area theorem to each such choice and
average with the respective probabilities.

As in Chapter 4 for the erasure channel, this result imposes some strong con-
straints on BP GEXIT functions and their connection to Maxwell functions. The
next corollary is an example where we can show that the Maxwell curve is a.e.
equal to the MAP GEXIT curve under the assumption that the fixed point density
family is smooth (and complete).

Corollary 6.1 Consider communication over the complete and ordered smooth
family {BMSC(h)}h, h ∈ [0,1] using codes chosen uniformly at random from the
ensemble LDPC(n,λ,ρ). Assume that the BP fixed point family {BMSC(h),ah}
is smooth and complete. Then MAP GEXIT and BP GEXIT functions coincide
for h ∈ [0,1].

Proof. The hypotheses of Theorem 6.3 are satisfied, therefore
R 1

0 gBP(h)dh = rλ,ρ

Further, by the general area theorem (and applying Fubini’s theorem and Fatou’s
lemma as in the proof of Theorem 6.2)

R 1
0 gMAP(h)dh ≥ rλ,ρ. We conclude the

proof by noticing that gMAP(h)≤ gBP(h) for every h ∈ [0,1] as shown in 6.1.

Discussion: Unfortunately, for a given dd pair (λ,ρ), proving that the hypotheses
of the previous corollary hold, in particular that the family is complete, seems to
be a challenging task. Of course, numerical computations suggest that this is in
fact the case in examples like cycle-code ensembles, see, e.g., Figure 6.2. The
existence of a fixed point pair (fx,cx) for each value of x = H(fx) is demonstrated
in many cases by Theorem 6.4 (see Appendix 6.A). Some partial analytic results
are further presented in [53] to show that the corresponding channel densities are
smooth.

6.4 Conclusion and Discussion
We have seen the first steps to prove the fundamental connection between MAP
and BP decoding for general BMSCs. The central character is the EBP GEXIT
curve based on which a Maxwell-type construction can be performed. The result-
ing curve is conjectured to represent the MAP GEXIT curve.

More precisely, via the numerical procedure of Section 6.3, we were able to ob-
tain densities that describe “unstable” or “hidden stable” branches of the EBP
GEXIT curve. Notice first that we could imagine alternative ways to compute
these branches and the EBP GEXIT in general. For example, we could modify
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the BP standard algorithm to include a dynamical channel parameter so that we
could follow even the unstable branches (this idea is similar to the “unrevealing”
algorithm described in conclusion of Chapter 4). Moreover, the existence, unique-
ness and regularity of the EBP GEXIT curve obtained in this chapter needs to be
formally established. Further investigations need therefore to be performed on
this topic. They will certainly deal with the fixed point theory (e.g., Brouwer and
Schauder theorems) for deriving formal properties of regularity. Alternative ap-
proaches (e.g., via a modified BP algorithm such as the M decoder for the BEC)
should also be investigated in order to answer the following question. What is
the interpretation of the Maxwell construction in this general context? Is there
any operational meaning of this construction, i.e., what is the equivalent of the M
decoder for a generic BMS channel?

Let us here summarize what we are able to prove so far. Using GEXIT functions,
we have proved an upper bound on the MAP threshold. This bound is conjec-
tured to be tight for a class of ensembles that includes regular LDPC ensembles.
Moreover, using EBP GEXIT curves, we have derived some constraints on the
relationship between MAP and BP decoding over general BMS channels. These
constraints lead us naturally to postulate that the Maxwell construction holds in
the general framework of memoryless symmetric channels. This is shown in many
cases over the erasure channel.

A natural question arises: Does the coincidence of the BP and MAP GEXIT
curves mean that the BP and MAP estimates are equal? Of course, this is true
below BP threshold, see [14, 15], but we wonder whether the same is true if we
assume that the two GEXIT functions coincide. Perhaps surprising, the answer
is positive. We show indeed in [50] that, if the BP and MAP GEXIT functions
are equal for h, then, for any given sparse graph code, the average mean square
error between extrinsic BP and MAP soft bits, i.e., between tanh(φBP

i (y∼i)
2 ) and

tanh(φMAP
i (y∼i)

2 ) (see [63]), tends to zero when first n→∞ and second `→∞. This
implies a rather strict notion of the “correctness” of BP decoding since this shows
that BP decoding should be able to reconstruct the full information about Xi, given
a received vector.

The general area theorem and its consequences might have far wider implications.
This has been discussed in Chapter 4 in the erasure case where we have seen that
potential applications concern optimization theory. The next (and last) chapter
presents some further applications in the field of coding theory.
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Appendix

6.A Existence of EBP GEXIT Points
The existence of an EBP GEXIT curve associated with the procedure described
in this chapter can be partially demonstrated. We show in this appendix that there
exists at least one EBP GEXIT value for each entropy parameter x. Whereas it
shows the existence of a EBP GEXIT curve obtained from the considered proce-
dure, it does not show, e.g., that the curve is smooth.

Theorem 6.4 Consider a dd pair (λ,ρ), x ∈ [0,1], and let Rx be the corresponding
density evolution operator at fixed density entropy x for the complete and ordered
smooth family {BMSC(h)}h. If H(λ(ρ(a)))≥ x for any density a with H(a) = x,
then there exists at least one density f such that Rx(f) = f. Equivalently, H(f) = x
and there exists h ∈ [0,1] such that f is a fixed point of density evolution for the
channel BMSC(h).

Proof. Consider the space Sx of L-densities a such that H(a) = x. Any element
in Sx is a probability measure on the completed real line, satisfying the symmetry
condition (formally a(−x) = e−xa(x)). Vice versa, any such probability measure
(to be denoted formally by its “density” a) with E[log(1 + e−x)] = x corresponds
to a unique element of Sx. Notice that the completed linear line R∞

M= [−∞,+∞]
is a compact metric space (we can for instance identify it with [−1,1] through the
mapping x 7→ tanh(x/2) and use the euclidean metric on [−1,1]). Therefore, the
space of probability measure on R∞ is sub-sequentially compact under the weak
topology by Prohorov’s theorem [68]. Both the symmetry condition and H(a) = x
are closed under the same topology, and therefore Sx is compact as well.
Let BL be the space of bounded Lipschitz functions on R∞ (as above, we iden-
tify R∞ with [−1,1] and consider the Lipschitz condition with respect to the in-
duced distance) with the corresponding norm || · ||BL. The space of probability
measures on R∞ can be viewed as a convex subset of the dual space BL∗, and
the topology induced by the dual norm || · ||∗BL coincides with the weak topology
(see [68, Chap.III,§7]). As a consequence Sx is a compact convex subspace of a
normed linear space. By hypothesis, the mapping a 7→ Rx(a) is well-defined for
any a ∈ Sx and maps Sx into itself. Furthermore, it is easily seen to be continuous
with respect to the weak topology. This is a consequence of the Lipschitz conti-
nuity of the functions (y1, . . . ,yl) 7→ y1 + · · ·+ yl and (y1, . . . ,yr−1) 7→ �r−1

i=1 yi
Therefore Rx is compact and, by Schauder’s theorem (see [159, Chap.4]) it has at
least one fixed point.

Note that the procedure considered to compute the EBP GEXIT curve, as well as
Theorem 6.4, holds unchanged if the entropy functional H( ·) is substituted by any
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continuous linear functional that preserves the partial order implied by physical
degradation.

