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Abstract—We present a theory, based on statistical mechanics,
to evaluate analytically the performance of uncoded, fully
synchronous, randomly spread code-division multiple-access
(CDMA) multiuser detectors with additive white Gaussian
noise (AWGN) channel, under perfect power control, and in
the large-system limit. Application of the replica method, a tool
developed in the literature of statistical mechanics, allows us to
derive analytical expressions for the bit-error rate, as well as the
multiuser efficiency, of the individually optimum (IO) and jointly
optimum (JO) multiuser detectors over the whole range of noise
levels. The information-theoretic capacity of randomly spread
CDMA channel and the performance of decorrelating and linear
minimum mean-square error (MMSE) detectors are also derived
in the same replica formulation, thereby demonstrating validity of
the statistical-mechanical approach.

Index Terms—Code-division multiple access (CDMA), large-
system analysis, multiuser detection, optimum multiuser detector,
replica method, statistical mechanics.

I. INTRODUCTION

WE evaluate analytically the performance of a class of
code-division multiple-access (CDMA) multiuser detec-

tors in the large-system limit. We adopt the Bayesian framework
and consider a class of multiuser detectors which we call the
Marginal-Posterior-Mode (MPM) detectors. It has its root in the
Bayesian image analysis [1], [2], and includes the jointly op-
timum (JO) and individually optimum (IO) multiuser detectors
as special cases. It has been recognized recently that fluctua-
tions of macroscopic properties of detectors, due to randomness
in the systems (e.g., random choice of signatures), vanish in the
large-system limit [3]–[7]. Such deterministic results have been
obtained by analytical arguments for some cases. Results for the
decorrelating detector and the linear minimum mean-squared
error (MMSE) detector can be found in [8]. Tse and Verdú [7]
have analyzed the performance of the JO multiuser detector in
the high signal-to-noise ratio (SNR) limit. We believe our re-
sult to be the first analytical result applicable not only for the
zero-noise limit, but also over the whole range of noise levels.
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The key idea of our analysis is to apply new tools and no-
tions developed in statistical mechanics. The motivation behind
this idea is as follows. Since the ultimate goal of statistical me-
chanics is to understand macroscopic properties of physical sys-
tems in the large-system (thermodynamic) limit, it is natural
to expect that the application of statistical-mechanical tools to
the large-system analysis of multiuser detectors will help under-
stand their macroscopic properties as well. We specifically make
use of thereplica method, developed in the field of spin-glasses
(magnetic materials characterized by random spin–spin interac-
tions) [9], [10]: Although a mathematically rigorous justifica-
tion of the replica method is still missing, it has recently been ap-
plied extensively to the analysis of problems in the field of infor-
mation processing, such as neural networks [11], [12], learning
from examples [13]–[16], statistical image restoration based on
Markov random fields [17], and error-control codes including
Gallager and turbo codes [18]–[23]. The results obtained by the
replica method are mostly nontrivial, and when applied to prob-
lems with known solutions, it successfully reproduces existing
results. They include the following.

Capacity of a linear classifier: The result by the replica anal-
ysis [13] on the maximum number of randomly-generated data
separable by a linear classifier reproduces Cover’s result [24] as
a special case.

Reliability function: Recently, Kabashimaet al. [23] have
successfully evaluated the random coding exponent and the ex-
purgated exponent for an ensemble of Gallager codes (not the
ensemble of whole random codes as treated in Gallager’s argu-
ment on the reliability function [25], but a smaller subset), ba-
sically following Gallager’s formalism, while using the replica
method instead of Jensen’s inequality. They have reproduced
the respective results on the two exponents by Gallager for the
random-code ensemble, which means that the ensemble of Gal-
lager codes istypical among the ensemble of random codes in
terms of asymptotic performance.

We demonstrate that the statistical-mechanical approach is
also applicable to the multiuser detection problem, and that it
yields novel results on optimum multiuser detectors, while suc-
cessfully reproducing some of the existing results.

We restrict ourselves to the analysis of cases with various
simplifying assumptions, including full synchronization,
random spreading, additive white Gaussian noise (AWGN)
channel, no fading, and perfect power control. This restriction
allows straightforward application of the replica method. In
spite of these simplifying assumptions, however, we think that
our results are of significance as benchmarking results, pro-
viding a prerequisite for understanding the multiuser detectors
in more practical situations. (See also a recent paper by Guo
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and Verdú [26] which extends the analysis presented here to
the unequal-power case.) Preliminary presentation of some of
the results of this paper are available in [27]–[29].

II. SYSTEM MODEL

We consider the basic fully synchronous-user CDMA
channel with perfect power control

(1)

where is the information bit (symbol) of user
, and where ; is the spreading sequence

of user , within the information-bit interval. We assume the
AWGN channel: , and is the amplitude of the
noise. We also assume the random spreading model, in which

; ; are assumed to be realiza-
tions of independent and identically distributed (i.i.d.) random
variables following a given symmetric distribution with zero
mean and unit variance. The scaling factor is introduced
so that the total energy of the spreading sequence for the infor-
mation-bit interval is normalized to. Let us define

(2)

Then the communication model (1) is written as

(3)

where .
The characteristics of the channel noise can also be described

by the conditional distribution of the received data, condi-
tioned on the information bits given the spreading sequences

. It is given by

(4)
We analyze the multiuser detection problem in the

large-system limitwhere , while the ratio of
to is kept fixed to

(5)

The basic quantity for analyzing the multiuser detection
problem is the posterior distribution , i.e., the distri-
bution of conditioned on received datagiven . We assume
that the detectors do not know the true level of the channel
noise, so that we can useas a control parameter in place of
the true noise level parameter. Under this assumption, the
posterior distribution is given by

(6)

where

(7)

is the normalizing coefficient, called the partition function. The
quantity is the prior distribution for the information bits.
Throughout this paper, unless otherwise stated, we assume the
uniform prior, i.e., for all . Since is now a
constant, we could drop it from mathematical expressions in the
following. But we prefer to keep until we perform detailed
calculations, in order to make its appearance explicit.

We now define a one-parameter family of multiuser detectors
the analysis of which is the main objective of this paper.

Definition 1: The Marginal-Posterior-Mode (MPM) detector
with control parameter is defined by

(8)

where the summation over means that we marginalize the
posterior distribution over all , .

Equivalently, we can define the MPM detector as

sign (9)

where denotes the expectation with respect to the posterior
distribution (6). In the limit , the MPM detector corre-
sponds to the JO multiuser detector [8],

(10)

and in the case where the control parameter is set to the true
noise level, i.e., , it gives the IO multiuser detector

(11)

These facts mean that the MPM detector is a one-parameter ex-
tension of the JO and IO multiuser detectors.

A common performance measure for multiuser detectors is
the bit-error rate . Let be the true information-bit vector.
The proportion of the bit error of a detector which outputsas
an estimate to is given by , where

(12)

We call thecorrelationof the detector output. By taking into
account the fact that all users are statistically equivalent in the
system model treated in this paper, the bit-error ratefor a
particular user is the same for all users, and it is given by the
average of . As is well known, the IO multiuser detector
is optimum in the sense that it achieves minimum bit-error rate.

One of the basic assumptions of the statistical-mechanics ap-
proach is that thefree energyper user , defined by

(13)

is self-averagingin the limit with respect to the ran-
domness of the spreading sequences and the noise. (Here, and
hereafter, logarithms are taken to base.) It is stated formally
as follows.
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Assumption 1:The limit exists
and it is equal to its average for almost all realizations of the
spreading sequences and the noise.

