Midterm Exam - Solutions

MULTIPLE-CHOICE QUESTIONS

1. B.
2. C.
3. B .
4. B.
5. A.
6. i) $\mathrm{F} \quad$ ii) $\mathrm{F} \quad$ iii) $\mathrm{F} \quad$ iv) T
7. i) $\mathrm{B} \quad$ ii) $\mathrm{C} \quad$ iii) $\mathrm{B} \quad$ iv) $\mathrm{B} \quad$ v) $\mathrm{A} \quad$ vi) A
8. D
9. i) $\mathrm{B} \quad$ ii) $\mathrm{C} \quad$ iii) $\mathrm{A} \quad$ iv) B
10. A
11. C
12. $\mathrm{C}-\mathrm{A}-\mathrm{D}-\mathrm{B}-\mathrm{E}$
13. B

PROBLEMS

14.
15. The statement is true. The proof follows.

Since $f_{1}=\Theta\left(f_{2}\right)$, there exists x_{0} and constants $c_{1}>0$ and c_{2} s.t. for all $x \geq x_{0}$,

$$
c_{1}\left|f_{2}(x)\right| \leq\left|f_{1}(x)\right| \leq c_{2}\left|f_{2}(x)\right| .
$$

Since $f_{1}(x)>0$, then $c_{2}>0$. Indeed, if $c_{2} \leq 0$, the inequality above cannot be satisfied. As the function $h(x)=x^{-13}$ is decreasing for all $x>0$, we obtain that

$$
h\left(c_{1}\left|f_{2}(x)\right|\right) \geq h\left(\left|f_{1}(x)\right|\right) \geq h\left(c_{2}\left|f_{2}(x)\right|\right)
$$

which implies that

$$
\left(c_{2}\right)^{-13}\left(\left|f_{2}(x)\right|\right)^{-13} \leq\left(\left|f_{1}(x)\right|\right)^{-13} \leq\left(c_{1}\right)^{-13}\left(\left|f_{2}(x)\right|\right)^{-13}
$$

Consequently, there exists x_{0}^{\prime} and constants $c_{1}^{\prime}>0$ and c_{2}^{\prime} s.t. for all $x \geq x_{0}^{\prime}$,

$$
c_{1}^{\prime}\left(\left|f_{2}(x)\right|\right)^{-13} \leq\left(\left|f_{1}(x)\right|\right)^{-13} \leq c_{2}^{\prime}\left(\left|f_{2}(x)\right|\right)^{-13} .
$$

Indeed, it is enough to take $x_{0}^{\prime}=x_{0}, c_{1}^{\prime}=\left(c_{2}\right)^{-13}>0$, and $c_{2}^{\prime}=\left(c_{1}\right)^{-13}$.
2. The statement is false. Indeed, pick $f_{1}(x)=x$ and $f_{2}(x)=2 x$. Then, clearly $f_{1}(x)=$ $\Theta\left(f_{2}\right)$. By definition $g_{1}(x)=11^{x}$, and $g_{2}(x)=11^{2 x}=121^{x}$. Therefore, it is not true that $g_{1}=\Omega\left(g_{2}\right)$.
15.

Base step. If $n=0$, the left hand side and the right hand side of the equality are both 0 .
Induction step. Assume that $\sum_{i=0}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}$. Then,

$$
\begin{aligned}
\sum_{i=0}^{n+1} i^{3} & =\sum_{i=0}^{n} i^{3}+(n+1)^{3}=\frac{n^{2}(n+1)^{2}}{4}+(n+1)^{3}=\frac{n^{2}(n+1)^{2}+4(n+1)^{3}}{4} \\
& =\frac{(n+1)^{2}\left(n^{2}+4(n+1)\right)}{4}=\frac{(n+1)(n+2)^{2}}{4}
\end{aligned}
$$