6.B Bounds on the EBP GEXIT Curve
In order to check the hypotheses of Theorem 6.4, it is useful to prove bounds
on the entropy of fixed point pairs (f,c). We start by recalling upper and lower
bounds on the entropy of Th(a), which follows from the extremes of information
combining.

Lemma 6.2 [Lower Bound and Upper Bound] Consider a dd pair (λ,ρ) and trans-
mission over BMSC(h).
(i) Lower bound: Define

l(x) M= λ(x), r(x) M= ∑
i

ρih2

(1− (1−2ε(x))i−1

2

)
,

where ε(x) M= h2
−1(x). If a is a L-density with H(a) = x, then H(Th(a))≥ h l(r(x)) .

(ii) Upper bound: Define

l(h,x) M=∑
i

λi fi−1(h,x) , r(x) M= 1−ρ(1−x)

where fi(h,x)
M= ∑

k∈{±1}

i
∑
j=0

( i
j

)
(1− ε(x)) jε(x)i− jak(h) · log2

(
1 + ε(x)2 j−ia−k(h)

(1−ε(x))2 j−iak(h)

)
,

a+1(h)
M= 1− ε(h), a−1(h)

M= ε(h), and ε(h) M= h−1
2 (h) as above. If a is a L-density

with H(a) = x, then H(Th(a))≤ l(h,r(x)) .

Proof. The extremes of EXIT functions (see [105, 106, 131, 134]) have been pre-
sented in Theorem 3.1. Moreover expressions for EXIT functions on the BEC and
BSC have been derived in Chapter 3.
(i) Following Theorem 3.1, for fixed H(a) and H(b), a�b has minimum entropy
if a and b are the densities corresponding to a BEC. But, for the convolution at a
parity-check node the minimum is achieved when the input densities correspond
to a BSC. The lemma follows by applying these bounds to random variable and
check nodes with degree distributions given by λ and ρ.
(ii) The roles are BEC and BSC are simply exchanged and a similar proof applies
by Theorem 3.1.

This result can be used to check the hypotheses of Theorem 6.4. We deduce that,
if l(r(x)) ≥ x for some x ∈ [0,1], then there exists a fixed point pair (f,c) with
H(f) = x and c = BMSC(h) for some h. For instance, for cycle-codes (i.e., for
λ(x) = x) this implies that such a fixed point pair (f,c) exists for any H(f) = x ∈
[0,1].
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Theorem 6.5 [Bounds on EXIT Function] Consider a dd pair (λ,ρ) and transmis-
sion over the ordered family {BMSC(h)}h. Define the functions

L(x) M= Λ(x) , L(x) M= ∑
i

Λi fi(1,x),

and f (x,x′) M= max{h : l(h,x′) = x} (with the convention f (x,x′) = 0, if the set
is empty). Let f denote any fixed point of density evolution, i.e., f = Th(f). If
H(f) = x then

f (x,r(x))≤ h≤ x/l(r(x)), L(r(x))≤ hEBP ≤ L(r(x)).

In other words, the entropy parameters of any fixed points of density evolution,
and so in particular the function hEBP, are contained in the union of rectangles as
given above.

Proof. The first two inequalities follow from Lemma 6.2. From Lemma 6.2 (i) we
get x = H(f) = H(Th(f)) ≥ h l(r(x)), which gives the upper bound on h. Analo-
gously, Lemma 6.2 (ii) implies x ≥ l(h,r(x)). Since l(h,r(x)) is monotonically
increasing in h, this relation can be inverted.
Given the fixed point f, the corresponding EXIT entropy at variable nodes is hEBP =
H(L(ρ(f))). The bounds are obtained as in the proofs of Lemma 6.2.

Discussion: The bounds given above are by no means the best possible. First, the
given bounds are “universal” in the sense that they are valid for all channel distri-
butions. Better bounds for any specific channel family can be derived by taking the
actual input distribution into account. Even in the universal case, slightly better
bounds can be given by taking into account that at the variable node before convo-
lution with the channel, the incoming message density cannot be of arbitrary shape
but that it is already the convolution of several message densities. Second, tighter
bounds on the extremes of information combining have been derived in [132] and
can be translated to give tighter bounds on EXIT functions, albeit at the price of
more complex expressions. Finally, by using a similar technique one can also give
bounds on the entropy versus GEXIT parameter of any fixed point with respect to
any smooth channel family.

Example 6.6 [LDPC(2/5x+3/5x5,x5)] Consider again the dd pair (λ,ρ)= (2/5x+
3/5x5,x5). Figure 6.5 shows on the left the construction of the bounded region
(union of rectangles) that contains all EBP GEXIT curves. The dashed lines rep-
resent the individual curves traced out by the corner points of the rectangles. On
the right, this is compared to the actual EBP GEXIT curves for transmission over
the BSC and the BEC families (solid lines).

For many LDPC ensembles Theorem 6.4 ensures the existence of a fixed point
pair (fx,cx) for each value of x = H(fx). However, in order to apply (the EBP
area) Theorem 6.3, we need the hypothesis of a smooth family with respect to the
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Figure 6.5: Left: Construction of bounding region for all EBP EXIT curves for the
dd pair (λ,ρ) = (2/5x + 3/5x5,x5). Right: The EBP EXIT curves for transmission over
the BSC and the BEC families.

parameter x. The fact that this is indeed the case is strongly suggested by the nu-
merical computation of the EBP curve, however a complete characterization is not
available. We report some partial analytic results in [53] using the Battacharyya
operator. Since the Battacharyya functional is, for most channel families, a smooth
function of the channel parameter, then regularity with respect to the Battacharyya
operator translates into regularity with respect to the (G)EXIT operator (or any
functional that preserves partial order implied by physical degradation).
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7 Turbo Codes

Overview: Turbo codes are part of a number of standards.
They can be seen as a particular instance of a multi-edge struc-
ture. It is natural to investigate how the Maxwell construction
applies to these ensembles.

Although they were discovered in the early days of information theory [10], LDPC
codes have begun to have an impact on coding theory only since the second half
of the nineties. It was the discovery of Turbo codes [62] that ignited again the
interest for iterative coding systems, which had been long forgotten. Original
Turbo codes employ parallel concatenation (see [160]) in combination with a very
large interleaver. A similar idea was presented at the same time in [110]. The
so-called “Turbo principle” signified a revolution in coding theory.
Although we have illustrated our results using LDPC ensembles, the underlying
principles apply to a wide range of systems defined on sparse graphs and equiva-
lent statements are expected to hold in large generality. This is exemplified in this
chapter using in particular the example of Turbo schemes in Section 7.2. Turbo
schemes are instances of multi-edge coding systems (see [161]) for which differ-
ent types of edge-message densities co-exist. We start by an example, the class
of GLDPC codes, where the component codes are replaced by complex (linear)
constraints whereas the (average) edge densities remain from a single type.

7.1 MAP Thresholds for GLDPC Codes
To give a first example, consider GLDPC ensembles and the case of transmission
over the BEC. GLDPC codes were introduced in [57], and further investigated
in [79, 80]. GLDPC codes are LDPC codes whose check nodes are replaced by
more complex linear constraints. In other words, the parity-check matrix of a
GLDPC code is constructed from a suitable LDPC matrix where each non-zero
element on a row is replaced by a non-zero column vector (chosen uniformly at
random from the parity-check matrix of a so-called component code), and each
zero element is replaced by a zero vector. The analysis of GLDPC ensemble is
therefore similar to the one of LDPC ensembles. In fact, many of our previous
results are stated in such a way that they apply directly to GLDPC ensembles.
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Moreover, notice that it suffices that the “suitable” LDPC matrix fulfills the cri-
teria of Lemma 2.3 in order to ensure that the asymptotic rate of the considered
GLDPC ensemble is equal to the design rate (assuming that the component codes
have a full rank parity-check matrix).