From this assumption, we have

(14)

(Here, and hereafter, stands for .) The overbar
denotes the average over the randomness of the spreading se-
quences, and is the probability of observing as the
output of the true channel, for the given spreading sequences.
We have

(15)

where we let

(16)
The normalization coefficient

(17)

is independent of the spreading sequences.
The free energy is nothing but thecumulant gen-

erating function[30], which carries all information about the
statistics of the system. Therefore, assuming the self-averaging
property of the free energy corresponds to assuming that the
fluctuations of macroscopic quantities, due to the randomness
of the spreading sequences and the noise, vanish in the large-
system limit. The self-averaging property has been proved for
the AWGN CDMA channel capacity [3], [4], performance of
the linear MMSE and decorrelating detectors, including the un-
equal-power case [5], [6], and performance of the optimum de-
tector in the zero-noise limit [7]. Although the self-averaging
property for the MPM detector has not yet been proved, and is
still an assumption, results for models such as those mentioned
earlier strongly suggest that it also holds for the MPM detector.
Even if the self-averaging property does not hold for the MPM
detector, the main results to be obtained in this paper still pro-
vide possible approximation to the performance of the MPM
detector, as well as a lower bound on the best possible perfor-
mance, provided that other technical assumptions are valid.

III. REPLICA ANALYSIS FOR MPM DETECTORS

A. Evaluation of Free Energy

In order to evaluate the free energy, we make use of thereplica
method(following basically the style of [31]) by which we have

(18)

where

(19)

It should be noted that, for finite , is well-defined for real
. It is straightforward to see that (18) holds by exchanging the

order of the averaging and the differentiation with respect to,
and by noting that . In the replica method, how-
ever, we will evaluate only for positive integers , and then
the result is applied to real. Weassume, without rigorous jus-
tification, that this procedure is valid [9]. Formally, the assump-
tion is as follows.

Assumption 2: for real is given, at least in the vicinity
of , by plugging the value of into the expression of ,
obtained by evaluating it only for positive integers.

For a brief introduction of the replica method and its ap-
plication to large-system analysis in a general setting, see Ap-
pendix I. For more extensive reviews on the replica method in
the statistical mechanics literature, see, e.g., [32], [10], [16]

Since for integer is nothing but the normalizing
coefficient for a system consisting ofreplicas of the posterior
probability (6) sharing the sameand , we can write down
explicitly as shown in (20) at the bottom of the page, where we
have introduced replicated random variables

to represent the random variables of the replicated posterior
probabilities. The integrand depends ononly through

and

Under mild additional conditions on the statistics of, these
quantities can be regarded, in the limit, as joint
Gaussian random variables with meansand covariances

. (See Appendix II for the justifi-
cation of this step.) Based on this observation, we decompose

(20)
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the summation over into two steps. First we perform the
summation over a single subshell of the form

(21)

and then integrate the result over all subshells. Thus, we have

(22)
where

(23)

is the probability weight of the subshell , and

(24)

is equal to the integral in (20) within the subshell , where
the bar denotes averaging over the Gaussian variables .
The covariance satisfies , so that the inte-
gration by should be taken over the interval .

The outline of the calculation is as follows (see also [33]). We
first assume the following.

Assumption 3:The order of the two limits and
in (18) can be interchanged without affecting the final

result.

Based on the assumption, we have

(25)

so that as the next step we evaluate .
From the theory of large deviations [30], [34], we know from
Cramér’s theorem that the probability measure of the
empirical means

satisfies, as , the large deviation property with a rate
function . Then, applying Varadhan’s theorem [30], [34]
(also known as Laplace’s method and the saddle-point method)
to (22) yields

(26)

Taking the derivative with respect toand then the limit ,
we will obtain the final result.

First, we work with . An implication of the applica-
tion of Varadhan’s theorem to (22) is that only a single subshell
will contribute to the integral in the limit . One can
then regard that the dominant subshell contains typical config-
urations with respect to the posterior distribution. For the sake
of analytical tractability, we restrict ourselves to searching for
the dominant subshell only within those which induce highly
symmetric covariance structure. Specifically, we adopt the fol-
lowing assumption of thereplica symmetry(RS).

Assumption 4:The dominant subshell is invariant under ex-
change of any two replica indexesand , where .

The validity of the RS assumption is checked in Section III-D.
Under the RS assumption, we can let for and

for , . We can then construct explicitly
the Gaussian random variables possessing the assumed covari-
ance structure, by

(27)

where , , and are independent Gaussian random variables
with mean and variance . Neglecting terms with vanishing
orders of , (24) becomes

(28)

where , , and is
the Gaussian measure.

We can perform the Gaussian average explicitly, which yields
(29) shown at the top of the following page.

Now we turn to the evaluation of . From Cramér’s the-
orem of the theory of large deviations [30], [34], the rate func-
tion of , as , is given as the Fenchel–Le-
gendre transform of the cumulant generating function, i.e.,

(30)

where

(31)

is the moment-generating function of with ’s fol-
lowing the uniform measure on . Under the RS assump-
tion, we can let and for , .
Then is calculated explicitly as
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(29)

(32)

where we used the Hubbard–Stratonovich transform

(33)

to linearize the exponents. The rate function, under the RS as-
sumption, is thus given by

(34)

The supremum with respect toand is achieved when and
satisfy

(35)

(36)

We apply Varadhan’s theorem to evaluate the integral in (22)
asymptotically in the limit . Under the RS assumption
we have

(37)

A supremum point with respect to and satisfies the ex-
tremum condition derived from (29) and (34), which is given
by

(38)

and

(39)

Collecting these results, we obtain the following formula for
the replica-symmetric free energy :

(40)

where

(41)

We can exchange the order of taking derivative with respect to
and the extremizations, by noting that in the limit

. We finally arrive at the following proposition.

Proposition 1:
a) Let Assumptions 2–4 hold, then the average free energy
is given, in the limit , by the replica-symmetric free

energy

(42)

where the macroscopic parameters are to be de-
termined by the saddle-point equations

(43)

b) Let Assumption 1 also hold, then the free energy per user
converges with probability one to in the limit

.
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The saddle-point equations (43) are derived by taking the
limit of the respective extremum conditions (35),

(36), (38), and (39). The mathematically true solution to the
extremization problem of (40) is such that and mini-
mize globally, and that and maximize

, globally. The globally extrem-
izing solution is called the stable state in statistical mechanics.
We call it the globally stable state. However, solutions yielding
only local extrema, which are called the metastable states, have
some significance, as discussed in Section V-A. We will, there-
fore, deal with such locally extremal saddle-point solutions, or
metastable states, as well as with the globally stable state.

B. Expression for Correlation

We derive the expression for the correlationbetween the
estimation result by MPM detector and the original in-
formation bits . The correlation depends on the realizations
of random quantities such as spreading sequences and noise, and
therefore it is a fluctuating quantity itself. Nevertheless, we ex-
pect that the fluctuations of will vanish in the large-system
limit due to the self-averaging property. Hence, we
evaluate the average of the correlationover all realizations of
the spreading sequences and the noise. For MPM detector, we
have

sign (44)

where and denote the average with respect to the pos-
terior distribution (6) and the average over the spreading se-
quences and the noise, respectively.

In this subsection, we derive, under the RS assumption, the
following proposition.

Proposition 2: Let Assumptions 1–4 hold, then the correla-
tion for the MPM detector is self-averaging, and is given by

sign (45)

where and are to be determined by the saddle-point equa-
tions (43).

The proof basically follows the argument in Nishimori [35,
Sec. 5.4.4]. From this equality, it immediately follows that the
bit-error rate is given by

(46)

where is the error function, hence allowing us
to evaluate the bit-error rate from the saddle-point solution.
Propositions 1 and 2 are the main results of this paper.

The key ingredient to deriving (45) is Lemma 1 given later.
Once we admit its validity, we have for any analytic function
that

(47)

and then (45) immediately follows by considering a series of
analytic functions converging to [35].

