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A Statistical-Mechanics Approach to Large-System
Analysis of CDMA Multiuser Detectors

Toshiyuki TanakaMember, IEEE

Abstract—\We present a theory, based on statistical mechanics, The key idea of our analysis is to apply new tools and no-
to evaluate analytically the performance of uncoded, fully tions developed in statistical mechanics. The motivation behind

synchronous, randomly spread code-division multiple-access s jgeq s as follows. Since the ultimate goal of statistical me-
(CDMA) multiuser detectors with additive white Gaussian

noise (AWGN) channel, under perfect power control, and in chamc;s is to understand macroscopic propert!es_ of_physmal sys-
the large-system limit. Application of the replica method, a tool teéms in the large-system (thermodynamic) limit, it is natural
developed in the literature of statistical mechanics, allows us to to expect that the application of statistical-mechanical tools to
derive analytical expressions for the bit-error rate, as well as the the large-system analysis of multiuser detectors will help under-

multiuser efficiency, of the individually optimum (IO) and jointly ~  gt4n their macroscopic properties as well. We specifically make
optimum (JO) multiuser detectors over the whole range of noise

levels. The information-theoretic capacity of randomly spread use of th_eepllca _methoddeveI(_)ped in the field of _SP'”'Q'a_SSGS
CDMA channel and the performance of decorrelating and linear (mMagnetic materials characterized by random spin—spin interac-
minimum mean-square error (MMSE) detectors are also derived tions) [9], [10]: Although a mathematically rigorous justifica-
in the same replica formulation, thereby demonstrating validity of  tion of the replica method is still missing, it has recently been ap-
the statistical-mechanical approach. plied extensively to the analysis of problems in the field of infor-
Index Terms—Code-division multiple access (CDMA), large- mation processing, such as neural networks [11], [12], learning
system analysis, multiuser detection, optimum multiuser detector, from examples [13]-[16], statistical image restoration based on
replica method, statistical mechanics. Markov random fields [17], and error-control codes including
Gallager and turbo codes [18]-[23]. The results obtained by the
l. INTRODUCTION replica method are mostly nontrivial, and when applied to prob-
. lems with known solutions, it successfully reproduces existing
E evaluate analytically the performance of a class Phsults. They include the following.

. code-division mul_tlp_le-access (CDMA) mu!tluser detec- e Capacity of alinear classifier: The result by the replica anal-
tors in the large-system limit. We adopt the Bayesian frameworgis [13] on the maximum number of randomly-generated data

and qonsuder a 'class of multiuser detectors W.h'Ch we call tégparable by a linear classifier reproduces Cover’s result [24] as
Marginal-Posterior-Mode (MPM) detectorlf has its root in the a special case
Bayesian image analysis [1], [2], and includes the jointly 0p- "o jiapility function: Recently, Kabashinet al. [23] have

timum (JO) and individually optimum (10) multiuser OIeteCtor%uccessfully evaluated the random coding exponent and the ex-

as special cases. It has been recognized recently that fluc ‘gated exponent for an ensemble of Gallager codettife
tions of macroscopic properties of detectors, due to randomn S

in th d hoice of si shi Remble of whole random codes as treated in Gallager’s argu-
In the systemg (g.g., random choice o §|gngtures), Vanish IN f&nt on the reliability function [25], but a smaller subset), ba-
Iarge_—system limit .[3]_[7]' Such deterministic results have beeéncally following Gallager’s formalism, while using the replica
obtained by analytical arguments for some cases. Results for hod instead of Jensen’s inequality. They have reproduced

decorrelating detector and the linear minimum mean-squar :
. . respective results on the two exponents by Gallager for the
error (MMSE) detector can be found in [8]. Tse and Verdu [ P P y 9

the high signal-to-noise ratio (SNR) limit. We believe our rearms of asymptotic performance.

sult to b.e the first analytical result applicable not oply for the We demonstrate that the statistical-mechanical approach is
zero-noise limit, but also over the whole range of noise IeVelsalso applicable to the multiuser detection problem, and that it
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and Verdl [26] which extends the analysis presented herewbere

the unequal-power case.) Preliminary presentation of some of 1 1/ )
the results of this paper are available in [27]—[29]. Z(r, S)=>_ p(x)exp <—ﬁ llr — N=/= S| ) @)
Il. SYSTEM MODEL is the normalizing coefficient, called the partition function. The

quantityp(2) is the prior distribution for the information bits.
Throughout this paper, unless otherwise stated, we assume the
uniform prior, i.e.,p(z) = 2= for all z. Sincep(z) is now a
1 K constant, we could drop it from mathematical expressions in the
= ik Z spr + oont (1) following. But we prefer to keep(z) until we perform detailed
k=1 calculations, in order to make its appearance explicit.
wherez; € {—1, 1} is the information bit (symbol) of user We now define a one-parameter family of multiuser detectors
k, and where{st; = 1, ..., N} is the spreading sequencethe analysis of which is the main objective of this paper.
of userk, within the information-bit iljterval. We_ assume the pefinition 1: The Marginal-Posterior-Mode (MPM) detector
AWGN channeln#* ~ N(0, 1), andoy is the a}mplltude of_ the with control parametes is defined by
noise. We also assume the random spreading model, in which
{stim=1,..., N;k=1, ..., K}areassumed to be realiza- J%S\m“) = argmax Z plxlr, 5), k=1,..., K (8)
tions of independent and identically distributed (i.i.d.) random ek
variables following a given symmetric distribution with zer
mean and unit variance. The scaling fadtgt/N is introduced
so that the total energy of the spreading sequence for the in
mation-bit interval is normalized tb. Let us define

We consider the basic fully synchronous-user CDMA
channel with perfect power control

Quhere the summation ovef\xz; means that we marginalize the
1posterior distribution over alt;, j # k.
Or'Equivalently, we can define the MPM detector as

~(MPM .
T ™ = sign(a).), k=1 Ko (9)
L 1T where(-), denotes the expectation with respect to the posterior
8. =[5 o8] k=1,..., K distribution (6). In the limite — 0, the MPM detector corre-
i N1T sponds to the JO multiuser detector [8],

n= [71 y e, T ]

T #79) = argmaxp(z|r, S), (10)
e= [z, ..., o] 2) B

and in the case where the control parameter is set to the true

Then the communication model (1) is written as noise level, i.e.g = gy, it gives the 1O multiuser detector

1
_ (10
r= N Sz + oon ®3) a:i ):arglgz:x \E plxlr, o=y, k=1,..., K. (11)
z\z}

whereS = [31, . S[(]. .
The characteristics of the channel noise can also be descrigggse facts mean that the MPM detector is a one-parameter ex-

by the conditional distribution of the received datacondi- tension of the JO and IO multiuser detectors.
tioned on the information bits given the spreading sequences A common performance measure for multiuser detectors is
S. Itis given by the bit-error ratel’,. Let 2y be the true information-bit vector.
1 The proportion of the bit error of a detector which outptias
2N —N/2 —1/2 Qa2 . o
po(rlz, §)=(2mog)" " "exp ( —5 5 llr— N775#(7 ). an estimate te, is given by(1 — d)/2, where
0

(4) K
We analyze the multiuser detection problem in the d= % Z Torlr = %wo - Z. (12)
large-system limitwhere K, N — oo, while the ratio of k=1
K to N is kept fixed to We calld the correlationof the detector output. By taking into
K account the fact that all users are statistically equivalent in the
N B ®) system model treated in this paper, the bit-error @tdor a

0;aarticular user is the same for all users, and it is given by the
average of1—d)/2. Asis well known, the IO multiuser detector
bution ofz conditioned on received dategivens. We assume is optimum in the_sense that_ it achieves minimum bit—error rate.

that the detectors do not know the true level of the channelOne of the basic assumptions of the statistical-mechanics ap-
noise, so that we can useas a control parameter in place Oproach is that théree energyper userF (r, 5), defined by

the true noise level parameteg. Under this assumption, the Fi(r, S) =K tlogZ(r, S) (13)
posterior distribution is given by

The basic quantity for analyzing the multiuser detecti
problem is the posterior distribution(z|r, S), i.e., the distri-

is self-averagingn the K — oo limit with respect to the ran-

p(zlr, S) domness of the spreading sequences and the noise. (Here, and
_ 1 _ hereafter, logarithms are taken to baskglt is stated formall
—26r. S pa)exn (5o = N H2sal)©) oo g y
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Assumption 1:The limit 7 = limg .., Fx(r, S) exists Ill. REPLICA ANALYSIS FOR MPM DETECTORS
and it is equal to its average for almost all realizations of t

) , % Evaluation of Free Ener
spreading sequences and the noise. 9y

In order to evaluate the free energy, we make use oEghleca

From this assumption, we have methodfollowing basically the style of [31]) by which we have
—_ - 3 - —1 L
F=lm K[ po(r[S)logZ(r, S)dr.  (14) F= <}3L“o an 1108 “") (18)
{— 00 ]
Ry where
(Here, and hereafter/r stands for[[\_, dr*.) The overbar = _ 0—1/ Zolr, SYZ(r, ST dr. (19)
denotes the average over the randomness of the spreading se- " RN ’ ’

quences, angh(r|.5) is the probability of observing as the |+ shoyid be noted that, for finité, Z,, is well-defined for real
output of the true channel, for the given spreading sequesices;, 1t is straightforward to see that (18) holds by exchanging the
We have order of the averaging and the differentiation with respeet,to
and by noting thalim,, o =,, = 1. In the replica method, how-
po(r1S) = p(xo)po(rlo, S) = Zo(r, S)/C (15)  ever, we will evaluate,, only for positive integers,, and then
To the result is applied to real. We assumewithout rigorous jus-
tification, that this procedure is valid [9]. Formally, the assump-

where we let tion is as follows.

Assumption 2:Z,, for realn is given, at least in the vicinity
of n = 0, by plugging the value of into the expression &,
(16) obtained by evaluating it only for positive integers

20tr.$) = 3 pteo) e (- 50z I = 87250l ).
The normalization coefficient For a brief introduction of the replica method and its ap-
plication to large-system analysis in a general setting, see Ap-
C= / Zo(r, S) dr = (2m02)N/? (17) pendix I. For more extensive reviews on the replica method in
R the statistical mechanics literature, see, e.qg., [32], [10], [16]
Since[Z(r, S)]™ for integern is nothing but the normalizing
coefficient for a system consisting afreplicas of the posterior
probability (6) sharing the sameandS, we can write dowrx,,
licitly as shown in (20) at the bottom of the page, where we
e introduced replicated random variables

is independent of the spreading sequences.