The right-to-left erasure probability (or MAP EXIT function) often depends on
the edge type (except when all component codes are isotropic, see Chapter 3).
For GLDPC ensembles, we consider the average over all types of nodes and all
types of edges: Formally, the (MAP) EXIT function is y(x) M= E[ 1

r ∑
r
i=1 yi(x)],

where r is the length of a particular component code and where the expectation is
taken with respect to the proportion of component codes. The distribution λ can
be freely chosen but must satisfy the design rate constraint rλ,y = 1− 1−

R
yR

λ
whereR

y is the rate of the average component code (area theorem). Therefore, equiv-
alently to the dd pair (λ(x),ρ(x)) for LDPC codes, the pair (λ(x),y(x)) suffices
to describe the BP decoding of the GLDPC ensemble in the asymptotic limit. A
few computations lead, in general, to an expression for the right component EXIT
function y(x), see Chapter 3 or [32].

For example, consider GLDPC ensembles using [2p − 1,2p − p− 1,3] binary
Hamming codes as component codes. Since E[dmin] ≥ 3, the BP EXIT func-
tion has at least one discontinuity at the BP threshold, and the EBP EXIT curve is
given in parametric form by (ε,hEBP) =

(
x

λ(y(x)) ,Λ(y(x))
)
. In general, εBP 6= εMAP

since the BP threshold is not given by the stability condition if the right compo-
nent code has dmin ≥ 3 (as shown in Appendix 7.A). In the next table, we present
three examples for which the BP EXIT function has exactly one discontinuity at
the BP threshold. The first example uses [7,4,3] Hamming codes such that its de-
sign rate is r = 1

7 with the pair (λ(x),y(x)) = (x,3x2 +4x3−15x4 +12x5−3x6).
The second example uses the [15,11,3] Hamming code. It can be observed that
these standard GLDPC ensembles have relatively “poor” BP thresholds compared
to the corresponding MAP thresholds. In the third example, dmin is no longer > 2
since we choose, in the node perspective, a mixture composed by 40 percent of
[7,6,2] single parity-check codes, 40 percent of [7,4,3] Hamming codes and 20
percent of [15,11,3] Hamming codes.

λ(x) y(x) εBP εMAP εSH

x [7,4,3] 0.75645 0.85616 0.85714
x [15,11,3] 0.46785 0.52780 0.53333

3x+7x8

10 mixture 0.70483 0.71301 0.72801

7.2 MAP Thresholds for Turbo Codes
As a second example, we apply our upper bound on the MAP threshold to the
case of Turbo codes [62, 63, 73, 110, 162]. Without loss of generality, we exem-
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plify this case via the following (standard) class of bi-dimensional parallel Turbo
codes. Consider a binary rational function G(D) = p(D)/q(D) of degree m with
q0 = 1, see [163]. Fix a length n. Fix a permutation G over [n] (which is cho-
sen uniformly at random from Π[n] the set of permutations over [n]). Consider
a vector x[n], which represents n systematic bits. We append this vector with m

more zeros (termination) and we pass the resulting vector x(s) M= (x[n],0, · · · ,0) (or
sequence of systematic bits) through the filter G(D): we get a first sequence of
n +m parity bits (terminated convolutional code) that we call x(p1). We now per-
mute the n bits of x (i.e., we consider the binary vector (xG(1), · · · ,xG(n))), then
append them with m more zeros to obtain the vector (xG(1), · · · ,xG(n),0, · · · ,0)
that is passed through G(D), to get a second sequence of n + m parity bits that
we call x(p2). The described procedure to encode the “last” bits is called termi-
nation, see, e.g., [164]. Alternatives are truncation or, more elegant, tail-biting
(see, [136, 165–168]), for which the asymptotic analysis remains unchanged. The
natural rate of the resulting parallel concatenated Turbo code is 1/3 (if we neglect
the border effects which vanish like On(1/n)). In the sequel we focus mainly on
this class of standard Turbo code ensembles “à la Berrou-Glavieux”, which we
denote by PTurbo

(
G(D) = p(D)

q(D) ,x,0,n
)
.

Further refinements are possible. For example we can puncture the code by eras-
ing uniformly at random (with probability π) bits from the parity parts so that we
can adjust the rate as desired. We can also use different filters (for example G1(D)
and G2(D) so that the EXIT functions are complementary, see Example 7.2); in
the case where several different filters Gi(D) are used, the filter G(D) denotes
the average filter. More generally, we can consider irregular Turbo codes, see,
e.g., [169], by using a distribution λ(x) acting on the systematic bits, and then fil-
tering them with the (possibly average) filter G(D) to encode a parity part that we
further puncture with probability π. Let PTurbo

(
G(D),λ(x),π,n

)
denote such a

generic ensemble. This ensemble has design rate1 rΛ′(1),π = (1+Λ′(1)(1−π))−1.
Elements of this ensemble are distinct if the associated permutations G are distinct.
For our analysis we consider instances of codes that are chosen uniformly at ran-
dom from the ensemble.

For sake of clarity, let us present the factor graph associated with a standard bi-
dimensional Turbo codes of rate r = 1/3, i.e., let us consider PTurbo( p(D)

q(D) ,λ(x) =
x,π = 0,n). Recall that the mapping of a convolutional encoder at time i is de-
termined by the current state of the corresponding trellis, which we denote by
σ

( j)
i for the jth encoder ( j ∈ {1,2}). Assume that the vector (x(s),x(p1),x(p2))

is transmitted through {BMSCi(hi = h)}i∈[3(n+m)] so that a corresponding vector
(y(s),y(p1),y(p2)) is received. Then, for i ∈ [n+m], the MAP rule maximizes over

1The considered component codes have rate rC = 1/2 before puncturing of the parity parts. In
general, we can use component codes of any rate rC so that the Turbo ensemble has design rate
rrC ,Λ′(1),π = rC

/(
rC +Λ′(1)(1− rC)(1−π)

)
.
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xi ∈ {0,1} the quantity

p(x(s)
i |y

(s),y(p1),y(p2))

= ∑
∼x(s)

i

p(x(s),x(p1),x(p2),σ(1),σ(2)|y(s),y(p1),y(p2))

= ∑
∼x(s)

i

(n+m

∏
j=1

p(x j)p(y(s)
j |x

(s)
j )∏c∈{1,2}p(y(pc)

j |x
p(c)
j )

)
·

(
∏

c∈{1,2}
p(σ(c)

0 )
n+m

∏
j=1

p(x(pc)
j ,σ

(c)
j |x

(s)
Gc−1( j),σ

(c)
j−1)

)
,

where G( j) M= j for j ∈ {m + 1, · · · ,n + m}. The corresponding factor graph is
depicted in Figure 7.1.
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Figure 7.1: Forney-style factor graph of a parallel concatenated Turbo code.

As explained in Section 2.5, standard rules for message-passing decoding apply
on this graph. Note that we consider here the following traditional scheduling of
the messages. Figure 7.1 shows explicitly two subgraphs (vertical “line” on the
left, vertical “line” on the right) that correspond to the trellises of length n + m
for each particular component code. The Turbo decoding schedule is governed by
the point of view of component codes (see [57]). Each trellis is first processed en-
tirely, then messages are passed to the second trellis. Each time a message is pro-
cessed by a trellis, the iteration counter ` is increased by one. In other words, we
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decode the component convolutional code(s) using the BCJR algorithm of [77].
This will give rise to (G)EXIT chart representations of density evolution where
the (G)EXIT functions are associated with the component codes.

