
Chapter 4

Quantum entanglement

In this chapter we study the nature of a special type of correlation displayed
by the entangled states. These correlations have no classical counterpart, in
other words, they cannot be described by classical probability distributions.
They are genuine quantum mechanical correlations built up in the states of
composite quantum systems.

We first take a close look at the so-called Bell states which violate the
famous Bell inequalities*1. These states display the essence of entanglement
and the CHSH inequality provides an experimentally testable signature of
it. We then describe three applications: a quantum key distribution protocol
(Ekert 1991), quantum teleportation and dense coding (Bennett ?). We stress
here that all three of them have been experimentally realized.

In quantum information one tries to use entanglement as a quantifiable
ressource, much like energy or information, and it would be very convenient
to be able to measure the degree or quantity of entanglement. It is not yet
clear that such a meaningful and useful measure exists. We will come back
to this point in later chapters.

4.1 Bell states

Production of Bell states. We have seen in chapter 2 that in order to
produce entangled states the Qbits must “interact”, at some point in time.
The prototypical example of entangled states are the Bell states which form a
basis of C2⊗C2. Here we show how these can be produced from the unitary
gate U = (CNOT ) · (H⊗I). This is a 4×4 matrix equal to the usual matrix

1There is a class of such nequalities named after John Bell who derived the first ones.
In this chapter we derive the more transparent Clauser-Horne-Shimony-Holt (CHSH) in-
equality.
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Figure 4.1: Quantum circuit producing Bell states

product of the two 4× 4 matrices CNOT and H ⊗ I. The Control Not gate
provides the interaction between the two bits. It is defined as the NOT gate
acting on the second bit provided the first one*2 equals 1

CNOT |x, y〉 = |x, y ⊕ x〉

The matrices H and I are the usual 2× 2 Hadamard and identity matrices.
The circuit representation of the unitary gate U = (CNOT ) · (H ⊗ I) is
depicted in figure 1.

Let us calculate the action of this circuit on a tensor product state |x〉 ⊗
|y〉 = |x, y〉.

(CNOT ) · (H ⊗ I)|x, y〉 = (CNOT )
1√
2

(
|0〉+ (−1)x|1〉

)
⊗ |y〉

=
1√
2
CNOT |0, y〉+

(−1)x

√
2

CNOT |1, y〉

=
1√
2
|0, y〉+

(−1)x

2
|1, y ⊕ 1〉)

= |Bxy〉

More excplicitely we have

|B00〉 =
1√
2

(
|00〉+ |11〉

)
= U |00〉

|B01〉 =
1√
2

(
|01〉+ |10〉

)
= U |01〉

|B10〉 =
1√
2

(
|00〉 − |11〉

)
= U |10〉

|B11〉 =
1√
2

(
|01〉 − |10〉

)
= U |11〉

2it is called the control bit
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Figure 4.2: Alice and Bob share an entangled pair

These four states are a unitary “rotation” of the four canonical basis states
of C2 ⊗ C2 and thus also form a basis, called the Bell basis.

Here the interaction is effected by the CNOT gate: building such a gate
in a laboratory requires bringing two particles (supporting the Qbits |x〉,
|y〉) close enough in space and time (interactions are local). Photons do not
interact directly with one another (Maxwell equations are linear) but they can
interact indirectly through their direct interaction with matter (one speaks
of non-linear optics). Localized sources producing pairs of entangled photons
are excited atoms or nuclei. Electron spin can also be entangled because the
combination of the Coulomb interaction with the Pauli principle can cause
magnetic correlations of this type. In fact this kind of entanglement is very
common place: in a hydrogen molecule the spin part of the chemical valence
bond*3 between two hydrogen atoms is the state

|B11〉 =
1√
2
(| ↑↓〉 − | ↓↑〉)

Spooky correlations. The correlations present between the two Qbits of
the Bell states are very special*4. We have a composite system AB of two
photons. For the sake of the argument we suppose that Alice has captured
one photon in her lab and Bob has captured the other photon in his lab
(figure 2). Irrespective how remote the two labs are, it is always true that
the two photons have come from a common localized source. Now we look
at the outcome of several simple measurements that Alice and Bob might do
each in their own lab.