The free energyFx (r, S) is nothing but theeumulant gen-
erating function[30], which carries all information about the
statistics of the system. Therefore, assuming the self-averag
property of the free energy corresponds to assuming that
fluctuations of macroscopic quantities, due to the randomnessz, = [a1, - -, zox]" € {-1, 1}K, a=1,...,n

of the spreading sequences and the noise, vanish in the lafgerepresent the random variables of the replicated posterior

system limit. The self-averaging property has been proved ff)h’obabilities. The integrand dependsannly through
the AWGN CDMA channel capacity [3], [4], performance o

the linear MMSE and decorrelating detectors, including the un-
equal-power case [5], [6], and performance of the optimum de-
tector in the zero-noise limit [7]. Although the self-averagingpg
property for the MPM detector has not yet been proved, and is 1K
still an assumption, results for models such as those mentioned Vg = —— Z SkTak, a=1,...,n.

earlier strongly suggest that it also holds for the MPM detector. VK k=1

Even if the self-averaging property does not hold for the MPMnder mild additional conditions on the statistics.$fthese
detector, the main results to be obtained in this paper still prguantities can be regarded, in tié — oo limit, as joint

vide possible approximation to the performance of the MPKaussian random variables with meafisand covariances
detector, as well as a lower bound on the best possible perf@;, = v,m, = K~ 'z, - z,. (See Appendix Il for the justifi-
mance, provided that other technical assumptions are valid. cation of this step.) Based on this observation, we decompose

1 K
Vo = —F= Z SELOk
VK

.= S ] #e)

Lo, L1, .y T a=0

N

1 1 S 7l & 1 ;K 2
i exp | —— | r—— SLLOk exp |—— | r—— S1T ks dr 20
w/—mg/r«p 203( mz"O")Hp 202< mz_:> (20)

k=1




TANAKA: A STATISTICAL-MECHANICS APPROACH TO LARGE-SYSTEM ANALYSIS OF CDMA 2891

the summation ovefz, } into two steps. First we perform the Assumption 4:The dominant subshell is invariant under ex-
summation over a single subshell of the form change of any two replica indexesandb, wherea, b # 0.

S{Q}Y ={zo, ..., Zpl|Te -2 = KQu} (21)  The validity of the RS assumption is checked in Section I1I-D.
and then integrate the result over all subshells. Thus, we haJdnder the RS assumption, we candgf, = m for a # 0 and
. Q. = qfora # b, a, b # 0. We can then construct explicitly
En = /[ S exp(KA7'G{QNur{Q} [] 4Qas  the Gaussian random variables possessing the assumed covari-
_17 1 n(n

a<lb
22) ance structure, by »
where m? m
n Vg =U 1— — —t ﬁ
q
piQt= D> ] @) [ 6@a -2 — KQas) (23)
@0, ..., @ a=0 a<h Vo = 21— q)*/? — t\/q, a=1,...,n (27)
is the probability weight of the subshed{ @}, and wherew, ¢, andz, are independent Gaussian random variables
1 3 , 2 with mean0 and variancel. Neglecting terms with vanishing
@ = / exp |- <——Uo{Q}) orders ofK, (24) becomes
oot 208\ a0
G (m.
- B (_r ’ . -1 - / /
XEQXP [_ﬁ W—UQ{Q} dr +O(K ) \/ﬂ we R
(24) B 9y 1/2 2
. : . - 0 m m r
is equal to the integral in (20) within the subsh&{lQ}}, where XEXp~ [u <1— 7) -t ﬁ - 7] Du
the bar denotes averaging over the Gaussian variabigg}.

The covariancé,, satisfies—1 < Q,, < 1, so that the inte- 5 n

gration by@,; should be taken over the intenjat1, 1]. % / exp _B |:z(1—q)1/2—t\/§—L:| Dz
The outline of the calculation is as follows (see also [33]). We R 2 VB

first assume the following. % Dt dr (28)

Assumption 3:The order of the two limitsk’ — oo and \whereB = /02, By = /02, andDt = (¢=*°/2/\/2x) dt is
n — 0in (18) can be interchanged without affecting the finghe Gaussian measure.

result. We can perform the Gaussian average explicitly, which yields
Based on the assumption, we have (29) shown at the top of the following page.
9 Now we turn to the evaluation af{@Q)}. From Cramér’s the-
F = lim n (Kli_lgo K™ 'log En) (25) orem of the theory of large deviations [30], [34], the rate func-

tion Z{Q} of nx {Q}, asK — oo, is given as the Fenchel-Le-

so that as the next step we evaludit® .. K 'logZ,. . L
- o n endre transform of the cumulant generating function, i.e.,
From the theory of large deviations [30], [34], we know fron'g g g

Cramér’s theorem that the probability measuie{} of the
empirical means

Z{Q} = sup (Z Qa1 Qas — log M{@}) (30)
[Q} a<b

K
where
1
Qo =K Zwa,kwbk
k=1

M{Qy =) 27" exp <Z Qw%m) (1)

satisfies, ad{ — oo, the large deviation property with a rate (o s

functionZ{Q}. Then, applying Varadhan's theorem [30], [34%)

) [ sthe moment-generating function §&,x,} with z,’s fol-
(also known as Laplace’s method and the saddle-point meth c()j\kling the uniform measure ofy-1, 1}. Under the RS assump-

to (22) .ylelds L X tion, we can leQq, = E andQu, = F fora # b, a, b # 0.
lim K~ logZ, = ?gl;(/f g{Qt —Z{Q}).  (26) ThenM{Q} = M(E, F) is calculated explicitly as

K—oo

Taking the derivative with respecttoand then the limit. — 0, M(E, F)

we will obtain the final result. n n 2
First, we work withe9{@}, An implication of the applica- — Z 2~ (D) Jexp EZ xa+E <Z xa>

tion of Varadhan's theorem to (22) is that only a single subshell (2a,a=1,..,n} p— 2 a1

will contribute to the integral in the limiKkk — oc. One can )
then regard that the dominant subshell contains typical config- " F {2 2
urations with respect to the posterior distribution. For the sake T €xp | =& Z Zo + D) Z La €

of analytical tractability, we restrict ourselves to searching for a=l1 a=1

the dominant subshell only within those which induce highly

symmetric covariance structure. Specifically, we adopt the fol—= / g~ (n+1) {exp
lowing assumption of theeplica symmetryRS). R (re,a=1,..,n}

a=1

(VFz+E) En: xa]
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Gm, 9) m?\] " /2 1
9o — |14 By (1- ™ 14 B(1— )]~ x /
{ 0< q )} [ ( Q)] \/27ra§ R2

By

. <t£+L)2 nB
2[0+Bo(1—m?/) \' /g * /B Y

2[1+B(1 - )] <t\/§+ﬁ> ] brdr

—[14 B(1 - g)]~V/2 {(1 + Bo){L+ B(1— ) + nBq {1 B <1 ) m{)} }1/2

X exp

1 / p[ r?  Bo[l+ B(l—q)]+nB[1+ Bo(l—2m+q)]
R

X - dr
V2ro2 28 (14 Bo)[1+ B(1—q)] +nBq[l + Bo(1 - mQ/q)]}
=[1+ B(1 - g " V2 {[1+ B(1 - @] + nB(B; +1—2m+ )} /% (29)
- Collecting these results, we obtain the following formula for
— . —TLF/2 ) N )
Texp (\/FZ - E) Z xa] } Dz-e the replica-symmetric free energy™S:
a=1
3]
F® =lim — sup inf [ 40
= / cosh™ (\/Fz+E) Dz - c~"F/2 (32) Hg 5, sup dnl (40)
i i where
where we used the Hubbard—Stratonovich transform
RS —1 / W' (VEz+ E) Dz
P2 :/ NFS (33) f og A cos (\/_7+ ) z
R
. . ] n n(n—1)
to linearize the exponents. The rate function, under the RS as- —nkm — 5 F— 5 Fq
sumption, is thus given by 1
(n—1) ~ %5 (n — 1D log[l + B(1 — q)]

Z(m, q) = sup [nEm—i-gF—i— nin

2 _
B +log[1+B(1—q)+nB(By ' +1-2m+q)]}. (41)
—log / cosh™ (\/ﬁ z+ E) D Z} . (34) We can exchange the order of taking derivative with respect to
R n and the extremizations, by noting thgft® — 0 in the limit
The supremum with respect foandF' is achieved whett; and 7 — 0. We finally arrive at the following proposition.

F satisfy Proposition 1:

I cosh™ 1 (\/FZJFE) sinh (\/FZJFE) D {:1) Let Assumptions 2—4 hold, then thg average frge energy
m= (35) Fisgiven,in the limitX’ — oo, by the replica-symmetric free
Jg cosh” (VE z+E) Dz energy
RS _ " _ 1 —
I cosh™ 2 (\/Fz—i—E) sinh? (\/Fz—i—E) D F —/H log |:COSh (\/Fz—i—E)} Dz—Em—35 F(1—-q)

7= . (36)

Jg cosh™ (\/Fz—i—E) Dz B[Bal +1—2m+ q]} (42)

1+B(1—g¢q
We apply Varadhan’s theorem to evaluate the integral in (2%)h h ) ( ) be d
asymptotically in the limitk’' — oc. Under the RS assumption eret € macroscopic pa_rametér@, ¢, B, I'} are to be de-
termined by the saddle-point equations

—% {log[l + B(1 - ¢)]+

we have

Jim K™MlogE, = sup [3716(m, ¢) — T(m, q)] . (37) m= /R tanh (\/FZ + E) Dz

1 —00 m,q
A supremum point with respect ta and ¢ satisfies the ex- g= / tanh? (\/ﬁz + E) Dz
tremum condition derived from (29) and (34), which is given R
by BB

-1p 14+ B(1—gq
B ] _ 7 38) )
[1+B(1—q)]+nB(Byt+1-2m+q) F_/3—1B2(B0_1 +1—2m+q) (43)

and [1+B01-qf

31BY( By +1-2m+
F= 1+ B(1 & B 59_01 12 m+) 1 B(1 . b) Let Assumption 1 also hold, then the free energy per user
{1+B(A-ql+nB(By" +1-2m+q)} [1+ B(1-q)] Fr(r, S) converges with probability one t&%> in the limit

39) K — oo.
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The saddle-point equations (43) are derived by taking tla@d then (45) immediately follows by considering a series of
n — 0 limit of the respective extremum conditions (35)analytic functions converging tdgn (-) [35].
(36), (38), and (39). The mathematically true solution to the
extremization problem of (40) is such that and £ mini-
mize fRS(m, ¢, E, F) globally, and thatn and ¢ maximize << 1 & >>

Lemma 1: Let Assumptions 1-4 hold, then we have

FRS(m, q, E(m, q), F(m, q)) globally. The globally extrem- 1im lim K Z (zor{zr)o)’
izing solution is called the stable state in statistical mechanics. k=1
We call it the globally ;table state. However, solutions yielding — [ tann’ (\/Fz n E) D>,
only local extrema, which are called the metastable states, have R

some significance, as discussed in Section V-A. We will, there-  proof: Let1 < a; < as < -+ < a; < n bej replica in-

fore, deal with such locally extremal saddle-point solutions, @fexes. Since we are working with the RS assumption (Assump-

metastable states, as well as with the globally stable state. {jon 4), all the replicated systems should have the same statis-
tical properties, so that we have

j=0,1,.... (48)

B. Expression for Correlation

K J
We derive the expression for the correlatidribetween the 1 H (zok (Ta,k),)
estimation resuls ™ by MPM detector and the original in- K="

formation bitsz,. The correlatior depends on the realizations I

of random quantities such as spreading sequences and noise, and _ 1 Z (zorlzx) )j (49)

therefore it is a fluctuating quantity itself. Nevertheless, we ex- K i 7

pegt that the fluctuations of will vam;h in the large-system The left-hand side of (49) can be handled by considering the

limit K — oo due to the self-averaging property. Hence, we . : :
: A moment-generating function of the random variable

evaluate the average of the correlatibaver all realizations of '

the spreading sequences and the noise. For MPM detector, we J

K
have > 1 @orwa,.x) (50)

k=1 m=1

K i i
d= lim lim <<% Z Sign(a:Ok(a:k>o)>> (44) with respect to the (unnormalized) measure

n—0 K—oo e n
H p('r|$a7 S)p(xa)'
a=1

where(-), and{(-)) denote the average with respect to the pos-
terior distribution (6) and the average over the spreading

quences and the noise, respectively. e moment-generating functiokt,, (h; r, S) is

In this subsection, we derive, under the RS assumption, th ] _ .
following proposition. Ma(hir, 5) = > 1:[1 p(%a)
Proposition 2: Let Assumptions 1-4 hold, then the correla- K ;
tion d for the MPM detector is self-averaging, and is given by X exp [h Z < H ZokTa k)]
k=1 \m=1

d:/ sign (\/Fz+E) Dz (45)
R

whereF" andF are to be determined by the saddle-point equa-

n 1 ~
<o (= gpallr=N"52.0) 6
tions (43). o=t

whereh is the auxiliary variable introduced to define the mo-

The proof basically follows the argument in Nishimori [35ment-generating function. We consider a free-energy-like quan-
Sec. 5.4.4]. From this equality, it immediately follows that théty F defined by
bit-error rate is given by F= Ilim K~'log 2, (52)
E 1 — 00

P, = — 46
by = Q < Nia ) (46) where

whereQ(z) = [ Dt is the error function, hence allowing us n = ((Malhir, S))
to evaluate the bit-error ratB, from the saddle-point solution.
Propositions 1 and 2 are the main results of this paper.

