
Chapter 5

Density matrix formalism

In chap 2 we formulated quantum mechanics for isolated systems. In practice
systems interect with their environnement and we need a description that
takes this feature into account. Suppose the system of interest which has
Hilbert space H is coupled to some environnment with space HE . The total
system is isolated and is described by a state vector |Ψ〉 ∈ H ⊗ HE . An
observable for the system of interest is of the form A⊗ I where A acts only
in H. We suppose that A has spectral decomposition A =

∑
n anPn so that

A⊗ I =
∑

n

anPn ⊗ I

A measurement of the observable will leave the system in one of the states

Pn ⊗ I|Ψ〉
〈Ψ|Pn ⊗ I|Ψ〉1/2

with probability
prob(n) = 〈Ψ|Pn ⊗ I|Ψ〉

and the average value of the observable is

〈Ψ|A⊗ I|Ψ〉.

If we introduce the matrix1

ρ = TrHE |Ψ〉〈Ψ|

which acts on H, we can rewrite all these formulas as follows,

prob(n) = TrPn ⊗ I|Ψ〉〈Ψ| = TrHTrEPn ⊗ I|Ψ〉〈Ψ| = TrHPnρ

1here a partial trace is performed. This is formaly defined in a later section. Readers
who are not comfortable with this paragraph can skip to the next one.
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and

〈Ψ|A⊗ I|Ψ〉. = TrA⊗ I|Ψ〉〈Ψ| = TrHTrEA⊗ I|Ψ〉〈Ψ| = TrHAρ

Thus we see that the system of interest is described by the matrix ρ called
“density matrix”. At the level of the reduced density matrix the collapse of
the state vector becomes

ρ = TrE |Ψ〉〈Ψ| → ρafter = TrE
Pn ⊗ I|Ψ〉〈Ψ|Pn ⊗ I

〈Ψ|Pn ⊗ I|Ψ〉
=

PnρPn

TrPnρ

Thus a density matrix can descibe part of a system (Landau).
There is also another kind of preparation of a quantum system for which

density matrices are useful. Suppose a source emits with probability p1 pho-
tons in state |Ψ1〉 ∈ H and with probability p2 photons in state |Ψ2〉 ∈ H
(with p1 + p2 = 1). Then the average value of an observable A acting in H is

p1〈Ψ1|A|Ψ1〉+ p2〈Ψ2|A|Ψ2〉 = TrρA

where
ρ = p1|Ψ1〉〈Ψ1|+ p2|Ψ2〉〈Ψ2|

This density matrix describes a system that is prepared in an ensemble of
state vectors with a definite proportion for each state vector (von Neumann).
Of course this example can be genralized to an ensemble of more than two
vectors.

These two examples are sufficient motivation for introducing a slightly
more general formalism, that formulates the rules of QM in terms of the
density matrix. This is the subject of this chapter.

5.1 Mixed states and density matrices

Let H be the Hilbert space of a system of reference (isolated or not). From
now on the vectors of the Hilbert space will be called pure states. As we
remarked earlier a global phase is unobservable so that giving a pure state
|Ψ〉 or its associated projector |Ψ〉〈Ψ| is equivalent. So a pure state can be
thought of as a projector on a one dimensional subspace of H.

A very general notion of state is as follows (Von Neumann)

General definition of a state. Given a Hilbert space H, consider B(H)
the space of bounded linear self-adjoint operators from H → H. A state is a
positive linear functional

Av : B(H) → C, A → Av(A) (5.1)



5.1. MIXED STATES AND DENSITY MATRICES 3

such that Av(A) = 1 (normalization condition).

A general theorem (that we do not prove here) then shows that it is
always possible to represent this functional by a positive selfadjoint operator
ρ with Trρ = 1. That is

Av(A) = TrρA, ρ† = ρ, ρ ≥ 0, T rρ = 1

This operator is called a density matrix.
If ρ is a one dimensional projector2 it is said to be a pure state, while if

it is not a projector, i.e. ρ2 6= ρ it is said to be a mixed state.