• Alice measures the polarization of her photon in the basis {|0〉, |1〉}.
The “measurement apparatus” is then formed by the projectors {|0〉〈0|⊗

3the antisymmetry of the spin part allows the orbital part to be in the symmetric
energetically favorable state (Heitler-London theory)

4Einstein called them spooky which means ”scary”



4 CHAPTER 4. QUANTUM ENTANGLEMENT

I, |1〉〈1|⊗ I} so that, according to the measurement postulate, the Bell
state collapses to one of the projections (remember we have to normal-
ize after projecting)

|0〉〈0| ⊗ I|B00〉 =
1√
2
|00〉 → |00〉

|1〉〈1| ⊗ I|B00〉 =
1√
2
|11〉 → |11〉

Therefore Alice knows her photon is in the collapsed state |0〉 or |1〉.
If she assumes that “Bob was sleeping”, she also knows*5 that Bob’s
photon has collapsed in the same state ! However Bob does not know
anything. He doesnt even know that Alice has performed measure-
ments ! In order for him to learn something he can try to perform a
measurement on his photon. But he has to choose a basis*6 {|β〉, |β⊥〉}
and unless he chooses the same basis than Alice he will destroy (for-
ever) the initial state of his photon: his photon collapses to {|β〉, |β⊥〉}.
The probability he chooses the same basis than Alice is zero so, in fact,
he doesnt possess the information that Alice has. Now note that if in-
deed Bob has measured the polarization of his photon he has induced
a collapse on its state vector and now Alice has no way of knowing
what is the state of Bob’s photon. In fact she doesnt even know that
he has done a measurement. In summary no information has passed,
from one party to the other, through the entangled state, during the
measurement processes.

• But the situation is a little bit more subtle ! Suppose Alice measures
localy the polarization of her photon in the basis {|α〉, |α⊥〉}. The
measurement outcome is one of the collapsed states

|αα〉 or |α⊥α⊥〉

The easiest way to see this is to make the profound (!) remark

|B00〉 =
1√
2

(
|00〉+ |11〉

)
=

1√
2

(
|αα〉+ |α⊥α⊥〉

)
for any α. So Alice now knows that her and Bob’s photons are both
in the same state |α〉 or |α⊥〉 but Bob still knows nothing about what

5We will see in a minute that if Bob also performs measurements Alice cant know
anything; and in fact she doesnt know if Bob sleeps or measures

6where we use the notation |β〉 = cos β|0〉+ sinβ|1〉 and β⊥ = β + π
2
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is going on in Alice’s lab. He has no way of knowing by performing
measurements. In fact if he does measurements he will destroy the
state of his photon so that in fact Alice doesnt really know what the
state of Bob’s photon is.

• Of course if Bob performs measurements, and Alice sleeps or measures
after Bob, the situation is just reversed.

• But the situation is even more subtle ! You might think that if both
parties perform simultaneous local measurements the whole scenario is
different. Let us try. Suppose Alice and Bob perform simultaneous
measurements in the basis

{|α, β〉, |α, β⊥〉, |α⊥, β〉, |α⊥, β⊥〉}

The Bell state

|B00〉 =
1√
2
(|00〉+ |11〉) =

1√
2
(|γγ〉+ |γ⊥γ⊥〉)

will collapse to one of the four basis states. So Alice will be in possession
of a photon in state |α〉 or |α⊥〉 and Bob in possession of a photon in
the state |β〉 or |β⊥〉. The situation is exactly the same than in the
previous situations ! It is very instructive to compute the probabilities
of the respective collapsed states. One finds that these are*7

1

2
cos2(α− β),

1

2
sin2(α− β),

1

2
sin2(α− β),

1

2
cos2(α− β)

In her lab Alice finds that the probability of her outcomes |α〉 (resp
|α⊥) is 1

2
(resp 1

2
) as in the previous scenarios; and the same holds

true for Bob. Therefore the conclusions that Alice and Bob infer from
their simultaneous local measurements are the same than in the non-
simultaneous cases above.