The standard principles of density evolution (concentration around ensemble av-
erage, analysis on the computation tree, channel symmetry, see Chapter 2 and
Chapter 3) can be applied. For the tree-like assumption of the computation pro-
cedure, we consider a windowed BCJR decoding (i.e., a processing up to a depth
of w trellis sections of each side of the considered node) of the component codes.
Under this assumption the local graph is a tree with probability converging to one
(for a fixed number of iterations ` > 0 when n→∞). If we let first w→∞, and then
`→ ∞, we can ignore the border effects of the trellis processing. See also [170].
Studying the stationary behavior of the Markov chain, i.e., investigating a bi-
infinite trellis, suffices to perform density evolution analysis. Figure 7.2 depicts
such a bi-infinite trellis: We define the following functionals y

(s)
G(D) and y

(p)
G(D) act-

ing on a pair of systematic/parity densities (x,cπ). The extrinsic “systematic”
density that the bi-infinite trellis outputs is given by (x,c(π)) 7→ y

(s)
G(D)(x,c

(π)). In

a similar manner, let (x,c(π)) 7→ y
(p)
G(D)(x,c

(π)) represent the extrinsic “parity” den-
sity.

Let us first state several equivalency relationships that decrease the number of
cases one has to investigate. These relationships can be obtained from a small
exercise considering either an equivalent code (ignoring the border effects because
of the bi-infinite trellis) or the structure of a trellis section. To a binary polynomial
p(D) with p0 = 1 we associate the reversed polynomial

�
p(D) = Ddeg(P) p(1/D).

This definition extends to a binary rational function G(D) = p(D)
q(D) with p0 = q0 = 1

by setting
�

G(D) M=
�
p(D)
�
q (D)

.

Lemma 7.1 [Equivalence of Encoders] Consider a convolutional encoder defined
by a binary rational function G(D) M= p(D)

q(D) with q0 = 1. Consider the two associ-

ated functionals y
(s)
G(D)(·, ·) and y

(p)
G(D)(·, ·). Then, for any pair of L-densities (a,b),

∀yG(D) ∈ {y
(s)
G(D),y

(p)
G(D)}, and ∀ j ≥ 1,

(i) yG(D j)(a,b) = yG(D)(a,b), (ii) yG(D)(a,b) = yD jG(D)(a,b),

(iii) yG(D)(a,b) = y�
G(D)

(a,b), (iv) y
(s)
G(D)(a,a) = y

(p)
G−1(D)(a,a),

where (iii) and (iv) hold if p0 = 1.

Let us now run density evolution applied to a Turbo ensemble PTurbo(G(D) =
p(D)
q(D) ,λ(x),π,n). Assume that transmission takes place over a BMS channel with
associated L-density c.
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Let cπ denote the L-density emitted from the “parity” nodes; this notation indi-
cates that the density is obtained from the concatenation of c with BEC(π). Let
x` denote the L-density emitted from the “systematic” nodes towards the trellis at
iteration `. Then x0 = ∆0, and for `≥ 0,

x`+1 = c�λ
(
y
(s)
G(D)(x`,c

π)
)
.

In the general case, densities obtained

x
−→

cπ

←−

x
−→

cπ

←−

x
−→

cπ

←−
←−

y
(s)
G(D)

−→
y

(p)
G(D)

←−
y

(s)
G(D)

−→
y

(p)
G(D)

←−
y

(s)
G(D)

−→
y

(p)
G(D)

Figure 7.2: Bi-infinite trellis: “Systematic”
variable nodes are received from a BMSC
with L-density x. “Parity” nodes are re-
ceived from a BMSC with L-density cπ . Af-
ter trellis processing, “systematic” nodes ex-
perience the extrinsic density y

(s)
G(D)(x,c

(π))
while “parity” nodes experience the extrinsic
density y

(p)
G(D)(x,c

(π)).

from the described density evolution
process “live” in a high dimensional
space. This makes an exact computa-
tion of the extrinsic density obtained
from the functional yG(D)(·, ·) cumber-
some. In practice, except in the BEC
case (see Appendix 7.B), we determine
these densities by sampling.

In order to upper bound the MAP thresh-
old, it remains to derive the BP GEXIT
function associated with a particular
ensemble. This curve represents the
performance of the overall Turbo code
once the fixed point of density evolu-
tion has been achieved. Let x∞ de-
note the fixed point density emitted
from the trellis towards the “system-
atic” nodes. The BP GEXIT function
is given in parametric form by(

H(c),
Z (

rΛ′(1),πΛ
(
y
(s)
G(D)(x∞,cπ)

)
+(1− rΛ′(1),π)y(p)

G(D)(x∞,cπ)
)

(z)lc(z)dz
)

where rΛ′(1),π
M= 1

1+Λ′(1)(1−π) is the design rate of the ensemble.
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Figure 7.3: BP GEXIT function for the Berrou-Glavieux code over the BAWGNC.
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As in Chapter 4 and Chapter 6 we find an upper bound for the MAP threshold by
moving a vertical line from the right to the left, starting at 1 until the area under
the BP GEXIT curve is equal to rΛ′(1),π . The BP GEXIT curves for the ensemble

of rate 1/2 parallel Turbo codes with G(D) = 1+D+D2+D3+D4

1+D4 , π = 1
2 , λ(x) = x

and transmission over the BAWGNC is shown in Figure 7.3. The BP threshold
is h

BP ≈ 0.473 and our (expected tight) upper bound on the MAP threshold is
h

MAP ≈ 0.488 (close to the Shannon threshold which is hSH = 0.5).

For completeness, we give a few exact results for the BEC case in the next table,
where the symbol † indicates the tightness of the stability condition and the last
row (S) represents a standard serial concatenated scheme.

λ(x) y(x) εBP εMAP εSH

x 1+D2

1+D+D2 0.6428 0.6554 0.6667

x 1+D+D2

1+D2 0.6478† 0.6523 0.6667

x 1+D+D3

1+D2+D3 0.6369 0.6621 0.6667

x 1+D+D3

1+D2+D3 , 1+D+D3

1+D 0.6481 0.6570 0.6667

x 1+D+D3

1+D2+D3 , π = 1
2 0.4651 0.4864 0.5

55x+45x9

100
1+D+D3

1+D2+D3 , π = 68
100 0.4825 0.4950 0.5

x 1+D2

1+D+D2 (S) 0.6896 0.7484 0.75

7.3 Conclusion and Discussion
Although most of the thesis is concerned with LDPC ensembles, in this brief chap-
ter, we have seen that the basic ideas carry over to more general ensembles such
as GLDPC or Turbo ensembles.

Alternative ensembles and examples could be given and discussed; peculiarities
(for example the fact that the BP and MAP thresholds can be arbitrarily far apart,
and nevertheless still be connected by the Maxwell construction as shown in Ap-
pendix 7.C) can be specified; related subjects such as Markovian channels and the
computation of their capacity can also be investigated (see, e.g., [171–179]). In
fact, our concepts apply to a much wider setting. Ramifications in domains such
as optimization (with, e.g., the “XORSAT” problem as discussed in Chapter 4, or
other related problems) would be further examples.
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Appendix

7.A Properties of GLDPC Ensembles
Let us give some examples of basic properties. Without loss of generality, let us
exemplify two statements for the case of transmission over the BEC. Contrary to
LDPC or Turbo ensembles, GLDPC ensembles in general have infinite stability
condition threshold. This is shown using the minimum distance theorem, see
Chapter 3 for the case of the BEC.