Lemma 1: Let Assumptions 1–4 hold, then we have

(48)

Proof: Let be replica in-
dexes. Since we are working with the RS assumption (Assump-
tion 4), all the replicated systems should have the same statis-
tical properties, so that we have

(49)

The left-hand side of (49) can be handled by considering the
moment-generating function of the random variable

(50)

with respect to the (unnormalized) measure

The moment-generating function ; is

(51)

where is the auxiliary variable introduced to define the mo-
ment-generating function. We consider a free-energy-like quan-
tity defined by

(52)

where

(53)

is an averaged moment-generating function. The quantitycan
thus be regarded as a rescaled version of the cumulant gener-
ating function for the random variable of (50). Taking the deriva-
tive of with respect to , and letting go to , provides us with
information of the averaged first-order moment, that is,

(54)
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Taking the limit of (54) gives the desired quantity. We
therefore concentrate on the quantity.

Thanks to the formal similarity between and (see (53)
and (19)), we can proceed basically by following the replica cal-
culation in the preceding section to evaluate. Specifically, we
only have to reevaluate the rate function of the measure

(55)

The remaining part of the calculation is not affected. We have

(56)

where

(57)

does not appear anywhere else. Therefore, by exchanging the
order of the two limits and (Assumption 3), we
obtain, under the RS assumption

(58)

which proves (48).

The proof of Lemma 1 explains, as a by-product, that the
macroscopic parameters and have the following meaning:

(59)

(60)

Furthermore, the form of (46) suggests that the quantity
serves as the signal-to-interference ratio.

C. Solving Numerically the Saddle-Point Equations

One has to solve the saddle-point equations (43) numerically
in order to evaluate the performance of the MPM multiuser de-
tector. The approach we have taken is as follows. We consider
the problem of evaluating which gives a prescribed value of
the bit-error rate , for a given . From (46) we
calculate . Since at
the saddle-point solution, the first three equations of (43) can be
rewritten as

(61)

(62)

(63)

By eliminating from (62) and (63), we obtain a one-dimen-
sional problem

(64)

where , and where

(65)

The saddle-point solution (i.e., the fixed point of (64)) subse-
quently determines and via (61) and (62), respec-
tively, and then via the last equation of (43).

D. Assumptions Made in Replica Analysis

We list the technical assumptions made in the course of the
replica analysis.

• The free energy has the self-averaging property
in limit (Assumption 1).

• Analytic continuation of to real is valid (Assump-
tion 2).

• The order of the limits and can be
exchanged (Assumption 3).

• The RS assumption does not exclude the true solution (As-
sumption 4).

• The relevant subshell contains an exponentially
large number of possible values.

In order to check the validity of the replica method, we have to
consider these factors in more depth.

Assumption 1, the self-averaging property, has already been
discussed at the end of Section II. Assumption 2, the analytic
continuation to real from the expression obtained by evalu-
ating the relevant quantity only for positive integers, is the
central assumption of the replica method. Providing mathemat-
ical justification to this procedure is a great challenge, and is
beyond the scope of this paper.

Assumption 3 is about the validity of exchanging the order
of the two limits and , which has been uti-
lized to evaluate relevant integrals by invoking Varadhan’s the-
orembeforetaking the limit. It can be shown for one
of the standard models in statistical mechanics, called the Sher-
rington–Kirkpatrick model [36], and possibly for our model as
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well, that the exchange of the order of the limits is justified [37],
although we have at present no rigorous result regarding this
point.

Assumption 4, the RS assumption, may seem a quite natural
assumption, since there seems to be noa priori reason to con-
sider broken symmetry between the replicas. Nevertheless, it is
in principle still possible that the true extremum of

(66)

does not have the RS. Therefore, the validity of the RS assump-
tion should be checked.

We probe the so-called de Almeida–Thouless (AT) stability
[38], which refers to the local stability of the RS saddle-point
solution against replica-symmetry-breaking (RSB) perturba-
tions. The procedure is briefly described as follows: we evaluate
the Hessian of with respect to the macroscopic parameters

at the RS saddle-point solution, and then derive the
stability condition, the condition under whichis maximized
and minimized with respect to and , respectively. The
result is summarized in the following proposition as the AT
line, which marks the boundary between two regions in the
parameter space, one in which the RS saddle-point solution
is stable against RSB and thus the RS assumption is valid,
and another in which the RS saddle-point solution is unstable
against RSB, and consequently, the RS assumption is no longer
valid.

Proposition 3: Let Assumptions 1–3 hold, then the AT line
is given by

sech (67)

The RS saddle-point solution is valid as long as the left-hand
side of (67) is positive.

Details of the derivation of (67) are given in Appendix III.
The last assumption has not been stated explicitly so far. How-

ever, it is certainly one of the necessary conditions for the final
result to be valid because, for the summation over the dominant
subshell to have the proper meaning, the dominant subshell has
to contain an exponentially large number ofvalues. Under
the RS assumption, we can evaluate the volume of the domi-
nant subshell , specified by and , as given by the
saddle-point solution. The number of possible mi-
croscopic configurations , , , within the subshell

is given by

(68)

In order for the evaluation of probability weight over the sub-
shell to be valid, should be exponentially large in.
This leads, in the limit, to the condition

(69)

The condition defines the so-calledfreezing point, at
which the system loses its microscopic degrees of freedom.

E. IO Multiuser Detector

If we put the control parameterof the MPM detector to be
equal to the true channel noise level, we are given the IO mul-
tiuser detector. In this case, the true channel characteristics, and
its model used in designing the detector, enter the replica cal-
culation in a completely symmetric way. Thus, the true channel
(see (15)) can be regarded as theth replica, and all replicas
can be treated in a symmetric manner [31]. This symmetry al-
lows us to prove some interesting properties of the IO multiuser
detector. One such result is summarized in the following propo-
sition.

Proposition 4: For the case of the IO multiuser detector, the
RS assumption is valid for the stable saddle-point solution.

Proof: The proposition is proved by first deriving the sta-
bility condition of the RS saddle-point solution for the IO mul-
tiuser detector, and then showing that it is equivalent to the AT
stability condition (see (67)). Because of the symmetry between
the replicas, we can assert, under the RS assumption, that

and hold. The function becomes

(70)

from which the RS free energy follows as

(71)

where the saddle-point equations determining are given
by

(72)

Imposing the second equality of (72) on (71) yields

(73)

in which . As the condition
under which , as given by the saddle-point solution, maximizes

at the saddle point, we have

sech (74)

This is identical with the AT stability condition (see (67)), thus
proving the proposition.

It should be noted that, by the same -replica argument,
the signal-to-interference ratio for the IO multiuser detector is
straightforwardly given by . The stability
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result of Proposition 4 can also be derived without using the
replica method. Nishimori [39] applied a gauge theory to the
analysis of the IO multiuser detector, to obtain a result extending
Proposition 4, also proving the identity as a corollary.

IV. DERIVATION OF EXISTING RESULTS BYREPLICA METHOD

A. Capacity of CDMA Channels

The statistical mechanics approach is also useful in deriving
the information-theoretic capacity of CDMA channels. In the
following analysis, we assume that the information rate is the
same for all users, i.e., for , , . By the
canonical argument for the capacity region [40], we have the
following inequality for the sum rate:

(75)

where , , and denote the random variables
corresponding to the information and the received data,
respectively. We define the capacityof a CDMA channel as
the maximum rate (rather than the maximum sum rate in the
literature), which is given by

(76)

In this subsection, we evaluate the capacityin the large-system
limit .