The key ingredient to deriving (45) is Lemma 1 given Iatef . : =
L -~ : . § an averaged moment-generating function. The quanhtitgn
Once we admit its validity, we have for any analytic function verag 9 Ing functl au A

that thus be regarded as a rescaled version of the cumulant gener-
a ating function for the random variable of (50). Taking the deriva-

<< 1 iF[ ) ]>> tive of F with respect td, and lettingh go to0, provides us with
— Tor{TE) o
K k=1

[1]:

=Ct / Zo(r, )M, (h;r, S)dr (53)
RN

lim lim
n—0 K—oo

information of the averaged first-order moment, that is,

:/RF[tanh(\/FerEﬂ Dz (47) Z_J:

. . 1 K J

h=0 k=1 m=1
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Taking the limitn — 0 of (54) gives the desired quantity. WeC. Solving Numerically the Saddle-Point Equations
therefore concentrate on the quantty.

Thanks to the formal similarity betweéh, and=,, (see (53) in
and (19)), we can proceed basically by following the replica c
culation in the preceding section to evalugte Specifically, we
only have to reevaluate the rate functibf)} of the measure

One has to solve the saddle-point equations (43) numerically
order to evaluate the performance of the MPM multiuser de-
Abctor. The approach we have taken is as follows. We consider
the problem of evaluating, which gives a prescribed value of
the bit-error ratéd < B, < 1/2, for a givens. From (46) we

n calculated = Q= 1(P,) (0 < A < o0). SinceA? = E?/F at
px{Q} = Z H p(xa) the saddle-point solution, the first three equations of (43) can be
Lo,y ey B a=0 rewritten as
X H 5y -2 — KQu) m = / tanh VF (z + A) Dz (61)
a<b R
K J _ 2
q= / tanh® VI (2 4+ A) Dz (62)
X exp lhz H (a:Oka:amk)] . (55) R
k=1 m=1 1
BB
The remaining part of the calculation is not affected. We have AVF = 1+B(1-4q) (63)

~ ~ o By eliminating ¢ from (62) and (63), we obtain a one-dimen-
Z{Q} = sup lz QarQar — log M({Q}, h)] (56) sional problem
{Q}

a<b \/_ /3—1B
where AVE = T+ B (= FalF]) (64)
M ({QL h) = Z 2~ (1) where0 < F' < oo, and where
tea) FulF) = / tanh® VF (z + A) Dz. (65)
R

J
-exp Z QubTas + H (zozq, )| . (57) The saddle—poipt solutioR (i.e., the f'ixed point of (64)) subse-
a<h m=1 quently determines:(F") and¢(I") via (61) and (62), respec-

h does not appear anywhere else. Therefore, by exchanging%%ly’ and thenf, via the last equation of (43).

order of the two limits» — 0 andK — oo (Assumption 3), we Assumptions Made in Replica Analysis

obtain, under the RS assumption

We list the technical assumptions made in the course of the
OF replica analysis.

ED

heo  The free energyFy (r, S) has the self-averaging property
in X — oo limit (Assumption 1).
* Analytic continuation ofE,, to realn is valid (Assump-
=0 tion 2).
e The order of the limitsn — 0 and K — oc can be
exchanged (Assumption 3).

()

= % 10gM ({Q}’ h)

' "= ' » The RS assumption does not exclude the true solution (As-
Jg cost"™7 (VP 2 + E) s (VF 2+ E) Dz sumption 4).
= - . * The relevant subshelf{Q} contains an exponentially
Jg cosh” (\/FZ + E) D= large number of possible values.
R p In order to check the validity of the replica method, we have to
n 0 7 1
R tanh (ﬁz + E) Dz (58) consider these factors in more depth.

Assumption 1, the self-averaging property, has already been
discussed at the end of Section Il. Assumption 2, the analytic
The proof of Lemma 1 explains, as a by-product, that thmntinuation to reah from the expression obtained by evalu-

macroscopic parametens andq have the following meaning: ating the relevant quantity only for positive integersis the
| K central assumption of the replica method. Providing mathemat-
L a ical justification to this procedure is a great challenge, and is
m= Isll—lgo << K kz_:_l ok <$k>”>> (59) beyond the scope of this paper.
i Assumption 3 is about the validity of exchanging the order
) 1< 5 of the two limitsn — 0 and X' — oo, which has been uti-
¢= lm K Z (wox(ar)s)™ )) - (60) |ized to evaluate relevant integrals by invoking Varadhan’s the-
k=1 orembeforetaking then — 0 limit. It can be shown for one
Furthermore, the form of (46) suggests that the quadfity/” of the standard models in statistical mechanics, called the Sher-
serves as the signal-to-interference r&iB. rington—Kirkpatrick model [36], and possibly for our model as

which proves (48).
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well, that the exchange of the order of the limits is justified [37]. 10 Multiuser Detector

although we have at present no rigorous result regarding this¢ e put the control parameter of the MPM detector to be
point. , , , equal to the true channel noise lewg| we are given the 10 mul-
Assumption 4, the RS assumption, may seem a quite natyfgker getector. In this case, the true channel characteristics, and
assumption, since there seems to bermiori reason 1o con- s model used in designing the detector, enter the replica cal-
sider broken symmetry between the replicas. Nevertheless, iti§ation in a completely symmetric way. Thus, the true channel
in principle still possible that the true extremum of (see (15)) can be regarded asttereplica, and alh+1 replicas
F=logM{Q} - Z Qus Qs + S1GIQY (66) can be treated in a syr_nmetrlc_ manner [3_1]. This symmetry al-
lows us to prove some interesting properties of the 10 multiuser

L detector. One such result is summarized in the following propo-
does not have the RS. Therefore, the validity of the RS assungg;,,

tion should be checked.
We probe the so-called de Aimeida—Thouless (AT) stability Proposition 4: For the case of the IO multiuser detector, the

[38], which refers to the local stability of the RS saddle-poirfRS assumption is valid for the stable saddle-point solution.

solution against replica-symmetry-breaking (RSB) perturba- Proof: The proposition is proved by first deriving the sta-

tions. The procedure is briefly described as follows: we evaludtity condition of the RS saddle-point solution for the 10 mul-

the Hessian off with respect to the macroscopic parameteﬁgjser detector, and then showing that it is equivalent to the AT

{Qas, Quv} atthe RS saddle-point solution, and then derive tr&ability condition (see (67)). Because of the symmetry between

stability condition, the condition under whighis maximized then + 1replicas, we can assert, under the RS assumption, that

and minimized with respect t} and{Q?, respectively. The E = F andg = m hold. The functionf** becomes

result is summarized in the following proposition as the AT RS _ 1. n

line, which marks the boundary between two regions in the = log/R cosh (\/EZJFE) Dz

parameter space, one in which the RS saddle-point solution

a<b

1
is stable against RSB and thus the RS assumption is valid, - gE[l +(n+1)q] - 2
and another in which the RS saddle-point solution is unstable
against RSB, and consequently, the RS assumption is no longer x {nlog[l + B(1 — q)] +log(n + 1)}  (70)
valid. from which the RS free energf™* follows as

Proposition 3: Let Assumptions 1-3 hold, then the AT Iine]_-Rs _ / log [Cosh (\/Ez + E)} Dy — 1E(1 +q)
is given by R 2

_1

243

I%wre the saddle-point equations determining £’} are given
by

1 pE? / sect (VEz+E) Dz=0.  (67) {log[L+ B -] +1} (71)
R

The RS saddle-point solution is valid as long as the left-ha

side of (67) is positive.

Details of the derivation of (67) are given in Appendix Ill. 4 = / tanh (\/EZ‘FE) DZ:/
The last assumption has not been stated explicitly so far. How- R R
ever, it is certainly one of the necessary conditions for the fingl, _ p'B (72)
result to be valid because, for the summation over the dominant 1+ B(1 —¢q)’
subshell to have the proper meaning, the dominant subshell haBmposing the second equality of (72) on (71) yields
to contain an exponentially large numbermfvalues. Under RS
the RS assumption, we can evaluate the volume of the domi- = / log [COSh (\/EZ + E)} Dz
nant subshelb{ £, F'}, specified byE and F', as given by the "

tanh? (\/Ez—l—E) Dz

saddle-point solution. The numb@f{ F, F'} of possible mi- 1 (2+ B HE — 1 log B (73)
croscopic configuration§zo, @1, . . ., £, } within the subshell 2 28 " BE
S{E, F'} is given by inwhichE = E(q) = 871B/(1+ B(1—q)). As the condition
_ K (nt1) under whichy, as given by the saddle-point solution, maximizes
N{E, F'} = nx{Q} 2 : (68) fBS at the saddle point, we have
In order for the evaluation of probability weight over the subg? f&S dE(q)\> 92 fRs
sh(_all to be yalidN{E, F} ghould be expgnentially large is. dgz < dq ) OE?2
This leads, in the, — 0 limit, to the condition 1
=0 (BE?)? U secht (\/Ez+E) Dz——Q} <0. (74)
\I/E/ log |:COSh (\/I?z—i—E)} Dz o R - _/?E
R This is identical with the AT stability condition (see (67)), thus
proving the proposition. O

1
—Em—-F(1-4¢)+log2>0. (69) )

2 It should be noted that, by the safmet 1)-replica argument,
The condition¥ = 0 defines the so-callefteezing pointat the signal-to-interference ratio for the 10 multiuser detector is

which the system loses its microscopic degrees of freedom. straightforwardly given bysIR = E?/F = E. The stability
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result of Proposition 4 can also be derived without using thédsing this fact, from (77), (78), and (80), we have the following
replica method. Nishimori [39] applied a gauge theory to theroposition.
analysis of the IO multiuser detector, to obtain a result extending,

Proposition 4, also proving the identigy= m as a corollary. Proposition 5: The capacityC of the CDMA channel is

given, in the large-system limit, by

IV. DERIVATION OF EXISTING RESULTS BY REPLICA METHOD C= lim K'I(Xy,..., Xg;Y)=— <J—“0 + i) (82)

K—oo 2/3
A. Capacity of CDMA Channels
pactty whereZF, is defined by (81).