Lemma 7.2 [Stability Condition] Consider a variable node degree distribution
λ(x) = ∑

l
i=2 λixi−1 (from an edge perspective) and a family of component codes

whose averaged minimum distance is ≤ dmin. Let y(x) denote the EXIT func-
tion associated with the family of function nodes (or component codes) where the
function is uniformly averaged over the edges. Consider the recursive sequence
x`+1 = ελ(y(x`)) with x0 = 1.
[Necessity] If dmin = 2 and λ′(0)y′(0) > 1

ε then ∃ξ = ξ(λ,y, ε) ∈ (0,1], such that,
∀`, x` = x`(ε) > ξ.
[Sufficiency] If dmin = 2 and λ′(0)y′(0) < 1

ε or if dmin ≥ 3 then ∃ξ = ξ(λ,y, ε) ∈
(0,1], such that if, for some `, x` = x`(ε)≤ ξ then x`→ 0 as `→ ∞.

Although it was surprising in the early years of Turbo codes, it is now well-known
that the choice of “good” component codes does not necessarily help (if we do not
consider complexity or finite-length issues) when we aim at optimizing iterative
coding systems. This can be seen as a direct implication of the formula C(ε)−r =
DR
λ

; this is formalized in the next lemma.

Lemma 7.3 [“Good” Component Code Paradox] Consider a sequence of GLDPC
ensembles, which we denote by {GLDPCn(n,λn(x),cn(x))}n where cn(x) is the
(MAP) EXIT function associated with the averaged mixture of component codes
for the ensemble GLDPCn. Assume that the component mixture has a fixed rate
rc =

R 1
0 cn(x)dx∈ (1−

R
λn,1). Let rλn

M= 1− 1−rcR
λn
∈ (0,1) be the design rate of the

ensemble and εBP
n be the associated BP threshold. If the sequence of component

codes is such that, for x < 1− rc, cn(x) decreases and cn(x)
n→∞−→ 0 (component

codes achieve capacity), then the limiting gap to capacity liminfn→∞[C(εBP
n )− rλn ]

is lower-bounded by 1− rc > 0.

Proof. As the function λ−1
n (x/ε) is concave, the area D is, in the limit of large n,
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at least as large as the area of the triangle ((0,0),(1− rc,0),(1− rc,1)), which is
1−rc

2 . Therefore C(εBP
n )− rλn = DΛ′(1)≥ 2D .

7.B Turbo Codes over the BEC
A further observation Ω such that Y → X →Ω has been included in the hypothe-
ses of the general area theorem in Chapter 6. This additional observation Ω allows
us to extend the area theorem to GEXIT charts and parallel concatenated systems.
For simplicity, and because of the elegant closed-form expressions for EXIT func-
tions of convolutional codes, let us exemplify this extension with the BEC case.

A Simplified Matching Condition

We first introduce some code restrictions that allow us to apply the area theorem
in a very simple way: For example the area under the “systematic” EXIT function
associated with convolutional codes of rate 1/2 (see Appendix 7.B) will be equal
to ε (if the parity bits are transmitted through BEC(ε)).

Let C be a proper [n,k] binary linear code with rate rC = k/n, and consider X
chosen uniformly at random from C.

Definition 7.1 For ∆ ⊆ [n], we say that the pair (∆, [n] \∆) is a C-compatible
partition of [n] if H(X∆) = k and H(X[n]\∆) = n−|∆|.

Discussion: If C has generator matrix G, then the partition (∆, [n] \∆) is C-
compatible if rk(G∆) = k and rk(G[n]\∆) = |[n]\∆|. Note that ∆ = [n] is a trivial
C-compatible partitioning set. The C-compatibility is a code (not an encoding)
characteristic. However the view of ∆ as a systematic2 encoding part is underly-
ing and we will use it for parallel concatenation.

Lemma 7.4 Consider a systematic generator matrix G for C, ∆⊆ [n], and assume
that (∆, [n]\∆) is a C-compatible partition of [n]. If ∆ represents the systematic
part of C, then rC ≥ 1

2 .

Proof. Consider the submatrix G∆ = Ik. If ∆ is a C-compatible partition of [n]
then rk(G∆) = k and rk(G[n]\∆) = n− k. Then k = rk(G) ≥ rk(G[n]\∆) = n− k,
which leads to rC ≥ 1

2 .

Example 7.1 Consider a systematic binary Hamming code Cp of length n = 2p−
1 for which the subset ∆ ⊆ [n] denotes the systematic part. Then the partition
(∆, [n]\∆) is Cp-compatible. Clearly rk(G∆) = k. Lemma 3.4 gives rk(G[n]\∆) =
rk(H∆). Since Cp is a Hamming code, H∆ is formed by all non-zero non-canonical

2An encoder is systematic if the associated generator matrix admits a k× k identity submatrix.
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p-tuples, and H[n]\∆ is formed by the canonical basis of {0,1}p. Any canonical p-
tuple can be obtained by adding the all-one column of H∆ and the corresponding
column of H∆ with only one zero coordinate. Therefore H∆ generates {0,1}p

and rk(H∆) = p = n− k.

Not only Hamming codes but many “good” codes have a compatible systematic
part. In particular, almost all convolutional codes encountered in practice in their
terminated and truncated block versions have this property.

Lemma 7.5 [Area Theorem and “Compatible” Set] Assume that Y is the result of
passing X through the channel family {BECi(εi)}i∈[n]. Let (∆, [n] \∆) be a C-
compatible partition of [n]. If there is a channel parameter pair (x, ε) such that
∀i ∈∆, εi = x, ∀i ∈ [n]\∆, εi = ε, thenZ 1

0

1
|∆| ∑i∈∆

hMAP
i (x, ε)dx =

(
1− n− k
|∆|

)
+
( n
|∆|
−1
)
ε.

Proof. Using the non-systematic part as a further observation obtained from BEC(ε),
we expand the result provided by the standard area theorem so thatZ 1

0

1
|∆| ∑i∈∆

hMAP
i (x, ε)dx =

1
|∆| ∑

P⊆[n]\∆
εn−|∆|−|P | (1− ε)|P |H(X∆|XP ).

For all P ⊆ [n]\∆, by definition of a C -compatible partition, we have H(X∆|XP )=
n−|P |. It suffices to use the Newton binomial to conclude the proof.

If the component codes have a rate larger than 1/2, then “good” component codes
for iterative parallel concatenation require a compatible systematic part. This is
a straightforward application of the matching condition and shows that in this
case the “compatibility” is no longer a restriction. This is the case of convolu-
tional codes presented in Appendix 7.B. Let us now present a simplified ver-
sion of the matching condition when we deal with parallel concatenation and
component codes of rate ≥ 1

2 . Consider a systematic code C with rate rC and
length n whose systematic bits are a compatible partition. Consider an ensemble
PTurbo(C,λ,n,π = 1), i.e., the ensemble of parallel concatenated Turbo codes that
use C as a component code. This ensemble has rate rλ,C = rC

rC+(1−rC)Λ′(1) . Consider
the EXIT chart method over BEC(ε), see Chapter 3: we plot the density evolution
process as a staircase function between the curve λ(x/ε) and the curve y

(s)
C (x, ε).