Examples.

• A pure state ρ = |Ψ〉〈Ψ|.

• A mixture of pure states - not necessarily orthogonal - ρ =
∑

n λn|φn〉〈φn|,
λn ≥ 0,

∑
n λn = 1.

There are two kind of physical interpretations of ρ that we have already
given in the introduction. In fact these correspond also to two mathematical
facts.

First we will see at the end of the chapter that a system that is in a
mixed state can always be “purified”. By this we mean that one can always
construct (mathematicaly) a bigger Hilbert space and find a pure state |Ψ〉
such that ρ = Tr|Ψ〉〈Ψ|. Thus we may always interpret ρ as describing part
of a bigger system (Landau).

Second, given ρ, since it is selfadjoint, positive and its trace is normalized
it always has a spectral decomposition

ρ =
∑

i

ρi|i〉〈i|, ρi ≥ 0,
∑

i

ρi = 1

Thus we can always interpret ρ as describing a mixture of pure states |i〉 each
state occurring in the proportion ρi (von Neumann). In quantum statistical

mechanics for example we have ρi = e−βEi

Z
, Z =

∑
i e
−βEi , β the inverse tem-

perature. Of course there are other ways (not corresponding to the spectral
decomposition) of rewritting ρ as a convex combination of one dimensional
projectors so there is an ambiguity in this interpretation. In quantum infor-
mation theory it is important to have in mind that, given ρ, if we do not

2to check this it enough to have ρ2 = ρ because then it is a projector so its eigenvalues
are 1 and 0; so if we already know that Trρ = 1 the multiplicity of 1 is one so its a
one-dimensional projector
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know the state preparation of the system - that is the set {λn, |φn〉} - there
is an ambiguity in the interpretation as a mixture. We can access part of
the information about the prparation by making measurements, and as we
will see in the next chapter the Holevo quantity gives a bound on the mutual
information between the preparation and the measurement outcomes.

Lemma 1. The set of states of a quantum system is convex. The extremal
points are pure states, in other words they are one dimensional projectors
|Ψ〉〈Ψ|. Conversely the pure states are extremal points of this set.

Proof. Let ρ1 and ρ2 be two density matrices. Then evidently any convex
combination ρ = λρ1 + (1 − λ)ρ2 for λ ∈ [0, 1] satisfies ρ† = ρ, ρ ≥ 0 and
Trρ = 1. Hence the set of density matrices is convex.

If ρ is an extremal point then it cannot be written as a non trivial linear
combination of other density matrices. But all ρ have a spectral decompo-
sition ρ =

∑
i ρi|i〉〈i| with 0 ≤ ρi and

∑
i ρi = 1. Since this is a convex

combination it must be trivial so only one of the ρi equals 1 and the other
vanish: thus ρ = |i〉〈i| for some i.

Now let ρ be a pure state: there exits a |Ψ〉 st ρ = |Ψ〉〈Ψ|. We want to
show that it is impossible to find ρ1 6= ρ2 and 0 < λ < 1 st ρ = λρ1+(1−λ)ρ2.
If P⊥ is the projector on the orthogonal complement of |Ψ〉,

0 = TrP⊥ρP⊥ = λTrP⊥ρ1P⊥ + (1− λ)TrP⊥ρ2P⊥

The positivity of ρ1, ρ2 and the strict positivity of λ and 1− λ imply that

TrP⊥ρ1P⊥ = TrP⊥ρ2P⊥ = 0

and by the positiviy again we deduce

P⊥ρ1P⊥ = P⊥ρ2P⊥ = 0

(because PρP = Pρ1/2ρ1/2P = (ρ1/2P )†(ρP ) and TrA†B is an inner product
in the space B(H)) Thus we have

ρ1 = (P⊥ + |Ψ〉〈Ψ|)ρ1(P⊥ + |Ψ〉〈Ψ|) = (|Ψ〉〈Ψ|)〈Ψ|ρ1|Ψ〉

But Trρ1 = 1 so 〈Ψ|ρ1|Ψ〉 = 1 and ρ1 = |Ψ〉〈Ψ|. The same argument applies
to ρ2 and thus ρ1 = ρ2.

