Solution to Graded Problem Set 2

Date: 27.09.2013

Due date: 4.10.2013

Problem 1.

a) Truth table shows that $(p \to q) \to r$ and $p \to (q \to r)$ are not logically equivalent.

p	q	r	$p \rightarrow q$	$(p \to q) \to r$	$q \rightarrow r$	$p \to (q \to r)$
F	F	F	Т	F	Т	Т
F	F	Т	Т	Т	Т	Т
F	Т	F	Т	F	F	Т
F	Т	Т	Т	Т	Т	Т
Т	F	F	F	Т	Т	Т
Т	F	Т	F	Т	Т	Т
Т	Т	F	Т	F	F	F
Т	Т	Т	Т	Т	Т	Т

b) Apply rules successively:

 $\begin{array}{ll} (p \to q) \land (\neg p \to (\neg q \to (p \land \neg p))) \\ \equiv & (p \to q) \land (\neg p \to (\neg q \to F)) & \text{negation law} \\ \equiv & (\neg p \lor q) \land (\neg \neg p \lor (\neg \neg q \lor F)) & \text{definition of implication} \\ \equiv & (\neg p \lor q) \land (p \lor (q \lor F)) & \text{double negation law} \\ \equiv & (\neg p \lor q) \land (p \lor q) & \text{identity law} \\ \equiv & (\neg p \land p) \lor q & \text{distributivity law} \\ \equiv & F \lor q & \text{negation law} \\ \equiv & q & \text{identity law} \end{array}$

Problem 2.

- 1. **True.** Indeed, P(1,3), P(2,1), and P(3,1) are true.
- 2. **True.** Indeed, P(2, 1), P(2, 2), and P(2, 1) are true.
- 3. False. Indeed, P(1,3), and P(3,1) are true.
- 4. **True.** Indeed, it is enough to pick x = y and to remind that $F \to F$ and $T \to T$.
- 5. **True.** Indeed, P(1,3), P(2,1), and P(2,3) are true.
- 6. False. Indeed, P(1,1) is false.

Problem 3.

1. $\neg \forall AF(A)$ or $\exists A \neg F(A)$.

2. $\forall A \forall B[(S(A, B) \land F(B)) \rightarrow F(A)].$

3.
$$\neg \exists A \exists B[(\neg F(A)) \land S(A, B) \land F(B)].$$

Problem 4. Let R(x) be the predicate "x has read the textbook" and P(x) be the predicate "x passed the exam". The following is the proof :

1. $\forall x(R(x) \to P(x))$	hypothesis
2. $R(Ed) \rightarrow P(Ed)$	universal instantiation on (1)
3. $R(Ed)$	hypothesis
4. $P(Ed)$	modus ponens on (2) and (3)

Problem 5. We define the following logical functions : P(x) as "x has a bachelor degree in Mathematics", R(x) as "x has more than 125 credits", S(x) as "x passed the exam Analysis II", and T(x) as "x passed the exam Analysis I".

1. $\exists x (P(x) \land \neg R(x))$	premise
2. $P(a) \wedge \neg R(a)$	existential instantiation from (1)
3. $P(a)$	simplification from (2)
4. $\forall x(P(x) \to S(x))$	premise
5. $P(a) \rightarrow S(a)$	universal instantiation from (4)
6. $S(a)$	modus ponens from (3) and (5)
7. $\neg R(a)$	simplification from (2)
8. $\forall x(T(x) \to R(x))$	premise
9. $T(a) \rightarrow R(a)$	universal instantiation from (8)
10. $\neg T(a)$	modus tollens from (7) and (9)
11. $S(a) \land \neg T(a)$	conjunction from (6) and (10)
12. $\exists x(S(x) \land \neg T(x))$	existential generalization from (11)

Problem 6. Let p = "you tell false" and q = "ruins on the left". The question to be answered is $p \oplus q$, i.e., $\neg(p \land q) \land \neg(\neg p \land \neg q)$. If the woman of Questionland says yes (=true), the ruins are on the left, otherwise they are on the right, regardless of the fact that he says the truth or not.