By C-compatibility, we get
R

y
(s)
C (x, ε)dx = 2− ε + 1

rC
(ε− 1). If the two EXIT

functions do not overlap, then some calculation reveals that the area between the
two is

D = 1− ε

Λ′(1)
− (2− ε+

1
rC

(ε−1)) =
1

Λ′(1)
(1− ε)− rλ,C

rλ,C
.
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In other words, it is proportional to the multiplicative gap to capacity (recall that
it was the additive gap to capacity for GLDPC ensembles). In order for the com-
munication to be asymptotically error-free, the matching condition again reads the
necessary condition D > 0 which says rλ,C < 1− ε.

Closed-Form EXIT Functions for Convolutional Codes
For the BEC we can derive compact and exact expressions for the EXIT function
of a convolutional code. We will then be able to provide an analytic expression for
the (upper bounds on) MAP thresholds of (parallel concatenated) Turbo codes as
shown in the last table of Section 7.2. The derivation of closed-form expressions
for EXIT functions on the BEC answers a question asked in [32]. The functionals
acting on the pair of densities can be computed exactly for the BEC. In this case,
density evolution assigns all the mass to only a finite number of state-probability
vectors and density evolution collapses to determining how the relative probability
mass for each such vector changes as a function of the iteration. The number of
such state probability vectors is found to be bounded by the following lemma.

Lemma 7.6 [Pascal-Like Triangle] Consider a binary convolutional code defined
by the generator [1,G(D) = p(D)

q(D) ] with degree m and q0 = 1. The maximum num-

ber |S(m)| of distinct state probability vectors is given by |S(m)|= ∑
m+1
p=1 Cm

p where
the numbers Cm

p are obtained from the following recursion in (p,n), ∀n≥ 1, ∀p ∈
{0,1, · · · ,n}, Cn+1

p+1 = Cn
p +2p+1Cn

p+1, with Cn
0 = 1 and Cn

n = 1.

This is best explained by an example. See also [47, 180]. Consider the recur-
sive component convolutional code with rate 1

2 and generator [1, 1+D2

1+D+D2 ]. It has
memory m = 2 (hence 4 states) and will be employed in a parallel concatenated
Turbo code with rate 1

3 . Consider the BCJR algorithm for which the forward
recursion (see [181]) is called α-recursion and the backward recursion is called
β-recursion. The final combining is called γ-recursion. We run density evolution
on PTurbo( 1+D2

1+D+D2 ,x,π = 0) over BEC(ε).

Under the bi-infinite trellis and the all-one codeword hypotheses, possible state
probability vectors at a trellis section of time i belong to the set

{(1,0,0,0),(1/2,1/2,0,0),(1/2,0,1/2,0),(1/2,0,0,1/2),(1/4,1/4,1/4,1/4)} .

These vectors correspond to the 5 states of a Markov chain for the α-recursion.
Denoting x to be the erasure probability associated with “systematic” nodes and
defining x

M= 1−x, we get the transition probability matrix

P(α)(x, ε) =


1−xε xε 0 0 0
x(1− ε) 0 x(1− ε) xε xε

0 1 0 0 0
x(1− ε) 0 xε x(1− ε) xε

0 x(1− ε) 0 0 1−x(1− ε)

 .
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The steady-state probability vector representing these 5 states satisfies the equa-
tion π̂(α)(x, ε)P(α)(x, ε) = π̂(α)(x, ε). It is

π̂(α)(x, ε) =
(
x(1− ε)

xε
,
x−xε

x+ ε
,
xx+ ε2−xε(1−2x+2ε)

1+ ε−x
,
xε

x+ ε
,

xε

x(1− ε)

)
.

A similar work can be performed to get the stationary vector π̂(β)(x, ε) associated
with the β-recursion. It suffices to combine π̂(α)(x, ε) and π̂(β)(x, ε) to get the
desired output from the γ-recursion. This gives a closed-form expression for the
extrinsic erasure probability. This compact form is sometimes quite simple, e.g.,

y
(s)

1
1+D

(x, ε) =
εx(2−2ε+xε)
(1− ε(1−x))2 .

In fact, BCJR decoding of a finite-length trellis over BEC(ε) gives rise to EXIT
functions that converge uniformly to the limiting EXIT function obtained from
the previous method. Therefore, not surprisingly, many finite-length statements
extend to bi-infinite trellises. Some more thought shows that the integral under
the EXIT function associated with the “systematic” nodes is ε. This was an ini-
tial intuition for the area theorem. More precisely, for a (convolutional) code
of length n with systematic bits passed through BEC(x) and parity bits passed
through BEC(ε), we see that H(X |Y (x),Ω(ε))

n = 1
n ∑

n
i=1 H(Xi|Y,X1, · · · ,Xi−1,Ω) =

x
n ∑

n
i=1 y

(s)
Cn (x(1− i

n ), ε) −→
n→∞

R x
0 y

(s)
Cn (x̃, ε)dx̃ where the first equality comes from a

similar averaging as in the proof of Theorem 3.5 and where the last inequality
is obtained as a Riemann sum in combination with uniform convergence. Some
more thought shows that the minimum distance theorem applied to the closed-
form expression of the EXIT function now gives the free distance of the convolu-
tional code.

Example 7.2 [BP Thresholds for Rate 1/3 Parallel Turbo Codes with m = 3] By
performing an exhaustive search we have collected all thresholds for standard en-
sembles PTurbo(G(D),λ(x) = x,π = 0) using the same m ≤ 3 rational function
G(D) for the two parity sequences (bi-dimensional symmetric Turbo code). For
example, using G1(D) = 1+D+D3

1+D2+D3 (UMTS generator), we found εBP ≈ 0.6369.

Using G2(D) = 1+D+D3

1+D (BN-LD generator, see [182]), we found εBP ≈ 0.6444.
Now, using the UMTS filter G1(D) for the first sequence of parity bits combined
with the BN-LD filter G2(D) for the second sequence of parity bits (this forms a

bi-dimensional asymmetric Turbo code), we get εBP = (26+6
√

33)
2
3 +2(26+6

√
33)

1
3−8

6(26+6
√

33)
1
3

≈

0.648, which exceeds all other BP thresholds found for bi-dimensional symmetric
Turbo codes with the given memory m≤ 3.
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7.C Difference between MAP and BP Threshold

Fix a design rate r ∈ (0,1)∩Z. Consider a sequence3 of dd pairs {(λ(x),ρ(x)) =
(xl−1,x

l
1−r−1)}l≥2 with fixed rate rl,r = r. Ensembles associated with this se-

quence are regular LDPC code ensembles. We have seen in Fact 4.1 that such
ensembles have at most one jump. Moreover, as discussed after Lemma 4.3, our
bound on the MAP threshold is expected (and can be shown) to be tight for any
regular LDPC ensemble.

It is already shown in [83] that, if l is increased, then the weight distribution of
such ensembles converges to the one of Shannon’s random ensemble and hence
the MAP threshold of such ensembles converges to the Shannon limit. Using
the (non-rigorous) replica method, an explicit asymptotic expansion of the MAP
threshold is given in [28].