The statistical mechanics approach is also useful in deriving_ )
the information-theoretic capacity of CDMA channels. In the This means that, if we can evaluate the free engfiggnalyt-
following analysis, we assume that the information rate is tieally, we can obtain an analytical expression for the maximum

canonical argument for the capacity region [40], we have the!n this paper, we address the capacity of the AWGN CDMA
K channel. We first discuss the AWGN CDMA case, in which
- - the inputs can take continuous values. The Gaussian prior is
 =KR<I(Xy, ..., XY 7 . . ) . .
’; £ R<I(X, - X Y) (75) known to give the maximum of the differential entropf”) in

i . this case, and, therefore, the maximum of the common informa-
whereX;, k_ =1..., K andY_ denote the randc_)m Va”ablestion-theoretic capacity of the CDMA channel, under power con-
correspo nding to th_e mformatlomk_ and the received date straint. Verdd and Shamai [4] have reported an analytical result
respectlyely. We define the capacityof a .CDMA channel aS in the large-system limit, on the capacity, and on the optimum
t_he maximum ratfa (rf':lther than the maximum sum rate in t 5ectral efficiency of the CDMA channel, based on the asymp-
literature), which is given by totic empirical spectral distribution (ESD) of random cross-cor-

C = K‘lj(Xh ey X3 Y. (76) relation matrices [41]. Our objective here is to demonstrate that
the replica analysis does reproduce their result, thereby pro-
viding supporting evidence for the validity of our approach.

We assume the unit-variance Gaussian prior

In this subsection, we evaluate the capaCity the large-system
limit X — .

The mutual information in the right-hand side of (76) is given
in terms of differential entropies as

I(Xy, ..., X;Y)=0(Y) - n(Y|Xy, ..., Xg). (77)

¢T/2 (83)

- ] ) _ and perform the replica calculation again. We start with the
The congﬂuonal informatioh (Y| X, S X )isequal to th(_a probability measur@ﬁ,{Q} of {Q}, given by
differential entropy of the channel noise, because the noise is

assumed to be independent of the informafign It is given b r
P MRSV gioy = [ ] el 5 - KQu) ] In(e.) daa),
Rk’ n41 (1,:0

N N
MY Xy, o X)) = 5 (1 +log2no3) = - +logC. (78) asb (84)
X
(Note that the base of the logarithniso that the unit of infor- Where dz, = J[;_; dar. It should be noted that now we
mation here isiats) By definition, forh(Y") we have haveQua, a = 0,1, ..., n, as variables as well. This is be-
causez; may take any real values under the Gaussian prior,
hY) = —/ po(r|S) log po(r|S) dr so that we have to take into account the possibility tQag
RN

= K~!||z,||* at the saddle-point solution may be different from
1. From Cramér’s theorem, the probability measuffe{ O} sat-

_ 1 . .
=-C /RN Zo(r, $)log Zo(r, 5) dr +log €. (79) isfies the large deviation property with rate function

The self-averaging property in this case means that, in the large-

system limit, the differential entropy normalized by the number I¢{Q} = sup Z QarQar — log MG{Q} (85)
of usersK ~1A(Y) is equal to its average {Q} \a<s

lim K 'h(Y) where

K—oo

= lim {—(KC’)_I/R Zo(r, S)log Zo(r, S) dr MG{Q}E/ exp Z Q,,,ba:,,,a:b ﬁ Dz,. (86)
N Rn+1 0

K—oo
a<b a=

+K llog O} (80) We proceed with the RS assumption, andjgs = po, Qua =p»
Qoo=Go/2, andQ.. =G/2, a=1, ..., n. Then we have
for almost all realizations of the spreading sequences. It shouIdG . 1/ (12
be noted that the first term in the right-hand side of (80) &/°{Q} = (1 - Go)™/*(1+F—-G)~"
nothing but the free energy (see (14))

Fo = Floeo,- (81)

E2 —-1/2
x [1+F—G—n<1_GO+F>} . (®87)
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Calculation ofG under the RS assumption can be done in than noise spectral density. The capacity, evaluated at the saddle

same way as before, by letting

< m2>1/2 . m
vo=u|po— — —t—
q Vi

a=1,...

va =2a(p — @)% = 1/1, ,n. (88)

point, is
BC=" 1og(1 + SNR = 1) + £ log(1 + SNRG— 7) — ——
T2 RS Eat 77 2SNR
(96)
which is exactly the same result as the one reported by Verdu

After some algebra we obtain that = 1 andG, = 0 atthe RS and Shamai [4].

saddle point, and the RS free energy becomes

1 E’+F
RS _ - - _ - =
FU= 2[108(1+F <) 1+F—G}
1 1 1
B(By'+1 - 2m+q) }
x < log[1+B(p—q)]+ ——2 89
{ g[1+B(p—q)] T Bo—q) (89)

Next, we consider the case of the BIAWGN CDMA channel,
in which the input is constrained to be binary, i€, = +1.
If we assume (as it should be) thafY") is maximized for the
uniform priorp(z) = 2%, then we already have the analytical
expression of the free energy (Proposition 1) for this case, and
the capacity can be obtained using (82).

B. Decorrelating and Linear MMSE Detectors
In this subsection, we show the derivation and the results for

where{m, ¢, p, E, F, G} are to be determined from the fol-the decorrelating and the linear MMSE detectors by the replica

lowing saddle-point equations:

U _ E?+F
Sy T ayr-ay
_E*4+2F+1-G __A°B
R ~ 1+ B(p-q)
F:[3_1B2(B()_1+1_2m+Q) G=F—-F (90)
[1+B(p—q)? 7 |

Here, we only need to evaluate the free energysfor og

analysis, in order to compare them with the results so far re-
ported in the literature. In the Bayes framework, it is not unusual
to assume models of the source and the channel with different
characteristics from those of the true source and channel, for the
detector. We have already seen such an example in the MPM
detector, where the detector assumes the noise dewehich

may be different from the true noise lewe). Here, we con-
sider the case in which the detector assumes the unit-variance
Gaussian prior (see (83)), whereas the true prior is binary, i.e.,
p(zo) = 27 for all . Under this assumption, we can con-

in order to discuss the capacity (see (81)). In this case, we iger, just like for the MPM detector, a general classirdar

eliminate the variables:, F, p, andG using the relationg: =

¢, = E,p=1,andG = 0, which immediately follow from
the (n + 1)-replica argument (like in the replica analysis of th
IO multiuser detector). The free ener@y = F|,—,, and the

corresponding capacity become

1
Fo= —5 [log(1+E)— E(1—q)+ 87"
x {log[1 + Bo(1 — @)] + 1} ] (91)
and
15} 1
BC = 5 log(1+ E) + 3 log[1 + Bo(1 — q)]
3
-2 E1- 92
where the saddle-point equations determinjpg £’} are
E B~1B,
=— = 93
=17E 1+ Bo(1—q) (03)
With a modest amount of foresight we let
7 = Byg (94)

and solve the saddle-point equations (93) in terms tf obtain
=L F(SNR, ), E=SNR—-71 (95)
where
2
Fz, 2) = <\/a:(1+\/})2+1—\/a:(1_\/;)2+1>

(not to be confused with the free energy), and wheklk =

e

multiuser detectorsdefined as follows.

Definition 2: The linear multiuser detector with control pa-
rameters is defined by

af:g) = argmax/ pO(z|r, 5) H dx; 97)
rr  JRE-1 iy
where

pV(zlr, 5) = [Z20(r, $)]7'p"V(x)
1 —1/2 2
X exp <—F||’I‘—N 28|, ) (98)
is the posterior distribution for the unit-variance Gaussian prior

0@ =en e (<L) 09

2
with

1
ZO(r, S):/ exp <——2||’I‘—N_1/25$||2> Dz (100)
RK 20

K

whereDz = [[;_, Dxs.

This appears to be different from the conventional defini-
tion of the linear multiuser detector, because we have made no
explicit reference to the linearity. However, the posterior, ap-
pearing in the definition of the linear multiuser detector, be-
comes Gaussian because both the prior and the noise distri-
butions are Gaussian. Hence, the detection (see (97)) can be
done simply by a linear transformation on the received sig-
nals, and therefore this definition does specify a family of linear

1/02 is the ratio of the energy peN chips and the Gauss- multiuser detectors. Moreover, as is well known, for the linear
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model treated in this paper (see (1)), considering the MMSEe and Hanly [5] for the case in which power distribution ap-
detector within the restricted set of linear transformations, goaches a given limiting distribution in the large-system limit,
equivalent to the assumption that the prior is Gaussian. Astmthe equal-power case. The replica approach can also be ap-
the case of the MPM detector, the linear multiuser detector uggied to the unequal-power case, in which the general result of
the control parameter to represent the detector's assumptioise and Hanly [5] is reproduced for the linear MMSE detector.
about the noise level. As can be confirmed by simple algebra, inTaking the limitc — 0, we obtain the result for the decorre-
the limite — 0 our linear multiuser detector corresponds to thiating detector. Fof < 1, we haven = 1, E, ' — +o0, and

decorrelating detector [42], [43], and if we can set the true con- 1-5
trol parametes = oy, then we have the linear MMSE detector SIR=—5—. (105)
[43]-[45]. 70

The replica calculation for the linear multiuser detector is e&n the other hand, fof > 1, we havem =", E=(3-1)"1,
sentially the same as those for the MPM detector and for tAad
capacity. We only have to re-evalud&té@)} using the Gaussian

prior fora = 1, ... n and the binary one far = 0. We have SIR=0. (106)

This is again in agreement with the literature [8], [5].

Z{Q} =sup Z/ QavQay — log M{Q} (101)

(@} \ a<p V. RESULTS AND DISCUSSION
where A. Bit-Error Rate
— 1 I ’ Fig. 1 shows how the bit-error raf@, of the JO and 10 mul-
M{Q} = 21 2 /R e | ) Query 1—[1 Dza:fiyser detectors, as evaluated from the RS saddle-point solution,
zg= a<b a=

(102) depends on the ratif, /Ny, i.e., the energy per b, divided
by noise spectral density¥y. Since we consider uncoded sys-

The symbolsy"’ and ][]’ mean that the term witlia, b) = - s
(0, 0) should be excluded from the summation and the muItipIE—ems heref;, /No = 1/207 holds. When the number of users

cation, respectively. This exclusion is due to the binary nature Ir?é:/?aljll\r;e;i tst?ea!;mh g:?o‘r]n?a?]rgg ;hsei r:?hg]:ilgulsee-[;(sjs:i:gsas
o, which yieldsz3, = 1 and thus makes introduction Gfoo shown in Fig. 1(a) P 9 :

3 he R i h . . . .
and Qoo unnecessary. Under the RS assumption we have, by n interesting property observed in these results is that the

similar calculat|(3n bit-error rateP, shows anomalous, nonmonotonic dependence
M{Q}y=(1+F-G)~-b/2 on the ratioE, /Ny, as/3 becomes larger{ > 1.49 for 10 and
X (1+F—G— nF),l/g > 1.08 for JO). The S-shaped performance curves in Fig. 1(c)
and (d) mean that under some conditions more than one solution
x B /24 F=G=nF) (103) coexists: one with the bit-error rate almost as small as in the
. . ingle-user case, which we call tgeodsolution, and another
from which we eventually obtain the same freg energy as (S%’th larger bit-error rate, which we call tHead solution (the
and the same saddle-point equations determigingg, p, E, third solution on the intermediate branch is physically unstable

F, G} as (90). The correlaﬂo_d and the k_J|t-error ratd, are nd therefore irrelevant). The coexistence of more than one solu-
evaluated from the saddle-point solution in the same way as %be

; . 10N is essentially the same as the coexistenghabesn phys-

e e o e 1 syt sch a et andic &) and tch aprenon-

is given byE?/F7, like in the case of the MPM detector. The ArSnonis called phase coexistence in statistical mechanics. Curves

ine turns out to ,be ' in the parameter space which mark the boundary between the
regions with and without such coexistence are catjgithodal

1— Bm? =0. (104) lines Fig. 2 shows the spinodal lines (solid curves) for the JO

and IO multiuser detectors. The upper and lower branches rep-

The RS saddle-point solution is stable against RSB if thesentthe bifurcation points at which the good and bad solutions

left-hand side of (104) is positive. Due to the continuous natudésappear, respectively. It can be seen that the bad solution dis-

of the configuration space, the freezing point is not defined fappears at a finiteé;, /Ny for 1.49 < 5 < 2.09 for IO and

the linear multiuser detector. 1.08 < < 1.51 for JO.

