Solution to Graded Problem Set 2

Date: 27.09.2013
Due date: 4.10.2013

Problem 1.

a) Truth table shows that $(p \rightarrow q) \rightarrow r$ and $p \rightarrow(q \rightarrow r)$ are not logically equivalent.

p	q	r	$p \rightarrow q$	$(p \rightarrow q) \rightarrow r$	$q \rightarrow r$	$p \rightarrow(q \rightarrow r)$
F	F	F	T	F	T	T
F	F	T	T	T	T	T
F	T	F	T	F	F	T
F	T	T	T	T	T	T
T	F	F	F	T	T	T
T	F	T	F	T	T	T
T	T	F	T	F	F	F
T	T	T	T	T	T	T

b) Apply rules successively:

$$
\begin{array}{rll}
& (p \rightarrow q) \wedge(\neg p \rightarrow(\neg q \rightarrow(p \wedge \neg p))) & \\
\equiv & (p \rightarrow q) \wedge(\neg p \rightarrow(\neg q \rightarrow \mathrm{~F})) & \text { negation law } \\
\equiv & (\neg p \vee q) \wedge(\neg \neg p \vee(\neg \neg q \vee \mathrm{~F})) & \text { definition of implic } \\
\equiv & (\neg p \vee q) \wedge(p \vee(q \vee \mathrm{~F})) & \text { double negation la } \\
\equiv & (\neg p \vee q) \wedge(p \vee q) & \text { identity law } \\
\equiv & (\neg p \wedge p) \vee q & \text { distributivity law } \\
\equiv & \mathrm{F} \vee q & \text { negation law } \\
\equiv & q & \text { identity law }
\end{array}
$$

$$
\equiv(\neg p \vee q) \wedge(\neg \neg p \vee(\neg \neg q \vee \mathrm{~F})) \quad \text { definition of implication }
$$

$$
\equiv(\neg p \vee q) \wedge(p \vee(q \vee \mathrm{~F})) \quad \text { double negation law }
$$

Problem 2.

1. True. Indeed, $P(1,3), P(2,1)$, and $P(3,1)$ are true.
2. True. Indeed, $P(2,1), P(2,2)$, and $P(2,1)$ are true.
3. False. Indeed, $P(1,3)$, and $P(3,1)$ are true.
4. True. Indeed, it is enough to pick $x=y$ and to remind that $F \rightarrow F$ and $T \rightarrow T$.
5. True. Indeed, $P(1,3), P(2,1)$, and $P(2,3)$ are true.
6. False. Indeed, $P(1,1)$ is false.

Problem 3.

1. $\neg \forall A F(A)$ or $\exists A \neg F(A)$.
2. $\forall A \forall B[(S(A, B) \wedge F(B)) \rightarrow F(A)]$.
3. $\neg \exists A \exists B[(\neg F(A)) \wedge S(A, B) \wedge F(B)]$.

Problem 4. Let $R(x)$ be the predicate " x has read the textbook" and $P(x)$ be the predicate " x passed the exam". The following is the proof:

1. $\forall x(R(x) \rightarrow P(x)) \quad$ hypothesis
2. $R(\mathrm{Ed}) \rightarrow P(\mathrm{Ed}) \quad$ universal instantiation on (1)
3. $R(\mathrm{Ed}) \quad$ hypothesis
4. $P(\mathrm{Ed}) \quad$ modus ponens on (2) and (3)

Problem 5. We define the following logical functions: $P(x)$ as " x has a bachelor degree in Mathematics", $R(x)$ as " x has more than 125 credits", $S(x)$ as " x passed the exam Analysis $I I$ ", and $T(x)$ as " x passed the exam Analysis I ".

1. $\exists x(P(x) \wedge \neg R(x)) \quad$ premise
2. $P(a) \wedge \neg R(a) \quad$ existential instantiation from (1)
3. $P(a) \quad$ simplification from (2)
4. $\forall x(P(x) \rightarrow S(x)) \quad$ premise
5. $P(a) \rightarrow S(a) \quad$ universal instantiation from (4)
6. $S(a) \quad$ modus ponens from (3) and (5)
7. $\neg R(a) \quad$ simplification from (2)
8. $\forall x(T(x) \rightarrow R(x))$
premise
9. $T(a) \rightarrow R(a) \quad$ universal instantiation from (8)
10. $\neg T(a) \quad$ modus tollens from (7) and (9)
11. $S(a) \wedge \neg T(a) \quad$ conjunction from (6) and (10)
12. $\exists x(S(x) \wedge \neg T(x)) \quad$ existential generalization from (11)

Problem 6. Let $p=$ "you tell false" and $q=$ "ruins on the left". The question to be answered is $p \oplus q$, i.e., $\neg(p \wedge q) \wedge \neg(\neg p \wedge \neg q)$. If the woman of Questionland says yes (=true), the ruins are on the left, otherwise they are on the right, regardless of the fact that he says the truth or not.