Let us show here how to prove this fact using our machinery. The fact that the
(tight upper bound on the) MAP threshold εMAP(l) converges to the Shannon
threshold is shown in Fact 7.2. On the contrary, as stated in Fact 7.1, the BP
threshold εMAP(l) goes to 0 when l→ ∞. This shows that the two thresholds can
be arbitrarily far apart, and nevertheless the MAP EXIT curve can still be con-
structed from the corresponding EBP EXIT curve! This is illustrated in Figure 7.4
and the proofs are given in the sequel.

1.0

1.0

0.0
x

ε

εBP(2) = εSC

εBP(3)

εBP(12)
εBP(35)

εBP(100)

ε(x)

1.0

1.0

0.0
ε

h

εBP(2)

εBP(3)
εBP(4)

εBP(6)
εBP(12)

εBP(35)
εBP(100)

εMAP

h(ε)

Figure 7.4: Regular LDPC ensembles with design rate r = 1
2 . Left: Channel entropy func-

tion x 7→ ε(l)(x). Right: EBP EXIT curve h(l)(ε)←→ ε(l)(h). The depicted ensembles
are, in decreasing order, the (100,200), the (35,70), the (12,24), the (6,12), the (4,8), the
(3,6) and the (2,4) regular ensemble. While the BP threshold goes to 0, the MAP threshold
goes to the Shannon limit 0.5.

Lemma 7.7 For a fixed non-negative x∈ (0,1], denote ε(l)(x) M= x

(1−(1−x)
l

1−r−1)l−1
.

Then ε(l)(x) −→
l→∞

x.

3By convention we consider only the elements for which l
1−r −1 is a well-defined integer.
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Proof. This limit is classically obtained with (l− 1) log[1− (1− x)
l

1−r−1] ∼
l→∞

−(l−1)(1−x)
l

1−r−1 which gives (1− (1−x)
l

1−r−1)l−1 −→
l→∞

1−.

Fact 7.1 [Limiting BP Threshold for Regular LDPC Ensembles] Fix r ∈ (0,1)∩
Z. Consider the sequence (xl−1,x

l
1−r−1)}l≥2 with fixed design rate r. Then

εBP(l) −→
l→∞

0.

Proof. Consider first the BP threshold εBP(l) M= minx{ε(l)(x)}. Fix ξ > 0 (very
small). Clearly 0≤ εBP(l)≤ ε(l)( ξ

2 ), and, since ε(l)( ξ
2 )−→

l→∞

ξ
2 with Lemma 7.7, we

get ∃l0 ∈N, ∀l≥ l0 ε(l)( ξ
2 )≤ ξ

2 + ξ
2 . This gives that, for all l≥ l0, the statement

0≤ εBP(l)≤ ξ holds. This is true for any fixed ξ meaning εBP(l) −→
l→∞

0.

Instead of studying the parameterized EBP EXIT h(x) M= (1− (1− x)r−1)l, we
work directly with the inverse mapping h 7→ x(h) M= 1− [1− h

1
l ]

1
r−1 and we use

ε(h) = 1−[1−h
1
l ]

1
r−1

h
l−1
l

for h ∈ (0,1].

Lemma 7.8 For a fixed h ∈ (0,1), we have ε(h) = 1−(1−h
1
l )

r−1
l−r+1

h
l−1
l

−→
l→∞

0.

Proof. The second term of the numerator goes to 1 since log(1− h
1
l ) = logh

l
+

log( 1

h
1
l

−1) = logh
l

+ log(− logh
l

+o( 1
l
)) such that

r−1
l−1+ r

[
logh
l

+ log(
− logh

l
+o(

1
l
))] −→

l→∞
0.

The lemma follows from the fact that the denominator behaves as h
l−1
l ∼

l→∞
h >

0.

Discussion: Notice that ε(h) does not uniformly converge to 0 on (0,1) since, e.g.,R 1
0 ε(h)dh = 1− r 6= 0.

Fact 7.2 [Limiting MAP Threshold for Regular LDPC Ensembles] Fix r∈ (0,1)∩
Z. Consider the sequence (xl−1,x

l
1−r−1)}l≥2 with fixed design rate r, then

εMAP(l) −→
l→∞

εSH = 1− r > 0.
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Proof. First, obviously 0≤ εSH− εMAP(l). Second, from algebraic considerations,
we have

εSH− εMAP(l) = (1− r)− εMAP(l)

=
(

1−
Z 1

εMAP(l)
h(l)(ε)dε

)
−
(

1−
Z 1

εMAP(l)
dε

)
=

Z 1

εMAP(l)
[1−h(l)(ε)]dε

≤
Z 1

εBP(l)
[1−h(l)(ε)]dε =

Z 1

hBP(l)
[ε(l)(h)−hBP(l)]dh

≤
Z 1

hBP(l)
ε(l)(h)dh≤

Z 1

0
ε̃(l)(h)dh,

where hBP(l) M= ε−1(εBP(l)) and ε̃(l)(h) M=

{
ε(l)(h), if h ∈ [hBP(l),1),
εBP(l), if h ∈ (0,hBP(l)).

Fact 7.1 and Lemma 7.8 give ε̃(l) −→
l→0

0 for h ∈ (0,1) which, followed by the

application of the dominated convergence theorem to the sequence ε̃(l) ≤ 1, shows
that liml→∞

R 1
0 ε̃(l)(h)dh = 0. This completes the proof.
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[66] İ. E. Telatar, “Lecture notes.” EPFL, 2005.

[67] N. Wiberg, H.-A. Loeliger, and R. Kötter, “Codes and iterative decoding on
general graphs,” European Trans. on Telecommunications, vol. 6, pp. 513–
526, Sep./Oct. 1995.

[68] A. N. Shiryaev, Probability. Springer, 1996.

[69] O. Lévêque, “Lecture notes.” EPFL, 2005.

[70] O. Gallay, “Mutual information and mimimum mean-square error in Gaus-
sian channels.” Student project, EPFL (Advisor: O. Lévêque), 2005.

[71] J. Hagenauer, “Soft-in/soft-out: The benefits of using soft-decisions in all
stages of digital receivers,” in Proceedings of the 3rd International Work-
shop on DSP Techniques applied to Space Communications, (ESTEC, No-
ordwijk, Netherlands), Sept. 1992.

[72] J. Hagenauer, Soft is better than hard. Kluwer Publication, 1994. Proceed-
ings in Communications, Coding and Cryptology, (Blahut, D. and Costello,
D./Eds.).

[73] C. Berrou and A. Glavieux, “Near optimum error correcting coding and
decoding: Turbo-codes,” IEEE Trans. Commun., vol. 44, no. 10, pp. 1261–
1271, 1996.

[74] C. Berrou and A. Glavieux, “Reflections on the prize paper “near optimum
error correcting coding and decoding: Turbo codes”,” IEEE Inform. Theory
Society Newsletter, vol. 48, no. 2, 1998.



Bibliography 189

[75] S. M. Aji and R. J. McEliece, “The generalized distributive law,” IEEE
Trans. Inform. Theory, vol. 46, pp. 325–343, Mar. 2000.

[76] J. Pearl, “Fusion, propagation, and structuring in belief networks,” Artificial
Intelligence, vol. 29, pp. 241–288, 1986.

[77] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of lin-
ear codes for minimizing symbol error rate,” IEEE Trans. Inform. Theory,
vol. 20, pp. 284–287, Mar. 1974.

[78] T. Etzion, A. Trachtenberg, and A. Vardy, “Which codes have cycle-free
Tanner graphs?,” IEEE Trans. Inform. Theory, vol. 45, pp. 2173 – 2181,
Sept. 1999.