Letting o = oy Yields the result for the linear MMSE de- As discussed at the end of Section IlI-A, one may argue that
tector. From the saddle-point equations (9@)= gand# = E the true procedure of evaluating the free energy (see (40)), in
hold for the linear MMSE detector. It should be noted that thesiee information-theoretic sense, should be such that one picks
arenotthe consequence of tife + 1)-replica argument. In the up the globally stable state, i.e., the saddle-point solution giving
case of the linear MMSE detector, tbth replica and each of  the global extremization of 5. In the region of the phase co-
replicas are not equivalent because the Gaussian prior assumestence, the globally stable state may be given by either the
by the latter is different from the binary one of the former. Thgood or the bad solution, depending on their free energy values,
values of the macroscopic parameters are to be determined frama thus a boundary is defined at which the globally stable state
(93), from which the bit-error rate is evaluated via (46). This reswitches between these solutions. In statistical mechanics, this
sultis the same as the one derived by applying a general resulkind of switching is called a thermodynamic transition, and the
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Fig. 1.

Bit-error rate of single-user matched filter (SUMF), JO multiuser detector (JO), and 10 multiuser detector (10). Bit-error rate forethessimgise is

also shown for comparison. (&) = 0.02, (b) 3 = 1, (c) 8 = 1.4, and (d)3 = 10. The vertical dotted line in (c) shows the thermodynamic transition for JO

multiuser detector.

T

10 F (d

spinodal (JO)

thermo. trans.
(JO) (10)

12

14

dotted line is the thermodynamic transition for the JO multiuser
detector, at which the bit-error rate changes discontinuously. In
Fig. 1(d), the thermodynamic transition occurs whErg N is
much larger than the range of the figure, hence the good solu-
tion is only metastable over the range &f /N, values shown

in the figure.

We now discuss the significance of the phase coexistence
and the thermodynamic transition. Most decision-driven mul-
tiuser detectors implementing suboptimal multiuser detectors
can be regarded as searching for the best possible solution based
on locally available information about the posterior distribution

6 8 1
Eb/No [dB] p(z|r, S). When the phase coexistence occurs, such detectors

Fig. 2. Spinodal lines (solid) and thermodynamic transition lines (dashed) fRay get trgpped_ in the bad solution, despite the fact that the
JO and 10 multiuser detectors. Dotted lines show the parameter values forwrghod solution exists. Moreover, we have to assume that these
bit-error rate is shown in Fig. 1. detectors almost certainly get trapped in the bad solution, and
accordingly, will return the corresponding bad detection result.
boundary in the parameter space signaling the thermodynarAit intuitive explanation is as follows. Initialization of a mul-
transition is called the thermodynamic transition line. Fig. 2 algmser detector can be done either with a random configuration
shows the thermodynamic transition lines (dashed curves) farwith the output of the single-user matched filters, but in any
the JO and 10 multiuser detectors. The bad solution is the glaiase, the initial state is as bad as the bad solution of the multiuser
ally stable state at the upper-left side of the thermodynamic tratetectors, as can be seen in Fig. 1(c) and (d). The good solution
sition lines in Fig. 2, and it becomes a metastable state at ibeherefore distant from the initial state compared with the bad
other side of the lines, where the good solution is the globalyne, so that any algorithm based on locally available information
stable state. One important consequence of the thermodynastiould traverse many more subshells with bad quality (i.e., with
transition is that the bit-error rate becomes discontinuous at tisgremely small values of the posteripfz|r, S)) in order to
thermodynamic transition point. Shown in Fig. 1(c) by a verticarrive at the good solution, which is computationally infeasible
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in practice. It should be noted that this is a direct consequence of 105 F " " " '
the system’s loss of ergodicity, which will be discussed in more 104 | /,’(
detail in Section V-B, and that this isot the property of any J/
particular detection algorithm, but the property of the multiuser 103 } ol
detection problem itself. 100 | 7
We can also predict that, if the phase coexistence occurs, the e
waterfalling phenomenon will be observed in the vicinity of the 2 10| ,/’/
bifurcation point of the bad solution, the waterfalling phenom- 1| --==2:————-—————--—---—--:
enon will be observed in experimentally obtained performance
curves of detectors based on locally available information (in a 0.1
fashion similar to turbo decoding [46], [47]). Whérbecomes : : ) ;
larger thar2.09 for 10 and1.51 for JO, the bad solution persists 4 6 Esb/No [&g] 12 14

for arbitrarily large values o, /Ny. Under such conditions,

one cannot find the good solution, even if it exists and is globrg. 3. Freezing line (solid curve) for 10 multiuser detector. Spinodal line for
ally stable so that it is the true solution in the information-thed® multiuser detector (cf. Fig. 2) is also shown (dashed curve).

retic sense, by any practical detection algorithms (i.e., detectors

pased on locally available mformatlon_). This will limit the prac e noted that the phase coexistence does not occgr4ot for
tical efficiency of the IO and JO multiuser detectors, althou

heuristi h lina 148 helb t the bad e cases investigated in this paper, therefore, it has no practical
euristics such as annealing [48] may help to escape the ba r&fevance, unless one considers an overloaded system (a system

Iutfn tt?] a certgl.lnt.degr?teh. h of letelv th tical with 3 > 1). However, at present we can only say that this ob-
¢ no derfpre Ic |c;_n, ? . ou_? ota c_oThp ef ?Iy _eoreclca _Q%brvation is valid for the cases investigated. Whether the phase
ure and ot no practical signiticance, 1S the 10llowing. LonsIOel, qyistence is relevant for systems with more practical settings

again a decision-driven multiuser detection algorithm based Miuding, for example, systems with unequal-power users, de-
locally available information. Let us assume that the algorith[‘gctorS with finiteo? ’02 and so on, is an open problem '
0 1 .

knewthe true information vector. Then one can initialize the Fig. 2 also shows the AT line for the JO multiuser detector
algorithm W'th the true mformatpn veptor, and have |t'run. BeThe bad solution for the parameter values above the AT line is
cause the initial state of the algorithm is the true detection res%'fable against RSB. The good solution was found to be AT un-
F, isinitially zero. The bit-error rat&), then gradually increases '

; ) _ . table. This means that the good solution of the JO multiuser
as the algorithm proceeds, until convergence is achieved.

L . l'tector, as predicted by the replica analysis, may be approx-
prediction, .bas‘?d on the same grgument as tha.t W.h'Ch has q?r%}ely true but not exact. It also means that the free-energy
shown earlier, is that the equilibrium value 8% is likely to

be cl to th d soluti i it i t aloballv st bIIandscape is rather rough around the good solution [15], sug-
€ close 10 the good solution, even 11t 1S not giobally sta esting that any practical local-search-based algorithms imple-
but only metastable. (In this case, the performance of the

tect d Sh 's limit. but this d ; irad enting the JO multiuser detector will converge very slowly,
ector may excee annon's fimit, but this does not contra H:énce limiting their practical efficiency. As we have shown in
the Shannon theory, because we now assume that the det

. ) E%tion llI-E, the stable solutions of the 10 multiuser detector
knows the true information vector.) If one decreases the SN

L . e also stable against RSB, so that the 10 multiuser detector is
the equilibrium value will change abruptly toward the bad SOILfFee from such a difficulty.

tion, at the spinodal point where the good solution disappearswe also checked the freezing conditidn = 0 for the
This phenomenon will show the significance of the phase CO6 multiuser detector, which defines the freezing line in the

istence and the sp|n0(_jal pomt clearer. w /[No—3 parameter space. Fat not too large, the freezing
To summarize the d|scus§|on so far, our statements aboutﬁh lies at E, /N, — 12.09 dB, as shown in Fig. 3. The
relevance of the good solution are as follows. system freezes at the largél, /N,y side of the freezing line.

+ The good solution is relevant in the information-theoreti©ne can see from Fig. 1 that the frozen regiby/N, >
sense only for those values &% /N, above the thermo- 12.09 dB approximately corresponds to a bit-error rat&,ok
dynamic transition. 10~8. The significance of freezing is that results of numerical

« The good solution is relevant in the computational sensxperiments will fluctuate in the frozen region, no matter how
only for those values of;, /N, above the spinodal point large we set the system size, due to the discreteness of the
at which the bad solution disappears. configuration spacé—1, 1}*. The freezing line moves toward

the largerE, /Ny direction when3 > 10*. This is caused by

Here, the relevance in the computational sense is the releva{hc spinodal line approaching the freezing line, as can be seen

assuming any detection algorithm based on locally available ﬁﬂ'Fig. 3. Sinced > 10% is too large in practice, we can safely

formation. For example, Fig. 1(d) shows the existence of tl?fésume that the freezing line lies/t/N, — 12.09 dB for any
good solutions for the 10 and JO multiuser detectors, but sin & ctical values of

they are both below the thermodynamic transition, they are not
relevant either theoretically or computationally. On the other . -

hand, the good solution for the JO multiuser detector found ﬁ1 Multiuser Efficiency

Fig. 1(c) at 7 dB< E,/No < 10 is relevant only theoreti- Theeffective energyis defined as the energy per bit required
cally but not from the computational viewpoint. It should alsto achieve a bit-error rate equal i% in a single-user Gaussian
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C. Remark on the Asymptotic Multiuser Efficiency

Tse and Verdu [7] have studied the asymptotic behavior of the
multiuser efficiency ofthe optimummultiuser detector. They have
discussed the asymptotic multiuser efficiency by taking the zero-
noise limitog — 0first,and thenthe large-system linkit — oc.