The density matrix of a single Qbit. The set of states of a single Qbit
can easily be described in terms of 2 × 2 density matrices as we now show.
A basis for all matrices is given by the Pauli matrices {I, X, Y, Z},

ρ = a0I + a1X + a2Y + a3Z
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We have Trρ = 2a0 so we require that a0 = 1
2
. We rewrite the density matrix

as

ρ =
1

2
(I + a · Σ) =

1

2

(
1 + a3 a1 − ia2

a1 + ia2 1− a3

)
where a = (a1, a2, a3) and Σ = (X, Y, Z) is the vector with the three Pauli
matrices as components. We need ρ† = ρ so the vector a has real components
(Pauli matrices are hermitian). In order to have also ρ ≥ 0 we necessarily
need detρ ≥ 0. This is also sufficient because we already have Trρ = 1 so
that both eigenvalues cannot be negative and hence they are both positive.
The positivity of the determinant is equivalent to

detρ = 1− |a|2 ≥ 0

Therefore the space of 2× 2 density matrices is

{ρ =
1

2
(I + a · Σ)||a| ≤ 1}

Evidently we can identify it to the unit ball |a| ≤ 1 and is commonly called
the “Bloh sphere“. Of course it is convex and the extremal states are those
which cannot be written as a non-trivial linear combination, that is the states
with |a| = 1. Let us check that the later are pure states. We compute

ρ2 =
1

4
(I + a · Σ)2

=
1

4
(1 + a2

1X
2 + a2

2Y
2 + a2

3Z
2)

+
1

4
axay(XY + Y X) + axaz(XZ + ZX) + ayaz(Y Z + ZY )

+
1

4
2a · Σ

The squares of Pauli matrices equal the unit matrix and they anticommute,
so

ρ2 =
1

4
(1 + |a|2) +

1

2
a · Σ

which equal ρ iff |a|2 = 1.

Figure 1 shows the pure states of the three basis X, Y , Z on the Bloch
sphere. General pure states can be parametrized by two angles while for
mixed states one also needs the length of the vector inside the ball.
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Figure 5.1: Z basis {|0〉, |1〉}, Y basis { 1√
2
(|0〉±|1〉)}, X basis { 1√

2
(|0〉±i|1〉)}

5.2 Postulates of QM revisited

We briefly give the postulates of QM in the density matrix formalism.

1. States. A quantum system is described by a Hilbert space H. The
state of the system is a density matrix ρ satisfying ρ = ρ†, ρ ≥ 0 and
Trρ = 1. One may also think of the state as a positive linear functional
A ∈ B(H) → TrAρ ∈ C. These form a convex set. The extremal points
are one dimensional projectors and are called pure states. Other states that
are non-trivial linear combinations of one dimensional projectors are called
mixed states. Any density matrix is of the form

ρ =
∑

n

λn|φn〉〈φn|

with 0 ≤ λn ≤ 1 and
∑

n λn = 1.

2. Evolution. The dynamics of the system is given by a unitary matrix
acting on the states as

ρ(t) = Utρ(0)U †
t

Indeed let the initial condition be ρ(0) =
∑

n λn|φn〉〈φn|. At time t each

state of the mixture is Ut|φn〉 thus ρ(t) =
∑

n λnUt|φn〉〈φn|U †
t = Utρ(0)U †

t .

3. Observables. They are described by linear selfadjoint operators A = A†.
they have a spectral decomposition A =

∑
n αnPn with real eigenvalues αn

and an orthonormal set of projectors Pn satisfying the closure or completeness
relation

∑
n Pn = 1.