[79] M. Lentmaier and K. S. Zigangirov, “Iterative decoding of generalized low-
density parity-check codes,” in Proc. of the IEEE Int. Symposium on In-
form. Theory, (Boston, USA), Aug. 16–21 1998. pp. 441-445.

[80] J. Boutros, O. Pothier, and G. Zémor, “Generalized low-density (Tanner)
codes,” in Proceedings of the ICC’99, (Vancouver, Canada), June 1999. pp.
441-445.

[81] V. Zyablov and M. Pinsker, “Estimation of the error-correction complexity
of Gallager low-density codes,” Problemy Peredachi Informatsii, vol. 11,
pp. 23–26, Jan. 1975.

[82] G. A. Margulis, “Explicit constructions of graphs without short cycles and
low density codes,” Combinatorica, vol. 2, pp. 71–78, 1982.

[83] D. J. C. MacKay, “Good error correcting codes based on very sparse matri-
ces,” IEEE Trans. Inform. Theory, vol. 45, pp. 399–431, Mar. 1999.

[84] S. Benedetto and G. Montorsi, “Performance evaluation of turbo-codes,”
Electronics Letters, vol. 31, no. 3, pp. 163–165, 1995.

[85] D. Divsalar, S. Dolinar, F. Pollara, and R. J. McEliece, “Transfer func-
tion bounds on the performance of turbo codes.” TDA Progress Report 42-
122, Communications Systems and Research Section, California Institute
of Technology, 1995.

[86] G. Battail, M. Decouvelaere, and P. Godlewski, “Replication decoding,”
IEEE Trans. Inform. Theory, vol. 25, pp. 332–345, May 1979.

[87] P. Flajolet and R. Sedgewick, “The average case analysis of algorithms:
Saddle point asymptotics,” tech. rep., RR 2376, 1994.

[88] E. A. Bender and L. B. Richmond, “Central and local limit theorems ap-
plied to asymptotic enumeration II: multivariate generating functions,” J.
Combin. Theory, vol. A 34, pp. 255–265, 1983.



190 Bibliography

[89] A. Shamir and J. Spencer, “Sharp concentration of the chromatic number
on random graphs Gn,p,” Combinatorica, vol. 7, pp. 121–129, 1987.

[90] R. Sedgewick and P. Flajolet, An Introduction to Analysis of Algorithms.
Addison-Wesley, 1996.

[91] K. Azuma, “Weighted sums of certain dependent random variables,” To-
hoku Mathematical Journal, vol. 19, pp. 357–367, 1967.

[92] W. Hoeffding, “Probability inequalitites for sums of bounded random vari-
ables,” Journal of the American Statistical Association, vol. 58, pp. 13–30,
1963.

[93] G. Miller and D. Burshtein, “Asymptotic enumeration method for analyzing
LDPC codes,” IEEE Trans. Inform. Theory, vol. 50, pp. 1115–1131, June
2004.

[94] S. L. Litsyn and V. S. Shevelev, “On ensembles of low-density parity-check
codes: asymptotic distance distributions,” IEEE Trans. Inform. Theory,
vol. IT–48, pp. 887 –908, Apr. 2002.

[95] S. L. Litsyn and V. S. Shevelev, “Distance distribution in ensembles of
irregular low-density parity-check codes,” IEEE Trans. Inform. Theory,
vol. IT–49, pp. 3140 –3159, Dec. 2003.

[96] C. Di, T. Richardson, and R. Urbanke, “Weight distribution of iterative
coding systems: How deviant can you be?,” in Proc. of the IEEE Int. Sym-
posium on Inform. Theory, (Washington, USA), p. 50, June 24–29 2001.

[97] C. Di, T. Richardson, and R. Urbanke, “Weight distribution of low-density
parity-check codes,” IEEE Trans. Inform. Theory, 2004. submitted to IEEE
Trans. Inform. Theory.

[98] C. Di, Asymptotic and finite-length analysis of low-density parity-check
codes. PhD thesis, EPFL, Lausanne, Switzerland, 2004. Number 3072.

[99] C. Di, A. Montanari, and R. Urbanke, “Weight distributions of LDPC code
ensembles: combinatorics meets statistical physics,” in Proc. of the IEEE
Int. Symposium on Inform. Theory, (Chicago, USA), p. 102, June 27 – July
2 2004.

[100] R. L. Wheeden and A. Zygmund, Measure and integral. New York, USA:
Marcel Dekker, 1977.

[101] N. C. Wormald, “Differential equations for random processes and random
graphs,” Ann. Appl. Probab., vol. 5, pp. 1217–1235, 1995.



Bibliography 191

[102] N. C. Wormald, “The differential equation method for random graph pro-
cesses and greedy algorithms.” Notes on lectures given a the Summer
School on Randomized Algorithms in Antonin, Poland, 1997.

[103] J. Berkmann, “On turbo decoding of nonbinary codes,” IEEE Commun.
Let., vol. 2, pp. 94–96, 1998.

[104] C. Hartmann and L. Rudolph, “An optimum symbol-by-symbol decoding
rule for linear codes,” IEEE Trans. Inform. Theory, vol. 22, pp. 514–517,
Sept. 1976.

[105] I. Land, P. Hoeher, S. Huettinger, and J. B. Huber, “Bounds on information
combining,” in Proc. of the Int. Symposium on Turbo Codes and Related
Topics, (Brest, France), Sept. 2003.

[106] I. Sutskover, S. Shamai, and J. Ziv, “Extremes of information combining,”
in Proc. of the Allerton Conf. on Commun., Control and Computing, (Mon-
ticello, IL, USA), 2003.

[107] F. J. MacWilliams, “A theorem on the distribution of weights in a system-
atic code,” Bell System Tech. J., vol. 42, pp. 79–94, 1963.

[108] S. Riedel, “Symbol-by-symbol MAP decoding algorithms for high-rate
convolutional codes that use reciprocal dual codes,” IEEE J. Select. Areas
Commun., vol. 16, pp. 175–185, Feb. 1998.

[109] B. Bollobás, Random Graphs. Cambridge University Press, 2001.

[110] J. Lodge, R. Young, P. Hoeher, and J. Hagenauer, “Separable map “filters”
for the decoding of product and concatenated codes,” in Proceedings of
ICC’93, (Geneve, Switzerland), pp. 1740–1745, May 1993.

[111] S. ten Brink, “Convergence of iterative decoding,” Electronics Letters,
vol. 35, pp. 806–808, May 1999.

[112] S. ten Brink, “Iterative decoding trajectories of parallel concatenated
codes,” in Proc. of the Int. ITG Conf. on Source and Channel Coding,
pp. 75–80, Jan. 2000.

[113] S. ten Brink, “Iterative decoding for multicode CDMA,” in Proc. IEEE
VTC, vol. 3, pp. 1876–1880, May 1999.

[114] S. ten Brink, “Designing iterative decoding schemes with the extrinsic in-
formation transfer chart,” AEU Int. J. Electron. Commun., vol. 54, pp. 389–
398, 2000.

[115] S. Vialle and J. Boutros, “Performance limits of concatenated codes with
iterative coding,” in Proc. of the IEEE Int. Symposium on Inform. Theory,
(Sorrento, Italy), p. 150, June 25–30 2000.



192 Bibliography

[116] S. Vialle, Construction et analyse de nouvelles structures de codage de
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[173] F. Michaud, “Channel modeling and implementation of low-density parity-
check codes.” Student project, EPFL (Advisor: C. Méasson, R. Urbanke),
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