They have reported that the asymptotic multiuser efficiency con-
verges tol almost surely. They have questioned as to whether
these two limits commute. Our answer to this question is rather
' complicated. Based onthe analogy with statistical mechanics, we
s can say that the problem is essentially the same as that of ergod-
I-:'?g/Noo[dB]s 10 15 icity breaking, which we may encounter by taking the thermo-
dynamic limit of a physical model system. To be more precise,
the zero-noise limit and the large-system limit can be compared
to the zero-temperature and thermodynamic limits, respectively,
and the above-mentioned problem can be regarded as the ques-
tion as to whether these two limits commute in physical model
1 FESERL T T AT systems. The answer to the latter question is, in general, nega-
.. ' : ] tive. One simple andwell-known exampleisthatofaferromagnet.
N i The equilibrium distribution of microscopic configurations is er-
RN H \ . .. . . ..
06 } N o ) godic at finite temperature when the system size is finite, so that
. o the spontaneous magnetization vanishes when the system is in
04} SUMF ——  “X>o /1 0\ : thermal equilibrium. However, as we take the thermodynamic
p=0.02 ---x NN limit, the thermal equilibrium distribution becomes nonergodic at
021 B14 o NN N N T low temperature (i.e., below ti@urie temperaturg and we will
p=10 ——-- S S ) observe a spontaneous magnetization since the microscopic con-
20 15 10 5 0 5 10 15 figurationwillgettrappedin one ergodic component. This sponta-
Ep/No [dB] neousmagnetizationpersistsinthe zero-temperaturelimit. Onthe
other hand, if we first take the temperature of a finite-size system
Fig. 5. Multiuser efficiency for JO multiuser detector. to zero, we will not observe any spontaneous magnetization even
inthe zero-temperature limit, because the systemremains ergodic
aslong asthe temperatureis positive, evenifitis small. The spon-
taneous magnetization will remain zero if we take the thermody-
namic limit thereafter.
The multiuser detection problem shares essentially the same
P=Q <£) . (107) Propertyastheferromagnet. ltshouldbe notedthattakingthe limit
o0 K — ocofirst, andog — 0 afterwards, corresponds to consid-
ering the zero-noise limit properties of our result. When the phase
For the MPM detector, from (46) we have that coexistence occurs, the system as awhole becomes nonergodicin
the large-system limit, and each solution corresponds to one er-
5 godic component. The nonergodicity persists even if we consider
o= ogk” _ 1 ) (108) the zero-noise limit, provided that the phase coexistence is main-
r 1+ 3(1—-2m+q)/o2 tained. Hence, although the multiuser efficiency of the good solu-
tion approachesin the zero-noise limit, the multiuser efficiency
Since we have assumed that the signal from each user has ahifie bad solution approach&ss can be observedin Figs. 4 and
amplitude, themultiuser efficiency8] is equal to the effective 5. For the |0 multiuser detector, we observe numerically that, in
energye. The multiuser efficiency for the single-user matcheghe zero-noise limit, the good solution for finjtkis the globally
filter is given byeSUMF) = (1 4+ 8/03)~1L. stable state and is therefore relevant in the information-theoretic

Figs. 4 and 5 show the multiuser efficiency for the 10 and J€ense. This means that the result by Tse and Verdu still holds for
multiuser detectors versus, /Ny, respectively. The multiuser the 10 multiuser detector even when the order of the two limits
efficiency for the single-user matched filter f6r= 1 (SUMF) is exchanged, although the efficient communication predicted by
is also shown for comparison. For both of the 10 and JO muhe solution is computationally infeasible if the bad solution co-
tiuser detectors, the multiuser efficiency is almbosbver the exists. As forthe JO multiuser detector withinthe RS assumption,
whole range of SN, /Ny wheng is small enough. Ag be- we candrawthe same conclusion asinthe case ofthe IO multiuser
comes larger, the multiuser efficiency gets smaller in the loweetector, but one may have to take RSB into account for more def-
SNRregion. As the phase coexistence occurs, the curve intrugtgte statements. The complication in our answer to the question
into higher signal-to-noise region. The multiuser efficiency qfosed by Tse and Verdu, compared with their result, is a conse-
the good solution remains almost equal tevhereas that of the quence of the ergodicity breaking, which arises in turn from the
bad solution decreases toward exchange of the order of taking the two limits.

Multiuser efficiency

20 -15 -10

Fig. 4. Multiuser efficiency for 10 multiuser detector.

Multiuser efficiency

channel with the same spreading facférand noise leveb?
[8]. Specifically,
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Fig. 6. Information-theoretic capacity of BIAWGN CDMA channel (solid) and AWGN CDMA channel (dashedj.£a) and (b)3 = 2.

D. Capacity provides an efficient tool for large-system analysis of the linear

Fig. 6 shows the information-theoretic capacity of the Bimultiuser detector.
AWGN CDMA channel and the AWGN CDMA channel. When 1he detection problem for the MPM detector, however, does
E, /Ny is small, the channel capacity is limited mainly by th&ot possess such a linear structure due t.o the discreteness of
channel noise, so that the capacity is almost the same, irresgBg-domain ofz, which follows from the discreteness of the
tive of whether the source is binary or Gaussian. Because f{é" distribution. The discreteness of the domainoseems
capacity for the BIAWGN CDMA case should not excekd to prevent us from directly applyln_g ESD results to the analysis
it saturates a%, /N, becomes larger. As an overall tendenc;{,’/‘c the MPM detector. Our analysis, as well as that of Tse and
the capacity becomes smallerincreases. For the BIAWGN erdd [7], succgssfu!ly takes into account the discrete natgrg of
CDMA case, phase coexistence occurs when 1.49. Cor- the problem by |nvok.|ng arguments based on the I.a.rge—dewatlon
respondingly, more than one value is obtained for the capactiﬂ?orY- In our anaIyS|sj the discrete nature @ explicitly dealt
(see Fig. 6(b)). We should take the lowest branch as the t{jih via the rate functiorZ {Q}.
capacity. Since we are evaluating the differential entrioy)
using (80) via the application of Varadhan's theorem, the con- VI. CONCLUSION

tribution_from _each of the metastgble states to the integral i_”We have studied the large-system properties of the MPM de-
(80) vanishes in the large-system limit, compared to the contfiscior by means of the replica method. Based on the RS assump-
bution from the globally stable state. Ignor_ing the contributiofyn we have obtained the analytical formulas that allow the
from metastable states corresponds to taking the lowest bragehation of the bit-error rate for arbitrary SNR values. We have
as the true information-theoretic capacity. As aresult, WW&N 554 derived, within the same replica formalism, the capacity of
large, one observes that the capacity for the BIAWGN CDM#\¢ randomly spread CDMA channel and the performance of
case is almost the same as the capacity for the AWGN CDMfie gecorrelating and linear MMSE multiuser detectors, all of
case as long as the latter is less tha@n the other hand, when hich have successfully reproduced the reported results in the
the latter exceeds, the former saturates abruptly to remain 'eslﬁerature, confirming the validity of the replica approach.
thant. We have examined the bit-error rate properties of the 10 and
JO multiuser detectors by numerically evaluating the analytical
E. On the ESD formulas. We have found that there may be the phenomenon of
Existing approaches to large-system analysis of randonpitase coexistence, i.e., the coexistence of good and bad solu-
spread models generally rely on the evaluation of the ESD déns, which will cause the waterfall phenomenon in the perfor-
large random matrices [41], [49]. Let us consider the generalince curve of a decision-driven multiuser detector under cer-
linear multiuser detector under the equal-power condition. Tk&in conditions, just as in turbo decoding.
posterior distribution is The whole presentation in this paper relies on the replica
1 1 1 method. Discussing the validity of the replica approach in the
pO(zlr, S)ocexp {—5 zt <I+—2 R) T+— yTx} (109) rigorous mathematical sense is beyond the scope of this paper.
o o However, we believe that successful application of the replica
where R = N-157S is the cross-correlation matrix of themethod to various problems, including the one presented here,
spreading sequences, and whgree N—1/25Tr is the vector should not be regarded as incidental. Researchers in the fields of
of the matched-filter outputs. Since the posterior distribution @obability theory and mathematical physics has begun to work
jointly Gaussian, the mean af coincides with the maximum toward mathematical justification of the replica theory: For de-
a posteriori(MAP) estimate, and is given by a linear transforntails, see [50] and references therein.
of the matched-filter output, as= [R + 2I|~'y. Because of ~ There are various interesting directions for future work. One
the linear structure of the detection problem, eigenspace decahthem is the implementation aspect of the MPM detectors,
position and evaluation of ESD of the cross-correlation matrix such as their computational complexity [51], which we did not
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address in this paper. Although the NP-hardness proved dpyenched average as
Verdud [51] seems unavoidable, we expect that the mean-field -
approximation [52], a notion in ste}ustlcal r_nechanlcs t0 SYSE, ,[a(y, 8)] = Ey, s Z a(z, y, 8)p(z|y, s)
tematically approximate microscopic behavior of systems, can =

provide practical means of implementing the MPM detectors

approximately. > a(z, y, s)p(ylz, s)p(x)

=F £ . (114
v | TS ol 9p(@) 5
APPENDIX | - x

REPLICA METHOD One now has to take the expectation of a ratio of random vari-

In this appendix, we provide a brief introduction of the replicgpleszﬂv a(z, y, $)p(y|z, 8)p(z) and)_, p(y|z, s)p(x), which

method, as well as the outline of the calculation performed ing" general difficult. Arglateq quantity is tmnealed aveage, .
typical replica analysis or the annealed approximation to the quenched average, which

Let us consider the abstract problem of Bayes inference odiven by taking the expectation for the denominator and the

. numerator rately, that i
evaluate a posterior average umerator separately, that is,

oy, 8) = (a(@, ¥, ) = 3 alz, y, 9p(aly, s)  (110) Ey.s {E al@. y, s)plyle. "’”’("’)}

x

. o Eue |5 slyiz, 5)10)
wherez is a random vector representing configurations of the x
underlying probability modely is another random vector rep-The calculation of the annealed average is usually much simpler
resenting observables,is a set of parameters(z, y, ) is @ than that of the quenched average, so that the annealed average

function of z, y, ands, andp(z|y, s) is an assumed posterioris often used as an approximation to the quenched average, but
distribution ofz conditioned on the values of the observalyesthe final results are in general different from each other.

and the parametess The posterior distribution is to be derived et us define the moment generating functiom@t, ¥, s),
from Bayes theorem, with an assumed prior distribufiae) of  or the partition function, of the (unnormalized) measpigz,
2, and an assumed conditional distributjay|2, 8) of y onz, s)p(z) of z, giveny ands, as

parametrized by, as

(115)

x

Z(hiy, 8) =Y " @¥p(ylz, s)p(x). (116)
; p(yle, s)p(x) (It is not necessary to include the factdr*® ¥ #) explicitly if

p(ylz, 8)p(z) already contains such a factor. This is usually the
The posterior average(y, 8) depends on the observablgs case in statistical mechanics because, for example, the Gibbs
and, quite often, they are also random variables. In such cagasfor e~ ¥ with inverse temperaturg and energy functional
the quantity of interest is the averagexd§, s) over all possible £ is usually included inp(y|x, s)p(x), which makes the par-

observed values, that is, tition function, even without the factor, the moment generating
function of the energy.) If we could evaluate the average
Eslaly, o) (112) Ey s log Z(hsy, )] (117)

whereE,[-] denotes expectation with respect to the true distijye would obtain the desired quenched average (113) by
bution ofy, which may or may not be equal to the assumed one.