The mutual information in the right-hand side of (76) is given
in terms of differential entropies as

(77)

The conditional information is equal to the
differential entropy of the channel noise, because the noise is
assumed to be independent of the information. It is given by

(78)

(Note that the base of the logarithm isso that the unit of infor-
mation here isnats.) By definition, for we have

(79)

The self-averaging property in this case means that, in the large-
system limit, the differential entropy normalized by the number
of users is equal to its average

(80)

for almost all realizations of the spreading sequences. It should
be noted that the first term in the right-hand side of (80) is
nothing but the free energy (see (14))

(81)

Using this fact, from (77), (78), and (80), we have the following
proposition.

Proposition 5: The capacity of the CDMA channel is
given, in the large-system limit, by

(82)

where is defined by (81).

This means that, if we can evaluate the free energyanalyt-
ically, we can obtain an analytical expression for the maximum
information rate and, in turn, for the capacity.

In this paper, we address the capacity of the AWGN CDMA
channel, and of the binary-input AWGN (BIAWGN) CDMA
channel. We first discuss the AWGN CDMA case, in which
the inputs can take continuous values. The Gaussian prior is
known to give the maximum of the differential entropy in
this case, and, therefore, the maximum of the common informa-
tion-theoretic capacity of the CDMA channel, under power con-
straint. Verdú and Shamai [4] have reported an analytical result
in the large-system limit, on the capacity, and on the optimum
spectral efficiency of the CDMA channel, based on the asymp-
totic empirical spectral distribution (ESD) of random cross-cor-
relation matrices [41]. Our objective here is to demonstrate that
the replica analysis does reproduce their result, thereby pro-
viding supporting evidence for the validity of our approach.

We assume the unit-variance Gaussian prior

(83)

and perform the replica calculation again. We start with the
probability measure of , given by

(84)
where . It should be noted that now we
have , , as variables as well. This is be-
cause may take any real values under the Gaussian prior,
so that we have to take into account the possibility that

at the saddle-point solution may be different from
. From Cramér’s theorem, the probability measure sat-

isfies the large deviation property with rate function

(85)

where

(86)

We proceed with the RS assumption, and let , ,
, and , . Then we have

(87)
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Calculation of under the RS assumption can be done in the
same way as before, by letting

(88)

After some algebra we obtain that and at the RS
saddle point, and the RS free energy becomes

(89)

where , , , , , are to be determined from the fol-
lowing saddle-point equations:

(90)

Here, we only need to evaluate the free energy for
in order to discuss the capacity (see (81)). In this case, we can
eliminate the variables , , , and using the relations
, , , and , which immediately follow from

the -replica argument (like in the replica analysis of the
IO multiuser detector). The free energy and the
corresponding capacity become

(91)

and

(92)

where the saddle-point equations determining are

(93)

With a modest amount of foresight we let

(94)

and solve the saddle-point equations (93) in terms of, to obtain

(95)

where

(not to be confused with the free energy), and where
is the ratio of the energy per chips and the Gauss-

ian noise spectral density. The capacity, evaluated at the saddle
point, is

(96)

which is exactly the same result as the one reported by Verdú
and Shamai [4].

Next, we consider the case of the BIAWGN CDMA channel,
in which the input is constrained to be binary, i.e., .
If we assume (as it should be) that is maximized for the
uniform prior , then we already have the analytical
expression of the free energy (Proposition 1) for this case, and
the capacity can be obtained using (82).

B. Decorrelating and Linear MMSE Detectors

In this subsection, we show the derivation and the results for
the decorrelating and the linear MMSE detectors by the replica
analysis, in order to compare them with the results so far re-
ported in the literature. In the Bayes framework, it is not unusual
to assume models of the source and the channel with different
characteristics from those of the true source and channel, for the
detector. We have already seen such an example in the MPM
detector, where the detector assumes the noise level, which
may be different from the true noise level. Here, we con-
sider the case in which the detector assumes the unit-variance
Gaussian prior (see (83)), whereas the true prior is binary, i.e.,

for all . Under this assumption, we can con-
sider, just like for the MPM detector, a general class oflinear
multiuser detectors, defined as follows.

Definition 2: The linear multiuser detector with control pa-
rameter is defined by

(97)

where

(98)

is the posterior distribution for the unit-variance Gaussian prior

(99)

with

(100)

where .

This appears to be different from the conventional defini-
tion of the linear multiuser detector, because we have made no
explicit reference to the linearity. However, the posterior, ap-
pearing in the definition of the linear multiuser detector, be-
comes Gaussian because both the prior and the noise distri-
butions are Gaussian. Hence, the detection (see (97)) can be
done simply by a linear transformation on the received sig-
nals, and therefore this definition does specify a family of linear
multiuser detectors. Moreover, as is well known, for the linear
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model treated in this paper (see (1)), considering the MMSE
detector within the restricted set of linear transformations, is
equivalent to the assumption that the prior is Gaussian. As in
the case of the MPM detector, the linear multiuser detector uses
the control parameter to represent the detector’s assumption
about the noise level. As can be confirmed by simple algebra, in
the limit our linear multiuser detector corresponds to the
decorrelating detector [42], [43], and if we can set the true con-
trol parameter , then we have the linear MMSE detector
[43]–[45].

The replica calculation for the linear multiuser detector is es-
sentially the same as those for the MPM detector and for the
capacity. We only have to re-evaluate using the Gaussian
prior for and the binary one for . We have

(101)

where

(102)
The symbols and mean that the term with

should be excluded from the summation and the multipli-
cation, respectively. This exclusion is due to the binary nature of

, which yields and thus makes introduction of
and unnecessary. Under the RS assumption we have, by a
similar calculation

(103)

from which we eventually obtain the same free energy as (89),
and the same saddle-point equations determining, , , ,

, as (90). The correlation and the bit-error rate are
evaluated from the saddle-point solution in the same way as the
case of the MPM detector, using (45) and (46), respectively. This
also means that the signal-to-interference ratio in this case
is given by , like in the case of the MPM detector. The AT
line turns out to be

(104)

The RS saddle-point solution is stable against RSB if the
left-hand side of (104) is positive. Due to the continuous nature
of the configuration space, the freezing point is not defined for
the linear multiuser detector.

Letting yields the result for the linear MMSE de-
tector. From the saddle-point equations (90), and
hold for the linear MMSE detector. It should be noted that these
arenot the consequence of the -replica argument. In the
case of the linear MMSE detector, theth replica and each of
replicas are not equivalent because the Gaussian prior assumed
by the latter is different from the binary one of the former. The
values of the macroscopic parameters are to be determined from
(93), from which the bit-error rate is evaluated via (46). This re-
sult is the same as the one derived by applying a general result by

Tse and Hanly [5] for the case in which power distribution ap-
proaches a given limiting distribution in the large-system limit,
to the equal-power case. The replica approach can also be ap-
plied to the unequal-power case, in which the general result of
Tse and Hanly [5] is reproduced for the linear MMSE detector.

Taking the limit , we obtain the result for the decorre-
lating detector. For , we have , , and

(105)

On the other hand, for , we have , ,
and

(106)

This is again in agreement with the literature [8], [5].

V. RESULTS AND DISCUSSION

A. Bit-Error Rate

Fig. 1 shows how the bit-error rate of the JO and IO mul-
tiuser detectors, as evaluated from the RS saddle-point solution,
depends on the ratio , i.e., the energy per bit divided
by noise spectral density . Since we consider uncoded sys-
tems here, holds. When the number of users
is relatively small, both the JO and the IO multiuser detectors
have almost the same performance as in the single-user case, as
shown in Fig. 1(a).