4. Measurements. The measurement of an observable A is described by
the measurement basis formed by the eigenprojectors of A. When the system
is prepared in state ρ the possible outcomes of the measurement are

ρafter =
PnρPn

TrPnρPn

with probability
Prob(n) = TrPnρPn
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As we will see one can always purify the system, which means constructing
a bigger system whose reduced density matrix is ρ. Applying the usual
measurement postulate to the purified system leads to the above formulas
(we showed this at the very beginning of the chapter).

5. Composite systems. A system composed of two (or more) parts A∪B
has a tensor product Hilbert space HA ⊗ HB. A density matrix for this
system is of the general form

ρ =
∑

n

λn|φn〉〈φn|

with |φn〉 ∈ HA ⊗HB, 0 ≤ λn ≤ 1 and
∑

n λn = 1. Note that ρ = ρA ⊗ ρB
only if there are no correlations between the parts.

A remark about the Schroedinger and Heisenberg pictures. In the
Schroedinger picture of QM the states evolve as in postulate 2 above and
observables stay fixed. The average value of A at time t is given by TrAρ(t)
where ρ(t) = UtρU †

t . The Heisenberg picture is a mathematicaly equivalent
description where the states ρ stay fixed and the observables evolve according
to A(t) = U †

t AUt. In the Heisenberg picture the average is TrA(t)ρ. Both
pictures are equivalent because of the cyclicity of the trace.

5.3 Partial trace and Reduced density matrix

Suppose we have a composite system with Hilbert space HA⊗HB and let it
be descibed by a density matrix ρ. The reduced density matrix of A (resp.
B) is

ρA = TrHBρ ρB = TrHAρ

Here the trace is performed over HB only (resp. HA only). This is known as
a partial trace and can be defined as follows

TrB (|a1〉〈a2| ⊗ |b1〉〈b2|)︸ ︷︷ ︸
operator inHA⊗HB

= |a1〉〈a2|(Tr|b1〉〈b2|) = (|a1〉〈a2|)︸ ︷︷ ︸
operator inHA

〈b2|b1〉︸ ︷︷ ︸
∈C

This rule combined with linearity enables one to compute all partial traces
in practice. You can translate this rule for computing a partial trace in
the usual matrix language but you will see that the Dirac notation is much
more powerful at this point. In general if ρ =

∑
n λn|φn〉〈φn| and |φn〉 =
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∑
i,j an

ij|φi〉A ⊗ |χj〉B, we have

ρ =
∑

n,i,j,k,l

λna
n
ij(|φi〉A ⊗ |χj〉B)(〈φk|A ⊗ 〈χl|B) (5.2)

=
∑

n,i,j,k,l

λna
n
ij(|φi〉A〈φk|A)⊗ (|χj〉B〈χl|B) (5.3)

The partial traces are

ρA = TrHBρ =
∑
i,k

(∑
n,j,l

λna
n
ij(〈χl|χj〉B

)
(|φi〉A〈φk|A)

and

ρB = TrHAρ =
∑
j,l

( ∑
n,i,k

λna
n
ij(〈φk|φi〉A

)
(|χj〉B〈χl|B)

Examples.

• The partial trace of a tensor product state is a pure state. Indeed let
|Ψ〉 = |φ〉A ⊗ |χ〉B. Then one finds

ρA = |φ〉A〈φ|A, ρB = |χ〉B〈χ|B

• The partial trace of an entangled pure state is a mixed state (we prove
this in full generality later). The reader should check that if ρ = |B00〉
then

ρA =
1

2
IA, ρB =

1

2
IB

• Another instructive calculation is for ρ = 1
2
|B00〉〈B00|+ 1

2
|01〉〈01|,

ρA =
3

4
|0〉A〈0|A +

1

4
|1〉A〈1|ca, ρB =

1

4
|0〉B〈0|B +

3

4
|1〉B〈1|cb

The eigenvalues of the two reduced density matrices are the same. Do
you thgink this is a coincidence ?