We now consider the case in which the parametense also E, sla(y, 8)] = i Ey [log Z(h;y, 8)] (118)
random, and are assumed to be independentdiis is actually ’ oh = h—0
the case for the CDMA multiuser detection problem under thgy exchanging the order of the expectation and the differenti-
random spreading assumption. ke, ands be the information ation by . Of course, this simple manipulation does not help
bit vector, the received signals, and the spreading sequencegegblve the difficulty we are faced with. The difficulty we en-
all users, respectively. For evesyone can in principle calculate counter here is that the evaluation of the average (117) is often
the average bit-error rate. One still has to average the result o§gfd. Now we have to average tlogarithmof a sum of random
the randomness of the spreading sequences to obtain the desiggfbles, which prevents us in most cases from evaluating it

result. In general, we want to evaluate quantities like analytically. Also, it is usually computationally hard. The sum-
mation may be over a very large number of terms in large-sized
Ey, sla(y, 8)]. (113) problems. Again, itis generally far easier to evaluate the average
instead

In statistical-mechanics literature, the average qvands is

called thequenched awage When one first takes the average Ey s[Z(h;y, s)] (119)
with respect to the posterior distribution, one has to quench the )

values ofy ands. The result is then averaged ovgrand s.  PUt the calculation

Very often, one encounters difficulties in the evaluation of the o . )

quenched average. This becomes evident by rewriting the Oh log By, 5[2(h:y;, 5)] _— (120)
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only yields the annealed average (115), which is, in general, the to evaluatek —*E, ,[{Z(h;y, 8)}"] asymptotically using
wrong answer. Varadhan’s theorem, as

The.repllc.:a method is a way to evaluate (117). It makes ugg-1 log Ey s [{Z(h:y, $)}"]
of the identity

_ -1 N le-a(xy,y, s) . .
Eysllog Z(h;y, 8)] = lim, aﬂ log By, s[{Z(h;y, 8)}"] =K 'logEy, | > ¢ v [ [intle:, s)p(wz)}]
n— n X1,... % 1=
(121) '
and replaces the evaluation of the average (117) with that of _ ol o9 T
) Ko [ By ay [0 =09 T otules o) pcla) do
Ey s[{Z(hy, 8)}"]. (122) i=1
It should be noted tha}t the quant[g(h; y, 8)]" is well-defined — K1 1Og/ 9D 1y (q) dg
for real n. In applying the replica method, however, one
usually evaluates (122) for positive integeonly, by regarding ~ — suP[9(¢) = Z()], K — . (128)

[Z(h;y, 8)]™ as the partition function of the probability mode
consisting ofn identical replicas of the original probability
model, that is,

l\/Ve have applied Varadhan’s theorem to derive the final expres-
sion in (128).
Now we assume thathasK components, and thatz) im-

N heazr, v, 8) n plies that the componenis, of x are i.i.d. We furthermore as-
[Z(hy, 9" = > ¢ ” H [p(ylzi, )p(xi)l- sume thay consists of empirical means &f i.i.d. random vari-
By e B =1 ables, each of which depends pn,|: =1, ..., n}. Then, we

Since the replica method has been developed in statisting apply_ C_ramers theorem tp the measudg) to prove its :
mechanics, it has been extensively applied to the analysis Hpe de\_/latlo_n property, and it turns out that the rate function
models in the large-system (thermodynamic) limit (but see a@&@ is given in terms of the Fenchel-Legendre transform as
[53], [54] for application of the replica method to finite-sized I(q) =sup[q- ¢ — #(q)] (129)
problems). In such cases, the replica method is used in conjunc- 4
tion with the saddle-point method, or Varadhan's theorem féfhere
asymptotics of integrals. Léf be a parameter representing the . n
size of a problem, and let us further assume iiat y, s) scales ¢(@)=log > U= ] p(:). (130)
with K so that the actual quantity of interest is the asymptotic T1; s T i=1

value of the quenched averagefof 'a(z, y, 8) asK — 00. 1N jg the cumulant generating function@fz; } with respect to the

this case, we have to evaluate free energydefined as prior distribution of {z;}. Collecting the results of (128) and
F= 1iln KﬁlEyJ[lOgZ(h;y, 3)] (124) (129), one obtains
Koo lim K 'log By s [{Z(h;y, 8)}"]

K—oo

The replica method replaces the right-hand side of (124) as
5 =supinflg(q) — G- g+ #(@)] (131)
F= lim K~'lim — logE, ,[{Z(h;y, 8)}"]. (125) oot _
K—oo n—0 dn where the extremization condition is given by the following
The approach of combining the replica method with the saddfaddle-point equations:

point method is efficient if the following conditions are met. _9¢(9) ~_ 99(q) 132
e The two limitsK — oo andn — 0 can be interchanged, 1= aq "’ 1= dg (132)
so that the equality Taking derivative with respect te and taking the limitz — 0,

P! we obtain the free energy.

F=lim o lim K~'logFy,[{Z(h;y, $)}"] (126) It should be noted that, as mentioned, the true distribution
po(y, 8) of y ands, by which the expectatiof, ,[-] is taken,

holds. . may, in general, be different from the assumed marginal
* Dependence o of the function > p(ylz, s)p(x)p(s). However, ifpo(y, s) has a form similar

n to the assumed marginal, one can exploit thet+ 1)-replica
cMa@ w9 T p(yle;, 8) (127)  formulation, as has been done in Section III.
=1
is expressed in terms of a set of parametets ¢{z;} (which APPENDIX ||
may be functionals) and the average of the function enads JOINT DISTRIBUTION OF v, ¥1, - -+, Un
can be performed analyticalfgr fixed{z., ..., .}, yielding  we have assumed, as far as the calculatiog {@} is con-
a result of the formexp[K g(q)], whereg(q) is a continuous cerned, that the joint distribution af = (vg, v1, . .., va)%,
function of ¢ whose supremum is finite. with
e The probability measurg x(g) of the parameterg = 1 1

g{z;}, induced by the prio[[;_, p(z:), has a large deviation 0= 777z 87 %0, Yo = Tpm 8 %a, 0= L...,n
property with a rate functiod(q) askK — oo. This enables (133)
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can be regarded, in thE — oo limit, as the joint Gaussian In the asymptotic evaluation &,, in the large-system limit
distributionN (0, @), whereQ =(Qu1), Qay = K 'z, -2, for K — oo, we have performed the extremizationfofwice: first,

fixed {xo, 1, ..., &, } and where each entry afis an i.i.d. with respect to{Q}, and next, with respect tfQ}, that is,
random variable with zero mean, unit variance, and vanishing . 1= .

. lim K2, =supinf f. (141)
odd-order moments. To prove this, we note that the second- and Koo (@} (@}

fourth-order cumulants of are given by In order for a saddle-point solution to be valid, it has to satisfy

K = Qo = K 'z, - (134) the following conditions, which we refer to as the stability con-
dition.
I( - - - g
R Z e (135) e f should be minimum with respect @)} at the saddle-

point solution. We call this condition type 1 stability.

e { should be maximum with respect {@)} at the saddle-
wherer, is the fourth-order cumulant of each entrysoAll the it solution, when{Q} is taken to be dependent i)} in
odd-order cumulants vanish. Then, from the Edgeworth expafiich a way tha{Q} minimizes f for given{Q}. We call this
sion [55] we have for the probability densi¥y/(v) of » condition type 2 stability.

1 The requirement of the dependence{a¢f} on {@} in type
W(v) = fo(v; Q) + K Alw;Q, w)+ O(K™?) (136) stability comes from the fact that thiugremgm}with respect

) " to {@Q} is to be evaluatedfter the first infimum evaluation, in
=" wabch (137) which we have determineft)} as functions ofQ}, so as to

4 eIy 0v v minimize f. Hence, when we consider perturbations{¢f},

1 . the variablegQ} are no longer independent variables, and we
folw;Q) = —— (/D@ v (138) have to take into account their dependencd @n.
(2m)n+t det @ To analyze the stability of the RS saddle-point solution
where against RSB, we first evaluate the Hessian fofit the RS
) saddle-point solution, and then probe the two types of stability.
Wapeg = K1 Zwakxbkxckwdk = O(1). It should be noted that, to obtain the stability result of the
Pt RS saddle-point solution, we have to evaluate the stability
conditionsin the limitn. — 0, the same limit that we have used
to derive the RS saddle-point solution.

We start with the evaluation @, but this time without the RS
assumption. To do this, we perform the integral over the channel
noise first

k=1

A(v; Q, w)

It then follows that the average overcan be replaced by the
average over the joint Gaussian random variablesN (0, @)
in the large-system limit

/Rn+1 [+ ]W(v) dv 1 1 : 2
= [l =l exp{_5 lBO (757)

n 2
1 -
— Al K2 +B <——va> dr
b [ 1AwQ wydet 0 >
<[ FlamQw, K- 039 L S]]
ntl = e —— |(Bo+nB) —
R V/2r03 P 2 (Bo ) &)
APPENDIX Il n ,
DERIVATION OF AT LINE —2| Bovo+B Z Vg —/3
a=1

We show the derivation of the equation for the AT line (Propo-
sition 3; (67)), which marks the boundary between one region <
+

in the parameter space where the RS saddle-point solution is
stable against RSB perturbations, and another where the RS so-
lution is unstable against RSB. We have to evaluate the Hes- —1/2
sian of the exponent of the integrand of the integral to which _— 1+_> exp 1
the saddle-point method is applied, with respect to the macro- By 2

BoU%—l—B Z Ug)] } dr

a=1

Bov2+B Z v2

~ a=1
scopic parameterS).;, (. } at the RS saddle-point solution,
and then to derive the stability condition under which the appli- 1 n 2
. e s iustified. B B B .
caﬂg? of the saddle-point method is justified BotnD < ovo~+ ;:1 v, )

f = f({Q}7 {Q}) = IOg M{Q} - Z Qaanb +/3_1g1{Q} n —1/2
a<h a0 = <1 + E) exp (—g szv) (142)
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wherev = [vg, vy, ..., v,]%, and whereX is an(n + 1) x 9%logdet(QR) _ |31 sy-1 O + pR%)
(n + 1) matrix defined by 9Qu0Qeu pur | B+ pQE) 9Qus
n ’ —er .
Y= ’ < B B (143) XL+ pQ%) " (Eap + Eba)
—e | (14 —> -2k
Bo Bo =—p*tr[S(Eap + Eya)S(Eeq + Eac)]
B 2
= 144 =-2 SacS + Sa S c/- 151
p 1+ nB/B (144) P ( bd aSbe) (151)

The evaluation of the matrig should be done at the RS saddle-

point solution, since we are now concerned with the stability of

ghe RS saddle-point solution. The matfat the RS solution is
iven by

e is ann-dimensional vectoe = [1, ..., 1], E = ee?, andl
is then-dimensional identity matrix.