To summarize the situation, we see that when Alice or/and Bob perform
successive or simultaneous local measurements on their photons, they have
no way of noticing what happens to their partner. In fact if they dont know
what is the source that produced the entangled pair or if nobody tells them
that the two photons are entangled they have no way of even noticing that
the pair is entangled. It seems that we have no way of knowing if we are
entangled to some distant Alien in the universe, just by performing local

7fortunately independent of γ
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experiments in our part of the universe (scary no ?!). It seems that the only
way Alice and Bob can notice their photons are entangled (assuming they
do not know it a priori) is to communicate. Here by communicate we mean
the perfect or approximate transmission of a classical message by a physical
transfer of matter between Alice and Bob (the matter transferred may be in
a quantum state but at some point Alice and/or Bob will have to measure
and produce some classical message out of the measurement).

Let us also point out that here we have discussed the situation having
in mind a Newtonian picture of space-time. In other words the meaning of
the words ”before”, ”simultaneous” and ”after” is the ”usual” one. However
this is only an approximation and one might question if a proper account of
Minkowskian space-time would change our conclusions. According to rela-
tivity these words are relative to each observer’s frame of reference. What
has an absolute meaning is the space-time interval which may be space-like,
time-like (or zero). According to relativity and QM the two photons of Alice
and Bob should be separated by a time-like vector (because they are entan-
gled). But the local measurement events (events are points in space-time)
of Alice and Bob may be separated by time-like or space-like vectors. In
the case of time-like separation they might be causally connected, but in
the case of space-like separation the measurement events are certainly not
causally connected. In each of these two later cases (whether there is or not
a potential causal connection between measurements) the conclusions are
the same as above: from local measurements alone, Alice and Bob have no
way of noticing their photons are entangled. Their only hope is to exchange
a classical message (communicate), an operation that cannot be performed
faster than the speed of light, because it has to be mediated by matter.

As we will see in the next section allowing communication between Alice
and Bob will enable them to detect that the state (prior to measurement)
was entangled. The fact that the whole picture remains the same even if
measurements are space-like separated means that the quantum correlations
built up in the Bell state are really non local and are not the result of a
mysterious information exchange between the parties.

In a famous paper Einstein, Podolsky and Rosen (EPR 1935) used such
states (in a quite different position-momentum interpretation) to argue that
QM is an incomplete theory (however they did not refute that it is very
successful). For a single Qbit, say |θ〉 if we use the “correct” basis {|θ〉, |θ⊥〉}
we get the measurement outcome |θ〉 with probability 1. According to EPR
the polarization is an “element of reality“ that preexists and is independent
from measurement. Now for a pair of photons in an entangled state as we
have seen in the previous discussion there is no basis in which the outcome
of a polarization measurement is well defined with probability 1. In any
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polarization measurement Alice finds α with prob 1
2

or α⊥ with prob 1
2

(same
for Bob). According to EPR the Bell state cannot be a complete description
of the pair of photons since because the polarization should be an element of
reality that should preexist and be independent of the observer.

The standard answer of QM to EPR is as follows. First of all in the
case of a single photon who gives us the correct basis ? In fact there is
no way to learn the correct basis a priori. Wanting a theory that predicts
it, is wishful thinking and the notion of ”element of reality prexisting and
independent of measurement“ is just a classical prejudice. In fact the state
vectors whether they pertain to single photons, entangled pairs, or more
complicated systems are the complete description of a system. In the case of
the entangled pair of photons in the state |B00〉 if we are given the Bell basis
{|B00〉, |B01〉, |B10〉, |B11〉} as a measurement basis we will find the outcome
|B00〉 with prob 1. If we are given another measurement apparatus described
by other basis states we will find random results whose histograms satisfy
the measurement postulate. This is all there is to say...

4.2 Bell inequalities and Aspect experiment

Is it really true that there is nothing more to say ? Physics is an experi-
mental science so the answer to the question has to be ultimately decided by
experiment.

To devise an experiment we have to ask a more restricted question. A
reasonable way to approach the problem is to try to decide if the correla-
tions in a real pair of entangled photons (produced by an excited atomic
source say) can be described or cannot be described by a classical theory. By
classical theory we mean a probability distribution, that embodies all possi-
ble measurement outcomes. This probability distribution might come from
some very complicated unkown to us (for the moment) deterministic or ef-
fective probabilistic mechanics (think for example of Newtonian mechanics
or statistical mechanics as examples of such theories).