Physical interpretation. Basicaly the interpretation of the reduced den-
sity matrix is the same as the one discussed in the introduction to this chap-
ter. For a composite system AB is the state ρ, the RDM ρA describes evry-
thing that is accessible by local operations in the part A.
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In particular if we measure a local observable A ⊗ I =
∑

n αnPn ⊗ I
according to postulate 4) the measured value of the observable is αn, and the
total state collapses to

ρafter =
(Pn ⊗ I)ρ

Tr(Pn ⊗ I)ρ

with probability

prob(n) = Tr(Pn ⊗ I)ρ

Thus the average value of the observable is
∑

n αnprob(n) = Tr(A ⊗ I)ρ.
This is also equal to TrAρ. Since this is true for any local observable, from
the point of view of a local observer in A, before the measurement the system
is in state ρA and after it is found in the state

ρA, after = TrHBρafter =
PnρHA

TrPnρA

with probability

prob(n) = TrAρA

As an example consider the composite system formed of an EPR pair in
the state state |B00〉. Imagine Alice does measurements on her photons and
does not communicate with Bob. From the discussions of chapter 4 we know
that for any measurement basis {|α〉, |α⊥〉} (this means she measures any
observable A = λ1|α〉〈α|+λ2|α⊥〉〈α⊥〉) she will find outcomes α〉 or α⊥ each
with probability 1

2
. Since this is true for any choice of α some thought will

show that the only compatible state with the outcomes is the mixed state
ρA = 1

2
I. Within the density matrix formalism we can arrive at this result in

an immediate manner. Indeed the reduced density matrix of the Bell state is
indeed ρA = 1

2
I. The physical interpretation is that if Alivce and Bob share

an EPR pair the result of local measurements of Alice cannot distinguish
between the entangled state and the the mixed state 1

2
I. We will see that

this has an intersting consequence for the notion of quantum mechanical
entropy: the entropy of the composite system is zero (it is in a well defined
pure state) but at the same time the entropy of its parts is maximal (it is
ln 2). Thus in the quantum world the entropy3 of a system can be lower than
the entropy of its parts. This is one of the effects of entanglement which
violates classical inequalities such as Shannon’s H(X, Y ) ≥ H(X).

3we will introduce in the next chapter the von Neumann entropy which is a direct
generalization of Shannon’s entropy
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5.4 Schmidt decomposition and purification

The Schmidt decomposition and purifications are two useful that we will use
extensively later on.

Theorem 2. Let |Ψ〉 be a pure state for a bippartite system with Hilbert
space HA ⊗HB. then

a) ρA = TrB|Ψ〉〈Ψ| and ρB = TrA|Ψ〉〈Ψ| have the same non-zero eigenval-
ues with the same multiplicities. The multiplicity of the zero eigenvalue (if
present) may or may not be different. Thus the spectral decompositions of
the two reduced density matrices are

ρA =
∑

i

ρi|i〉A〈i|A, ρB =
∑

i

ρi|i〉B〈i|B

with λi > 0 and
∑

i λi = 1. Note that we do not write explicitely the contri-
bution of the zero eigenvalues since they contribute a vanishing term. Here
|i〉A are orthonormal states of HA and |i〉B are other orthonormal states of
HB. Note that they do not form a complete basis unless we include also the
eigenstates of the 0 eigenvalues. If the non-zero eigenvalues are not degener-
ate the vectors |i〉A and |i〉B are unique (up to a phase). Otherwise there is
freedom in their choice (rotations in the ρi subspaces).

b) The pure state |Ψ〉 has the Schmidt decomposition

|Ψ〉 =
∑

i

√
ρi|i〉A ⊗ |i〉B

This expansion (with positive coefficients) is unique up to rotations in the
span of ρi.