An interesting property observed in these results is that the
bit-error rate shows anomalous, nonmonotonic dependence
on the ratio , as becomes larger ( for IO and

for JO). The S-shaped performance curves in Fig. 1(c)
and (d) mean that under some conditions more than one solution
coexists: one with the bit-error rate almost as small as in the
single-user case, which we call thegoodsolution, and another
with larger bit-error rate, which we call thebad solution (the
third solution on the intermediate branch is physically unstable
and therefore irrelevant). The coexistence of more than one solu-
tion is essentially the same as the coexistence ofphasesin phys-
ical systems (such as water and ice at 0C), and such a phenom-
enon is called phase coexistence in statistical mechanics. Curves
in the parameter space which mark the boundary between the
regions with and without such coexistence are calledspinodal
lines. Fig. 2 shows the spinodal lines (solid curves) for the JO
and IO multiuser detectors. The upper and lower branches rep-
resent the bifurcation points at which the good and bad solutions
disappear, respectively. It can be seen that the bad solution dis-
appears at a finite for for IO and

for JO.
As discussed at the end of Section III-A, one may argue that

the true procedure of evaluating the free energy (see (40)), in
the information-theoretic sense, should be such that one picks
up the globally stable state, i.e., the saddle-point solution giving
the global extremization of . In the region of the phase co-
existence, the globally stable state may be given by either the
good or the bad solution, depending on their free energy values,
and thus a boundary is defined at which the globally stable state
switches between these solutions. In statistical mechanics, this
kind of switching is called a thermodynamic transition, and the
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Fig. 1. Bit-error rate of single-user matched filter (SUMF), JO multiuser detector (JO), and IO multiuser detector (IO). Bit-error rate for the single-user case is
also shown for comparison. (a)� = 0:02, (b) � = 1, (c) � = 1:4, and (d)� = 10. The vertical dotted line in (c) shows the thermodynamic transition for JO
multiuser detector.

Fig. 2. Spinodal lines (solid) and thermodynamic transition lines (dashed) for
JO and IO multiuser detectors. Dotted lines show the parameter values for which
bit-error rate is shown in Fig. 1.

boundary in the parameter space signaling the thermodynamic
transition is called the thermodynamic transition line. Fig. 2 also
shows the thermodynamic transition lines (dashed curves) for
the JO and IO multiuser detectors. The bad solution is the glob-
ally stable state at the upper-left side of the thermodynamic tran-
sition lines in Fig. 2, and it becomes a metastable state at the
other side of the lines, where the good solution is the globally
stable state. One important consequence of the thermodynamic
transition is that the bit-error rate becomes discontinuous at the
thermodynamic transition point. Shown in Fig. 1(c) by a vertical

dotted line is the thermodynamic transition for the JO multiuser
detector, at which the bit-error rate changes discontinuously. In
Fig. 1(d), the thermodynamic transition occurs where is
much larger than the range of the figure, hence the good solu-
tion is only metastable over the range of values shown
in the figure.

We now discuss the significance of the phase coexistence
and the thermodynamic transition. Most decision-driven mul-
tiuser detectors implementing suboptimal multiuser detectors
can be regarded as searching for the best possible solution based
on locally available information about the posterior distribution

. When the phase coexistence occurs, such detectors
may get trapped in the bad solution, despite the fact that the
good solution exists. Moreover, we have to assume that these
detectors almost certainly get trapped in the bad solution, and
accordingly, will return the corresponding bad detection result.
An intuitive explanation is as follows. Initialization of a mul-
tiuser detector can be done either with a random configuration
or with the output of the single-user matched filters, but in any
case, the initial state is as bad as the bad solution of the multiuser
detectors, as can be seen in Fig. 1(c) and (d). The good solution
is therefore distant from the initial state compared with the bad
one, so that any algorithm based on locally available information
should traverse many more subshells with bad quality (i.e., with
extremely small values of the posterior ) in order to
arrive at the good solution, which is computationally infeasible
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in practice. It should be noted that this is a direct consequence of
the system’s loss of ergodicity, which will be discussed in more
detail in Section V-B, and that this isnot the property of any
particular detection algorithm, but the property of the multiuser
detection problem itself.

We can also predict that, if the phase coexistence occurs, the
waterfalling phenomenon will be observed in the vicinity of the
bifurcation point of the bad solution, the waterfalling phenom-
enon will be observed in experimentally obtained performance
curves of detectors based on locally available information (in a
fashion similar to turbo decoding [46], [47]). Whenbecomes
larger than for IO and for JO, the bad solution persists
for arbitrarily large values of . Under such conditions,
one cannot find the good solution, even if it exists and is glob-
ally stable so that it is the true solution in the information-theo-
retic sense, by any practical detection algorithms (i.e., detectors
based on locally available information). This will limit the prac-
tical efficiency of the IO and JO multiuser detectors, although
heuristics such as annealing [48] may help to escape the bad so-
lution to a certain degree.

Another prediction, although of a completely theoretical na-
ture and of no practical significance, is the following. Consider
again a decision-driven multiuser detection algorithm based on
locally available information. Let us assume that the algorithm
knew the true information vector. Then one can initialize the
algorithm with the true information vector, and have it run. Be-
cause the initial state of the algorithm is the true detection result,

is initially zero. The bit-error rate then gradually increases
as the algorithm proceeds, until convergence is achieved. Our
prediction, based on the same argument as that which has been
shown earlier, is that the equilibrium value of is likely to
be close to the good solution, even if it is not globally stable
but only metastable. (In this case, the performance of the de-
tector may exceed Shannon’s limit, but this does not contradict
the Shannon theory, because we now assume that the detector
knows the true information vector.) If one decreases the SNR,
the equilibrium value will change abruptly toward the bad solu-
tion, at the spinodal point where the good solution disappears.
This phenomenon will show the significance of the phase coex-
istence and the spinodal point clearer.

To summarize the discussion so far, our statements about the
relevance of the good solution are as follows.

• The good solution is relevant in the information-theoretic
sense only for those values of above the thermo-
dynamic transition.

• The good solution is relevant in the computational sense
only for those values of above the spinodal point
at which the bad solution disappears.

Here, the relevance in the computational sense is the relevance
assuming any detection algorithm based on locally available in-
formation. For example, Fig. 1(d) shows the existence of the
good solutions for the IO and JO multiuser detectors, but since
they are both below the thermodynamic transition, they are not
relevant either theoretically or computationally. On the other
hand, the good solution for the JO multiuser detector found in
Fig. 1(c) at 7 dB is relevant only theoreti-
cally but not from the computational viewpoint. It should also

Fig. 3. Freezing line (solid curve) for IO multiuser detector. Spinodal line for
IO multiuser detector (cf. Fig. 2) is also shown (dashed curve).

be noted that the phase coexistence does not occur for for
the cases investigated in this paper, therefore, it has no practical
relevance, unless one considers an overloaded system (a system
with ). However, at present we can only say that this ob-
servation is valid for the cases investigated. Whether the phase
coexistence is relevant for systems with more practical settings
including, for example, systems with unequal-power users, de-
tectors with finite , and so on, is an open problem.

Fig. 2 also shows the AT line for the JO multiuser detector.
The bad solution for the parameter values above the AT line is
stable against RSB. The good solution was found to be AT un-
stable. This means that the good solution of the JO multiuser
detector, as predicted by the replica analysis, may be approx-
imately true but not exact. It also means that the free-energy
landscape is rather rough around the good solution [15], sug-
gesting that any practical local-search-based algorithms imple-
menting the JO multiuser detector will converge very slowly,
hence limiting their practical efficiency. As we have shown in
Section III-E, the stable solutions of the IO multiuser detector
are also stable against RSB, so that the IO multiuser detector is
free from such a difficulty.