For fixed {z,}, v can be regarded, in the large-system lim
K — oo, as ann + 1)-dimensional Gaussian random variabl
with mean0 and variance—covariance matidx by following ( nkE ‘ —Ee’ )

S =pp~t (152)

the argument of Appendix Il. This means that the average over
the spreading sequences can be replaced by the average over the

—Ee ‘ (E+nI)I-FE
Gaussian random variable~ N(0, )), which gives

where the values oF and F' are the ones that extremize (37),

exp (_B ,UTE,U) and are given by (38) and (39). )
2 We next compute the Hessian of the tdug M {(}. By the
1 1 4 same argument as that in Section IlI-B, we have
=———— —— [ exp|—=v'Rv) dv
(27r)n+1/2|Q|1/2 2 alOgM{Q}
1 Y, (o]t (153)
= |QR|™? = exp {—5 log det(QR)} (145) Qab
where the notatio @ for any functiong of {z,} means
where we let fp{zatlm y g of {z,}
R=Q ™" +p%. (146) [Z} 270 D g{z, } exp <aZ<Ib Qw%m)
[g{xa}]J\l = : ~
As a result, we have M{Q}
1 1 nB _ (154)
GlQ} = —5 log det(QR) — 5 log |1+ 5= (147) In the same notation, we have
0
. .
and, therefore, . al?g—m = [zatpxoZalpr — [Tas]rr[Tezalpr. (155)
f=log M{Q} = QuQu 9QaIQcq
a<b The Hessian of is of dimensiom(n + 1) x n{(n + 1), and
1 loed R 1 ) . nB 148 it has the structure
_2_/3 o8 et(Q ) B 2_/3 o8 < + E) ) ( ) {Aab,cd} {_6ab,cd}
Before deriving the Hessian gfitself, we first work out the T | {—gebedy  pab.ed) (156)
Hessian of the terrmog det(QQR). From the definition ofR, it
immediately follows that with
QR =1+ pQx (149) A% = B 0S40 Spa + SaaShe)

where! is the(n + 1)-dimensional identity matrix. Lek,,; de-

. . . Bab7Cd = %a c - [da c
note the matrix whoséz, b)-element isl and all the remaining [wazerezaa = [Zavlalweral

elements ar@. Let S = %(I + pQ¥)~1. Using the identities gt ed — g Sva + Sadbie. (157)
[56] : . . :
dlog det F L OF At the RS saddle-point solution, the matrixhas seven dif-
— —tr |F— ferent types of elements. They are
dx dx
and AP0 — gl E2 4 n(E? — EF) +n’EF]
OF ! oF
—_p 12 1 0a,0b _ 2
52 5 A B(E? —nEF)
we have APt — 3(_E? 4 2EF — nEF)
Jlogdet(QR) [ 1 8QR}
— = ¥ 7 — R Oa,be _
90, QR 50 A 28EF
ab,ab __ 2 2 2 2
= pir [(I+pQE)_1(Eab + Epa)x] A =3(E* —2EF + 2F* + 2nEF 4+ n°F~)
ab,ac __ 2 2
= ptx [S(Eu + Epo) (aso) AT =pEEEEAT k)

and Adbed — 952 (158)
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where, and hereafter, b, ¢, d represent nonzero and mutuallywhere
different indexes. Similarly, the elements of the maffican be

categorized into seven different types 1 0
Oa, Oa 2 Oa, 0b 2 1 0
B =1 —-m*, B =qg—m U= | (166)
‘BOa,ab:Tn(l_q)7 BOa,bc:t_mq 0 1
pabiab _q _ (]27 pabac _ q(]. i q) 0 1
ab,ed __ . 2 . . .
B =r—-a (159) s an(n+n(n —1)/2) x 2 matrix. The representatiafi of the
restriction ofC to the eigenspace with full symmetry is given
where, by abuse of notation, we let by
v, O v, O
m = [zoZa]m, q = [zae]m ¢ < o) U1> - < o) U1> - (167)
t = [wozamve]n, r=[rarzewala. (160) C} is a4 x 4 matrix. Let
(The variabler that appears here is not to be confused with Cy = { A —A1:| (168)
the received signal.) It should be noted that the equalities -A1 B
[€oze]ar @Ndg = [xq24]as actually holdonly afterwe take the
limit n» — 0, as derived in Section I1I-B. with
The functionf can be expanded to the second-order of per- b ed
turbations off @} and{Q} around the RS saddle-point solution, {A U = UL A (169)
as {520 = UL A (170)
{B* U, =U, B,. (171)

f=ho+ 5 @00 (U)ol 1) a6y

{6Qoa} {e?} Using this representation, the two types of stability conditions
u= <{5Q0a}) = < b ) (162) are reduced as follows. ~
e A ¢ Type 1 stability: All the eigenvalues of the matfi = B,
a1 6Qoat _ {fab} 163) shoqll_d ha\2/e a pp_sitive real part. )
{6Qar} {7} e Type 2 stability: All the eigenvalues of the matrix, =
| | o A; — A BTA; should have a negative real part.

wheref, denotes the value ¢fat the RS saddle-point solution, . We can define t_he elgenspac_e§qf and7{, by con5|de_r|ng
genvalue equations determining the values of the gajrs)

and wherex andu are the perturbations to the RS saddle—poir?tjd . tivelv. The ei b dH
values off @} and{Q}, respectively. The conditions for the two®" (¢, 7), respectively. The eigenspaces ®i and %, are

types of stability can be expressed in terms of the componeﬂtsd'mens'on two. Eigenvectons, _and_vl belonging to these
of the HessiarC, as follows. eigenspaces are called the longitudinal modes. The represen-

« Type 1 stability: Thein(n + 1)/2] x [n(n + 1)/2] matrix tation of C; is given by (172)—(174) shown at the top of the

= {Bab.<4) should be positive definite. following page. By taking the limi. — 0, the representation
«Type 2 stability: Theln(n + 1)/2] x [n(n + 1)/2] matrix "€duces to
H = {Aab,cd}_ {6ab,cd}{Bab,cd}—l{éab,cd} should be neg- 0 [3E2 -1 0
ative definite. ) )
It has been known in the literature of spin glasses [38] that the, — —2pE° B(E°+2EF) 0 -1 . (175)
eigenspaces off and’H can be classified into three types ac- -1 0 1—g t—m
cording to their symmetry. Stability for each type of eigenspace 0 1 2(m—t) 1—4q+3r

is discussed in what follows.

We first investigate the eigenspace with full symmetry withiVe could derive the stability condition from the representa-
respect to the replica indexes= 1, ..., n, that s, tion given above. However, perturbations within the eigenspaces
keep symmetry across the replicas, and therefore the stability
condition to be derived within the eigenspaces is irrelevant to
RSB but only determines the stabilityithin the RS assump-
tion.
or equivalently We next analyze the stability within the eigenspaces of the

second type. These eigenspaces are spanned by the eigenvectors
€ . € v, andd, of H andH, respectively, which are symmetric under
u=U < ) ,u=h <ﬁ> (165) interchange of all of the indexdd, ..., n} except one. Lef:

a ab ~a

" =¢ n" =mn, = N =n  (164)
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_{ 2nBE? B(1—n)E?
A= < —gﬁEQ BE? + 2E7117 +nF?) ) (172)
1 g+n(g—m?) (1=n) [(t=m) = 3 (t = mo)|
B, = n (173)
2m—t)—n{t—mqg) 1—4¢+3r+ 3 [4q + ¢® — 5r +n(r — ¢°)]
Ay = <(1) ?) (174)

be the specific index id1, ... n} which lacks the symmetry. independent, so that the degeneracy.is 1. Thus, the total

The elements of, andw, are dimensionality of the eigenspaces of the anomalous modes is
2(n —1).
€ =g, €t =g, aFp We now probe stability within the eigenspaces of the third
et = (1—n)e, & = (1—n)e type. They_are spanned l_ay the eigenvectgrandvs _of H and_
‘H, respectively. These eigenvectors are symmetric under inter-
' =n, 7 =7, a,b# . change of all of the indexefdl, ..., n} except two. Lej and

v (1 # v) be the two specific indexes i1, ..., n} for which

wa _ ap 1 ~pa _ ~ap 1 ~
e=gt=g @, =0 =5 @m0 aF b e symmetry is absent. We assume that the elememtsarid
(176) s are of the form
The forms ofe#, n#¢, andn** are chosen in such a way that €« =6 €a =6, aFp, v
(2 is orthogonal tow, the vectors _in the (_aigenspac_e of the = =1(2-n), =6 =1(2-n)
first type. Similarly, the orthogonality requirement yields the R R
forms of é#, 7#¢, and7**. The eigenvectors belonging to the "t =1, Tab =1, a, b7 p, v
eigenspace of the second type are called the anomalous modﬁs =nye = Pn, e =Tva = P, a#pu, v
in spin glass theory. As in the analysis of the eigenspaces of the R -
first type, (176) induces the transforih from (e, n, &, )T to Ml =@, T = Q1.
(u”, 4¥)T, from which the representatiaf, of the restriction (181)
of C to the eigenspaces with the prescribed symmétsyis
given by v»3 andwsz should be orthogonal te; andw,, respectively. A
sufficient condition yields the coefficierii /2)(2 — n) for ¢,
{ Ay —Aﬂ €, €4, andeé,,, and the condition
02 — , (177) vy S v
Ay B )
with 2n=2)P+Q+5(n—-2)(n—3)=0. (182)
nBE(E +nF) L(2—n)BE(E +nlF) vz andv; should be also orthogonal 1@ ands., respectively.
A= < ) (178)  This requirement yields the conditions
—2BE(E +nF) /3(E + 2F)(E +nF)
1— lia- =0, —2)P+Q =0, P+1i(n-3)=0. (183
32:< ¢ L ) a7g) (n—-2)P+Q L(n—3) = 0. (183)
2(m —1t) 1—4q+37 +n(g—7)
From (182) and (183), we have
1 0
Ay = < ) . (180) 1
01 P=-(3-n), Q:%(Q—n)(ﬁi—n). (184)

The matrixCs reduces, in the limit. — 0, to the matrixC;

for the eigenspace of the first type (see (175)) means that ;51
stability condition within the eigenspace of the second type
identical to that within the eigenspace of the first type, that i is,

the eigenvectors of the form

the RS saddle-point solution is stable against perturbations irf =0 ca=0

the direction of the anomalous mode whenever it is stable within: =7, Tab =1]

the RS assumption. e = £ B e = e = & (3} (a, b#p, v)
For each choice of the specific index the eigenspaces of Ta= e =3 h e =Tlva = 3 n

a , vV
Hy, = By andH, = Ay — Ay By LA, are of dimension two. 7., =3 (2—n)(3—n)n, =5 (2—n)(3—n)7. (@ #p)
Since there are possible choices of the indgx the total di- (185)
mensionality of each eigenspace would semHowever, the
n eigenvectors corresponding to thehoices of the index are  Again, the transfornd/s from (n, 7)? to (v?', % )T is defined,
linearly dependent, and onty— 1 of them are actually linearly from which the representatiafis of the restriction ofC to the

léus we analyze the stability within the eigenspaces spanned
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eigenspaces with the prescribed symmetry is determifigis
a2 x 2 matrix, and is given by

(10]

[11]
_ (B(E+nF)? -1
Cs = < -1 1—2q47r)" (186) [12]
As the stability condition, we have, in the limit— 0 (3]
Ha=1-2g+r>0 as7)
and [15]
Hs =pE? — (1 -2¢+7)" <. (188)

[16]
There aren(n —1)/2 choices for the indexgsandy. However, 7]
n of them are linearly dependent, so that the total dimension of
each eigenspace in the replicon modes(is — 3)/2. Together
with other two types of modes, we hawén +1)/2 eigenvectors
for both’H and#, and have exhausted them all. We do not havgig]
to consider any other types of eigenvectors.
In the limitn — 0, we have [20]

(189)

1—2q—|—r—>/sech4(\/ﬁz+E) Dz>0 21]

so that the condition (187) is always satisfied. Therefore, it i422]
(188) that gives the stability condition of the RS solution agains{

! 23]
RSB, which becomes

1- BE? / sech® (\/F 2+ E) Dz > 0. 90) 4
This proves (67). [25]
[26]
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