An immediate consequence is

Corollary 3. For any |Ψ〉 ∈ HA⊗HB we can form ρ = |Ψ〉〈Ψ| and ρA, ρB.
We have

TrF (ρA) =
∑

i

F (ρi) + gAF (0), T rF (ρB) =
∑

i

F (ρi) + gBF (0)

and

TrF (ρA)− TrF (ρB) = (gA − gB)F (0)

where gA and gB are the degeneracies of the zero eigenvalues of ρA and ρB.
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Proof. Let us prove the Schmidt theorem. Let {|µ〉A} be an orthonormal
basis of A and {|µ′〉A} an orthonormal basis of B. We can expand any pure
state in the tensor product basis,

|Ψ〉 =
∑
µ,µ′

aµµ′|µ〉A ⊗ |µ′〉B

For each |µ〉A set

|µ̃〉B =
∑
µ′

aµ′|µ′〉B

so that
|Ψ〉 =

∑
µ

|µ〉A ⊗ |µ̃〉B

Note that {|µ̃〉B} is not necessarily an orthonormal basis so this is not yet
a Schmidt decomposition. For the reduced density matrix of the A part we
get

ρA =
∑
µ1,µ2

〈µ̃2|µ̃1〉B|µ1〉A〈µ2|A

Suppose now that
ρA|i〉A = ρi|i〉A

For the basis {|µ〉A} we take {|i〉A}, so

ρA =
∑
i1,i2

〈̃i2 |̃i1〉B|i1〉A〈i2|A

But we also have
ρA =

∑
i1

ρi1|i1〉A〈i1|A

So for all non zero terms, ρi1 6= 0, we must have 〈̃i2 |̃i1〉B = λi1δi1i2 . Thus the
states |̃i〉B are orthogonal and we can make them orthonormal by defining

|i〉B = λ
−1/2
i |̃i〉B

In this way we obtain the expansion

|Ψ〉 =
∑

i

|i〉A ⊗ |̃i〉B =
∑

i

√
ρi|i〉A ⊗ |i〉B

which is the Schmidt decomposition (statement b)). To obtain statement a)
we simply compute the partial traces from this expansion which leads to

ρA =
∑

i

ρi|i〉A〈i|A, ρB =
∑

i

ρi|i〉B〈i|B
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These expressions show that ρA and ρB have the same non zero eigenvalues
with the same multiplicities. Now suppose we have a secod Schmidt decom-
position. This will leads to a second spectral decompostion for ρA and ρB.
Thus the unicity of the Schmidt decomposition up to rotations in the span
of each ρi follows from the same fact for the spectral decomposition.

Notion of Schmidt number. The number of non-zero coefficients (includ-
ing multiplicity) in the Schmidt decomposition of |Ψ〉 is called the Schmidt
number of the state. It is invariant under unitary evolutions that do not
couple A and B. Indeed if U = UA ⊗ UB then

U |Ψ〉 =
∑

i

√
ρiUA|i〉A ⊗ UB|i〉B

which has the same number of non zero coefficients. This number is also the
number of non-zero eigenvalues of the reduced density matrices TrB|Ψ〉〈Ψ|
and TrA|Ψ〉〈Ψ|. This number can change only if A and B interact in some
way.

Obviously a tensor product state has Schmidt number equal to 1. Since
an entangled state is one which cannot be written as a tensor product state
its Schmidt number is necessarily ≥ 2. The Schmidt number is our first
attempt to quantify the degree of entanglement.

Purification. This turns out to be apowerful mathematical tool. Given a
system S with Hilbert space HS and density matrix ρS one can view it a part
of a bigger system S ∪R with Hilbert space HS ⊗HR in a pure state |Ψ〉SR

such that
ρS = TrR|Ψ〉SR〈Ψ|SR

The Scmidt decomposition can be used to explicitly construct the pure
state |Ψ〉SR. We remark however that the purification is not unique. One
uses the spectral decomposition

ρS =
∑

ρi|i〉A〈i|A

and takes a copy of the space HS - call it HR. Each vector |i〉S has a copy
which we call |i〉R. Then form

|Ψ〉SR =
∑

i

√
ρi|i〉S ⊗ |i〉R

The reader can easily check that ρS = TrR|Ψ〉SR〈Ψ|SR.