Motivated by the EPR paper John Bell proposed a precise experiment
(figure 3) to answer this question. The idea is that if a pair of photons is
described by a probability distribution then appropriate correlation functions
of the measurements of Alice and Bob satisfy constraints. These constraints
are violated if the pair is described by a Bell state. Famous experiments of
Aspect-Grangier-Roger have shown that standard QM wins.

The experimental protocol. A source S produces, at each instant of time
n, a pair of photons. We do not have any prejudice as to what is the state
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ALICE BOB

|B>

Figure 4.3: Experimental set up

or the description of the pair. One photon flies to Alice’s lab and the other
flies to Bob’s lab. In each lab our two protagonists operate independently:
for the moment they do not communicate and do not care what the other
one does.

• At each time instant n, Alice randomly uses analyzers

{|α〉, |α⊥〉} or {|α′〉, |α′⊥〉}

to measure the polarization of her photon. When she records a click in
the detector she sets an = +1 or a′n = +1 and when the detector does
not click she sets an = −1 or a′n = −1. She keeps track of her choices
for the analyzer at each n.

• At each time instant n, Bob uses randomly analyzers

{|β〉, |β⊥〉} or {|β′〉, |β′⊥〉}

to measure the polarization of his photon. When he records a click in
the detector he sets bn = +1 or b′n = 1 and when the detector does
not click he sets bn = −1 or b′n = −1. He keeps track of his choices of
analyzers for each n.

• Now there is a classical communication phase. Alice and Bob meet
and discuss all their measurements. They classify them according to
the four exprimental setups. Given n the arrangement of analyzers
were

1 = (α, β), 2 = (α, β′), 3 = (α′, β), 4 = (α′, β′)

For each arrangement they compute the following empirical averages

1

N1

∑
n1

an1bn1 ,
1

N2

∑
n2

an2b
′
n2

,
1

N3

∑
n1

a′n3
bn3 ,

1

N4

∑
n4

a′n4
b′n4
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Then they compute the following correlation function

Xexp =
1

N1

∑
n1

an1bn1 +
1

N2

∑
n2

an2b
′
n2
− 1

N3

∑
n1

a′n3
bn3 +

1

N4

∑
n4

a′n4
b′n4

Prediction of classical theories. We assume that the quantities that Alice
and Bob measure correspond to well defined observables A, A′, B, B′ that
have simultaneous definite values a, a′, b, b′ even when there is no observer.
This is the hypothesis of ”realism“ and is discussed in more detail later.
Furthermore we assume that the outcomes of Alice and Bob can be modeled
by a joint probability distribution*8

Pclass(a, a′, b, b′)

Here by a, b, a′ and b′ we mean the random variables modelling the measure-
ment outcomes. The expectation with respect to Pclass is denoted by Eclass.
The corresponding theoretical prediction for each empirical average above is

E[ab], E[ab′], E[a′b], E(a′b′)

and using only the linearity of expectation

Xclass = E[ab + ab′ − a′b + a′b′]

Notice that
ab + ab′ − a′b + a′b′ = a(b + b′) + a′(b′ − b)

and that
−2 ≤ a(b + b′) + a′(b′ − b) ≤ 2

Indeed if b = b′ then only the first term survives which leads to the inequal-
ity; while if b 6= b′ only the second term survives which again leads to the
inequality. Thus we have for the expectation,

−2 ≤ Xclass ≤ 2

This is one of the simplest Bell type inequalities which was derived by
Clauser-Horne-Shimony-Holt and is called the CHSH inequality.

In order to derive this result we havent assumed anything about the state
of preparation of the source. We have only assumed that the experimental
results can be cast into a probability distribution. In fact this is not a priori

8this second assumption follows from the first one combined with ”locality“. This is
explained at the end of the section
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so obvious. There are four experimental arrangements so that when Alice
and Bob meet they have four histograms that can be fitted to 4 probability
distributions:

P1(a, b), P2(a
′, b), P3(a, b′), P4(a

′, b′)

and we ask if these are the marginals of a common Pclass(a, a′, b, b′). It is
not a priori clear that nature always gives us histograms that are marginals
of a common distribution. In fact this is not always the case: after all any
of you can construct four probability distributions that are not marginals of
a common one, and this is an outcome of your brain viewed as a physical
system. So why is the assumption leading to the CHSH inequality very
reasonable ? Below we do not attempt to provide the most general argument.