We also checked the freezing condition for the
IO multiuser detector, which defines the freezing line in the

– parameter space. For not too large, the freezing
line lies at 12.09 dB, as shown in Fig. 3. The
system freezes at the larger side of the freezing line.
One can see from Fig. 1 that the frozen region
12.09 dB approximately corresponds to a bit-error rate of

. The significance of freezing is that results of numerical
experiments will fluctuate in the frozen region, no matter how
large we set the system size, due to the discreteness of the
configuration space . The freezing line moves toward
the larger direction when . This is caused by
the spinodal line approaching the freezing line, as can be seen
in Fig. 3. Since is too large in practice, we can safely
assume that the freezing line lies at 12.09 dB for any
practical values of .

B. Multiuser Efficiency

Theeffective energy is defined as the energy per bit required
to achieve a bit-error rate equal to in a single-user Gaussian
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Fig. 4. Multiuser efficiency for IO multiuser detector.

Fig. 5. Multiuser efficiency for JO multiuser detector.

channel with the same spreading factorand noise level
[8]. Specifically,

(107)

For the MPM detector, from (46) we have that

(108)

Since we have assumed that the signal from each user has a unit
amplitude, themultiuser efficiency[8] is equal to the effective
energy . The multiuser efficiency for the single-user matched
filter is given by .

Figs. 4 and 5 show the multiuser efficiency for the IO and JO
multiuser detectors versus , respectively. The multiuser
efficiency for the single-user matched filter for (SUMF)
is also shown for comparison. For both of the IO and JO mul-
tiuser detectors, the multiuser efficiency is almostover the
whole range of SNR when is small enough. As be-
comes larger, the multiuser efficiency gets smaller in the lower
SNR region. As the phase coexistence occurs, the curve intrudes
into higher signal-to-noise region. The multiuser efficiency of
the good solution remains almost equal to, whereas that of the
bad solution decreases toward.

C. Remark on the Asymptotic Multiuser Efficiency

Tse and Verdú [7] have studied the asymptotic behavior of the
multiuserefficiencyoftheoptimummultiuserdetector.Theyhave
discussed the asymptotic multiuser efficiency by taking the zero-
noise limit first, and then the large-system limit .
They have reported that the asymptotic multiuser efficiency con-
verges to almost surely. They have questioned as to whether
these two limits commute. Our answer to this question is rather
complicated.Basedon theanalogywithstatisticalmechanics,we
can say that the problem is essentially the same as that of ergod-
icity breaking, which we may encounter by taking the thermo-
dynamic limit of a physical model system. To be more precise,
the zero-noise limit and the large-system limit can be compared
to the zero-temperature and thermodynamic limits, respectively,
and the above-mentioned problem can be regarded as the ques-
tion as to whether these two limits commute in physical model
systems. The answer to the latter question is, in general, nega-
tive.Onesimpleandwell-knownexampleisthatofaferromagnet.
The equilibrium distribution of microscopic configurations is er-
godic at finite temperature when the system size is finite, so that
the spontaneous magnetization vanishes when the system is in
thermal equilibrium. However, as we take the thermodynamic
limit, thethermalequilibriumdistributionbecomesnonergodicat
low temperature (i.e., below theCurie temperature), and we will
observe a spontaneous magnetization since the microscopic con-
figurationwillgettrappedinoneergodiccomponent.Thissponta-
neousmagnetizationpersistsinthezero-temperaturelimit.Onthe
other hand, if we first take the temperature of a finite-size system
to zero, we will not observe any spontaneous magnetization even
in thezero-temperature limit,becausethesystemremainsergodic
as longas the temperature is positive,even if it is small. Thespon-
taneous magnetization will remain zero if we take the thermody-
namic limit thereafter.

The multiuser detection problem shares essentially the same
propertyastheferromagnet. Itshouldbenotedthattakingthelimit

first, and afterwards, corresponds to consid-
ering thezero-noise limit propertiesofour result.When thephase
coexistenceoccurs, thesystemasawholebecomesnonergodic in
the large-system limit, and each solution corresponds to one er-
godic component. The nonergodicity persists even if we consider
the zero-noise limit, provided that the phase coexistence is main-
tained.Hence,although themultiuserefficiencyof thegoodsolu-
tion approachesin the zero-noise limit, the multiuser efficiency
of the bad solution approaches, as can be observed inFigs.4and
5. For the IO multiuser detector, we observe numerically that, in
the zero-noise limit, the good solution for finiteis the globally
stable state and is therefore relevant in the information-theoretic
sense. This means that the result by Tse and Verdú still holds for
the IO multiuser detector even when the order of the two limits
is exchanged, although the efficient communication predicted by
the solution is computationally infeasible if the bad solution co-
exists.As for theJOmultiuserdetectorwithin theRSassumption,
wecandrawthesameconclusionas in thecaseof the IOmultiuser
detector, but onemayhave to take RSB intoaccount formore def-
inite statements. The complication in our answer to the question
posed by Tse and Verdú, compared with their result, is a conse-
quence of the ergodicity breaking, which arises in turn from the
exchange of the order of taking the two limits.
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Fig. 6. Information-theoretic capacity of BIAWGN CDMA channel (solid) and AWGN CDMA channel (dashed). (a)� = 1 and (b)� = 2.

D. Capacity

Fig. 6 shows the information-theoretic capacity of the BI-
AWGN CDMA channel and the AWGN CDMA channel. When

is small, the channel capacity is limited mainly by the
channel noise, so that the capacity is almost the same, irrespec-
tive of whether the source is binary or Gaussian. Because the
capacity for the BIAWGN CDMA case should not exceed,
it saturates as becomes larger. As an overall tendency,
the capacity becomes smaller asincreases. For the BIAWGN
CDMA case, phase coexistence occurs when . Cor-
respondingly, more than one value is obtained for the capacity
(see Fig. 6(b)). We should take the lowest branch as the true
capacity. Since we are evaluating the differential entropy
using (80) via the application of Varadhan’s theorem, the con-
tribution from each of the metastable states to the integral in
(80) vanishes in the large-system limit, compared to the contri-
bution from the globally stable state. Ignoring the contribution
from metastable states corresponds to taking the lowest branch
as the true information-theoretic capacity. As a result, whenis
large, one observes that the capacity for the BIAWGN CDMA
case is almost the same as the capacity for the AWGN CDMA
case as long as the latter is less than. On the other hand, when
the latter exceeds, the former saturates abruptly to remain less
than .

E. On the ESD

Existing approaches to large-system analysis of randomly
spread models generally rely on the evaluation of the ESD of
large random matrices [41], [49]. Let us consider the general
linear multiuser detector under the equal-power condition. The
posterior distribution is

(109)

where is the cross-correlation matrix of the
spreading sequences, and where is the vector
of the matched-filter outputs. Since the posterior distribution is
jointly Gaussian, the mean of coincides with the maximum
a posteriori(MAP) estimate, and is given by a linear transform
of the matched-filter output, as . Because of
the linear structure of the detection problem, eigenspace decom-
position and evaluation of ESD of the cross-correlation matrix

provides an efficient tool for large-system analysis of the linear
multiuser detector.

The detection problem for the MPM detector, however, does
not possess such a linear structure due to the discreteness of
the domain of , which follows from the discreteness of the
prior distribution. The discreteness of the domain ofseems
to prevent us from directly applying ESD results to the analysis
of the MPM detector. Our analysis, as well as that of Tse and
Verdú [7], successfully takes into account the discrete nature of
the problem by invoking arguments based on the large-deviation
theory. In our analysis, the discrete nature ofis explicitly dealt
with via the rate function .

VI. CONCLUSION

We have studied the large-system properties of the MPM de-
tector by means of the replica method. Based on the RS assump-
tion we have obtained the analytical formulas that allow the
evaluation of the bit-error rate for arbitrary SNR values. We have
also derived, within the same replica formalism, the capacity of
the randomly spread CDMA channel and the performance of
the decorrelating and linear MMSE multiuser detectors, all of
which have successfully reproduced the reported results in the
literature, confirming the validity of the replica approach.

We have examined the bit-error rate properties of the IO and
JO multiuser detectors by numerically evaluating the analytical
formulas. We have found that there may be the phenomenon of
phase coexistence, i.e., the coexistence of good and bad solu-
tions, which will cause the waterfall phenomenon in the perfor-
mance curve of a decision-driven multiuser detector under cer-
tain conditions, just as in turbo decoding.

The whole presentation in this paper relies on the replica
method. Discussing the validity of the replica approach in the
rigorous mathematical sense is beyond the scope of this paper.
However, we believe that successful application of the replica
method to various problems, including the one presented here,
should not be regarded as incidental. Researchers in the fields of
probability theory and mathematical physics has begun to work
toward mathematical justification of the replica theory: For de-
tails, see [50] and references therein.

There are various interesting directions for future work. One
of them is the implementation aspect of the MPM detectors,
such as their computational complexity [51], which we did not
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address in this paper. Although the NP-hardness proved by
Verdú [51] seems unavoidable, we expect that the mean-field
approximation [52], a notion in statistical mechanics to sys-
tematically approximate microscopic behavior of systems, can
provide practical means of implementing the MPM detectors
approximately.

APPENDIX I
REPLICA METHOD

In this appendix, we provide a brief introduction of the replica
method, as well as the outline of the calculation performed in a
typical replica analysis.

Let us consider the abstract problem of Bayes inference to
evaluate a posterior average

(110)

where is a random vector representing configurations of the
underlying probability model, is another random vector rep-
resenting observables,is a set of parameters, is a
function of , , and , and is an assumed posterior
distribution of conditioned on the values of the observables
and the parameters. The posterior distribution is to be derived
from Bayes theorem, with an assumed prior distribution of

, and an assumed conditional distribution of on ,
parametrized by, as

(111)

The posterior average depends on the observables
and, quite often, they are also random variables. In such cases,
the quantity of interest is the average of over all possible
observed values, that is,

(112)

where denotes expectation with respect to the true distri-
bution of , which may or may not be equal to the assumed one.

We now consider the case in which the parametersare also
random, and are assumed to be independent of. This is actually
the case for the CDMA multiuser detection problem under the
random spreading assumption. Let, , and be the information
bit vector, the received signals, and the spreading sequences of
all users, respectively. For every, one can in principle calculate
the average bit-error rate. One still has to average the result over
the randomness of the spreading sequences to obtain the desired
result. In general, we want to evaluate quantities like

(113)

In statistical-mechanics literature, the average overand is
called thequenched average. When one first takes the average
with respect to the posterior distribution, one has to quench the
values of and . The result is then averaged overand .
Very often, one encounters difficulties in the evaluation of the
quenched average. This becomes evident by rewriting the

quenched average as

(114)

One now has to take the expectation of a ratio of random vari-
ables , , , and , , which
is in general difficult. A related quantity is theannealed average,
or the annealed approximation to the quenched average, which
is given by taking the expectation for the denominator and the
numerator separately, that is,

(115)

The calculation of the annealed average is usually much simpler
than that of the quenched average, so that the annealed average
is often used as an approximation to the quenched average, but
the final results are in general different from each other.

Let us define the moment generating function of , , ,
or the partition function, of the (unnormalized) measure ,

of , given and , as

(116)

(It is not necessary to include the factor explicitly if
, already contains such a factor. This is usually the

case in statistical mechanics because, for example, the Gibbs
factor with inverse temperature and energy functional

is usually included in , , which makes the par-
tition function, even without the factor, the moment generating
function of the energy.) If we could evaluate the average

(117)

we would obtain the desired quenched average (113) by

(118)

by exchanging the order of the expectation and the differenti-
ation by . Of course, this simple manipulation does not help
resolve the difficulty we are faced with. The difficulty we en-
counter here is that the evaluation of the average (117) is often
hard. Now we have to average thelogarithmof a sum of random
variables, which prevents us in most cases from evaluating it
analytically. Also, it is usually computationally hard. The sum-
mation may be over a very large number of terms in large-sized
problems. Again, it is generally far easier to evaluate the average
instead

(119)

but the calculation

(120)
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only yields the annealed average (115), which is, in general, the
wrong answer.

The replica method is a way to evaluate (117). It makes use
of the identity

(121)
and replaces the evaluation of the average (117) with that of

(122)

It should be noted that the quantity , is well-defined
for real . In applying the replica method, however, one
usually evaluates (122) for positive integeronly, by regarding

as the partition function of the probability model
consisting of identical replicas of the original probability
model, that is,

(123)
Since the replica method has been developed in statistical

mechanics, it has been extensively applied to the analysis of
models in the large-system (thermodynamic) limit (but see also
[53], [54] for application of the replica method to finite-sized
problems). In such cases, the replica method is used in conjunc-
tion with the saddle-point method, or Varadhan’s theorem for
asymptotics of integrals. Let be a parameter representing the
size of a problem, and let us further assume that, , scales
with so that the actual quantity of interest is the asymptotic
value of the quenched average of , , as . In
this case, we have to evaluate thefree energydefined as

(124)

The replica method replaces the right-hand side of (124) as

(125)

The approach of combining the replica method with the saddle-
point method is efficient if the following conditions are met.

The two limits and can be interchanged,
so that the equality

(126)

holds.
Dependence on of the function

(127)

is expressed in terms of a set of parameters (which
may be functionals) and the average of the function overand
can be performed analyticallyfor fixed , yielding
a result of the form , where is a continuous
function of whose supremum is finite.

The probability measure of the parameters
, induced by the prior , has a large deviation

property with a rate function as . This enables

us to evaluate asymptotically using
Varadhan’s theorem, as

(128)

We have applied Varadhan’s theorem to derive the final expres-
sion in (128).

Now we assume that has components, and that im-
plies that the components of are i.i.d. We furthermore as-
sume that consists of empirical means of i.i.d. random vari-
ables, each of which depends on . Then, we
can apply Cramér’s theorem to the measure to prove its
large deviation property, and it turns out that the rate function

is given in terms of the Fenchel–Legendre transform as

(129)

where

(130)

is the cumulant generating function of with respect to the
prior distribution of . Collecting the results of (128) and
(129), one obtains

(131)

where the extremization condition is given by the following
saddle-point equations:

(132)

Taking derivative with respect to and taking the limit ,
we obtain the free energy.

It should be noted that, as mentioned, the true distribution
of and , by which the expectation is taken,

may, in general, be different from the assumed marginal
. However, if has a form similar

to the assumed marginal, one can exploit the -replica
formulation, as has been done in Section III.

APPENDIX II
JOINT DISTRIBUTION OF , , ,

We have assumed, as far as the calculation of is con-
cerned, that the joint distribution of ,
with

(133)
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can be regarded, in the limit, as the joint Gaussian
distribution , where , , for
fixed and where each entry of is an i.i.d.
random variable with zero mean, unit variance, and vanishing
odd-order moments. To prove this, we note that the second- and
fourth-order cumulants of are given by

(134)

(135)

where is the fourth-order cumulant of each entry of. All the
odd-order cumulants vanish. Then, from the Edgeworth expan-
sion [55] we have for the probability density of

(136)

(137)

(138)

where

It then follows that the average overcan be replaced by the
average over the joint Gaussian random variables
in the large-system limit

(139)

APPENDIX III
DERIVATION OF AT LINE

We show the derivation of the equation for the AT line (Propo-
sition 3; (67)), which marks the boundary between one region
in the parameter space where the RS saddle-point solution is
stable against RSB perturbations, and another where the RS so-
lution is unstable against RSB. We have to evaluate the Hes-
sian of the exponent of the integrand of the integral to which
the saddle-point method is applied, with respect to the macro-
scopic parameters at the RS saddle-point solution,
and then to derive the stability condition under which the appli-
cation of the saddle-point method is justified.

Let

(140)

In the asymptotic evaluation of in the large-system limit
, we have performed the extremization oftwice: first,

with respect to , and next, with respect to , that is,

(141)

In order for a saddle-point solution to be valid, it has to satisfy
the following conditions, which we refer to as the stability con-
dition.

should be minimum with respect to at the saddle-
point solution. We call this condition type 1 stability.

should be maximum with respect to at the saddle-
point solution, when is taken to be dependent on in
such a way that minimizes for given . We call this
condition type 2 stability.

The requirement of the dependence of on in type
2 stability comes from the fact that the supremum with respect
to is to be evaluatedafter the first infimum evaluation, in
which we have determined as functions of , so as to
minimize . Hence, when we consider perturbations of ,
the variables are no longer independent variables, and we
have to take into account their dependence on.

To analyze the stability of the RS saddle-point solution
against RSB, we first evaluate the Hessian ofat the RS
saddle-point solution, and then probe the two types of stability.
It should be noted that, to obtain the stability result of the
RS saddle-point solution, we have to evaluate the stability
conditionsin the limit , the same limit that we have used
to derive the RS saddle-point solution.

We start with the evaluation of, but this time without the RS
assumption. To do this, we perform the integral over the channel
noise first

(142)
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where , and where is an
matrix defined by

(143)

(144)

is an -dimensional vector , , and
is the -dimensional identity matrix.

For fixed , can be regarded, in the large-system limit
, as an -dimensional Gaussian random variable

with mean and variance–covariance matrix, by following
the argument of Appendix II. This means that the average over
the spreading sequences can be replaced by the average over the
Gaussian random variable , which gives

(145)

where we let

(146)

As a result, we have

(147)

and, therefore,

(148)

Before deriving the Hessian of itself, we first work out the
Hessian of the term . From the definition of , it
immediately follows that

(149)

where is the -dimensional identity matrix. Let de-
note the matrix whose -element is and all the remaining
elements are. Let . Using the identities
[56]

and

we have

(150)

and

(151)

The evaluation of the matrix should be done at the RS saddle-
point solution, since we are now concerned with the stability of
the RS saddle-point solution. The matrixat the RS solution is
given by

(152)

where the values of and are the ones that extremize (37),
and are given by (38) and (39).

We next compute the Hessian of the term . By the
same argument as that in Section III-B, we have

(153)

where the notation for any function of means

(154)
In the same notation, we have

(155)

The Hessian of is of dimension , and
it has the structure

(156)

with

(157)

At the RS saddle-point solution, the matrixhas seven dif-
ferent types of elements. They are

(158)
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where, and hereafter, represent nonzero and mutually
different indexes. Similarly, the elements of the matrixcan be
categorized into seven different types

(159)

where, by abuse of notation, we let

(160)

(The variable that appears here is not to be confused with
the received signal.) It should be noted that the equalities

and actually holdonly afterwe take the
limit , as derived in Section III-B.

The function can be expanded to the second-order of per-
turbations of and around the RS saddle-point solution,
as

(161)

(162)

(163)

where denotes the value ofat the RS saddle-point solution,
and where and are the perturbations to the RS saddle-point
values of and , respectively. The conditions for the two
types of stability can be expressed in terms of the components
of the Hessian , as follows.

Type 1 stability: The matrix
should be positive definite.

Type 2 stability: The matrix
should be neg-

ative definite.
It has been known in the literature of spin glasses [38] that the

eigenspaces of and can be classified into three types ac-
cording to their symmetry. Stability for each type of eigenspace
is discussed in what follows.

We first investigate the eigenspace with full symmetry with
respect to the replica indexes , that is,

(164)

or equivalently

(165)

where

...
...

...
...

(166)

is an matrix. The representation of the
restriction of to the eigenspace with full symmetry is given
by

(167)

is a matrix. Let

(168)

with

(169)

(170)

(171)

Using this representation, the two types of stability conditions
are reduced as follows.

Type 1 stability: All the eigenvalues of the matrix
should have a positive real part.

Type 2 stability: All the eigenvalues of the matrix
should have a negative real part.

We can define the eigenspaces of and by considering
eigenvalue equations determining the values of the pairs
and , respectively. The eigenspaces of and are
of dimension two. Eigenvectors and belonging to these
eigenspaces are called the longitudinal modes. The represen-
tation of is given by (172)–(174) shown at the top of the
following page. By taking the limit , the representation
reduces to

(175)

We could derive the stability condition from the representa-
tion given above. However, perturbations within the eigenspaces
keep symmetry across the replicas, and therefore the stability
condition to be derived within the eigenspaces is irrelevant to
RSB but only determines the stabilitywithin the RS assump-
tion.

We next analyze the stability within the eigenspaces of the
second type. These eigenspaces are spanned by the eigenvectors

and of and , respectively, which are symmetric under
interchange of all of the indexes except one. Let
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(172)

(173)

(174)

be the specific index in which lacks the symmetry.
The elements of and are

(176)

The forms of , , and are chosen in such a way that
is orthogonal to , the vectors in the eigenspace of the

first type. Similarly, the orthogonality requirement yields the
forms of , , and . The eigenvectors belonging to the
eigenspace of the second type are called the anomalous modes
in spin glass theory. As in the analysis of the eigenspaces of the
first type, (176) induces the transform from to

, from which the representation of the restriction
of to the eigenspaces with the prescribed symmetry.is
given by

(177)

with

(178)

(179)

(180)

The matrix reduces, in the limit , to the matrix
for the eigenspace of the first type (see (175)) means that the
stability condition within the eigenspace of the second type is
identical to that within the eigenspace of the first type, that is,
the RS saddle-point solution is stable against perturbations in
the direction of the anomalous mode whenever it is stable within
the RS assumption.

For each choice of the specific index, the eigenspaces of
and are of dimension two.

Since there are possible choices of the index, the total di-
mensionality of each eigenspace would seem. However, the

eigenvectors corresponding to thechoices of the index are
linearly dependent, and only of them are actually linearly

independent, so that the degeneracy is . Thus, the total
dimensionality of the eigenspaces of the anomalous modes is

.
We now probe stability within the eigenspaces of the third

type. They are spanned by the eigenvectorsand of and
, respectively. These eigenvectors are symmetric under inter-

change of all of the indexes except two. Let and
( ) be the two specific indexes in for which

the symmetry is absent. We assume that the elements ofand
are of the form

(181)

and should be orthogonal to and , respectively. A
sufficient condition yields the coefficient for ,

, , and , and the condition

(182)

and should be also orthogonal to and , respectively.
This requirement yields the conditions

(183)

From (182) and (183), we have

(184)

Thus, we analyze the stability within the eigenspaces spanned
by the eigenvectors of the form

(185)

Again, the transform from to is defined,
from which the representation of the restriction of to the
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eigenspaces with the prescribed symmetry is determined.is
a matrix, and is given by

(186)

As the stability condition, we have, in the limit

(187)

and

(188)

There are choices for the indexesand . However,
of them are linearly dependent, so that the total dimension of

each eigenspace in the replicon modes is . Together
with other two types of modes, we have eigenvectors
for both and , and have exhausted them all. We do not have
to consider any other types of eigenvectors.

In the limit , we have

(189)

so that the condition (187) is always satisfied. Therefore, it is
(188) that gives the stability condition of the RS solution against
RSB, which becomes

(190)

This proves (67).
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