Let us admit that the laws of physics are ”local”. By this we mean that
when Alice (resp. Bob) perform measurements that are space-like separated
(no communication possible with slower than the speed of light signals) Al-
ice’s experimental outcomes (resp. Bob’s) depend only on her own local
choice of analyzers. This is an assumption that nobody, among physicists,
wants to abandon because it underlies all the known fundamental laws of
physics.

Furthermore let us suppose, following our classical intuition, or following
Einstein, that the outcomes of experiments should be well defined prexisting
functions*9 of the system’s state and the experimental set up (this is called
”realism“ by some people). In mathematical terms there should be a function
such that

a = fA(α; λ), a′ = fA(α′; λ), b = fB(β; λ), b′ = fB(β
′; λ)

Here λ is a set of variables accounting for the state of the system and whatever
is needed to compute the experimental outcome. It has become custommary
to call them ”hidden variables”.

The hidden variables may be random or deterministic*10 and their set of
values is described by a probability distribution h(λ). According to ”local
realism“ the histograms of Alice and Bob are modelled by

P1(a, b) =

∫
dλh(λ)δ(a− fA(α, λ))δ(b− fB(β, λ))

P2(a, b′) =

∫
dλh(λ)δ(a− fA(α, λ))δ(b′ − fB(β

′, λ))

9we could also frame the discussion in a slightly more genneral context where the
outcome is described by a probability distribution pA(a|α, λ). here we have pA(a|α, λ) =
δ(a − fA(α, λ). The conclusions are however the same, but this remark is interesting
because it shows that it is not determinism that is at stake here.

10in this case the distribution is simply a Dirac δ(λ− λ0)
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P3(a
′, b) =

∫
dλh(λ)δ(a′ − fA(α′, λ)δ(b− fB(β, λ))

P4(a
′, b′) =

∫
dλh(λ)δ(a′ − fA(α′, λ)δ(b′ − fB(β

′, λ))

Evidently these are the marginals of a common probability distribution

Pclass(a, a′, b, b′) =

∫
dλh(λ)δ(a−f(α, λ))δ(a′−f(α′, λ))δ(b−f(β, λ))δ(b′−f(β, λ))

Prediction of QM for a Bell state. First of all we notice that according
to the quantum formalism the measurements of Alice and Bob are measure-
ments of the 4 observables (hermitian matrices)

A = |α〉〈α| − |α⊥〉〈α⊥|, A′ = |α′〉〈α′| − |α′⊥〉〈α′⊥|

and
B = |β〉〈β| − |β⊥〉〈β⊥|, B′ = |β′〉〈β′| − |β′⊥〉〈β′⊥|

At each time instant n the state of the photon pair is described by some ket
|Ψ〉 ∈ C2 ⊗ C2. The quantum mechanical prediction for the four empirical
averages of Alice and Bob is

〈Ψ|A⊗B|Ψ〉, 〈Ψ|A⊗B′|Ψ〉, 〈Ψ|A′ ⊗B|Ψ〉, 〈Ψ|A′ ⊗B′|Ψ〉

and for the correlation function

XQM = 〈Ψ|A⊗B|Ψ〉+ 〈Ψ|A⊗B′|Ψ〉 − 〈Ψ|A′ ⊗B|Ψ〉+ 〈Ψ|A′ ⊗B′|Ψ〉

Now let us compute this quantity for the Bell state

|Ψ〉 = |B00〉

The first average is best computed by expressing the Bell state as 1√
2
(|αα〉+

|α⊥α⊥〉).

〈B00|A⊗B|B00〉 =
1

2
〈αα|A⊗B|αα〉+

1

2
〈α⊥α⊥|A⊗B|α⊥α⊥〉

+
1

2
〈αα|A⊗B|α⊥α⊥〉+

1

2
〈α⊥α⊥|A⊗B|αα〉

=
1

2
〈α|A|α〉〈α|B|α〉+

1

2
〈α⊥|A|α⊥〉〈α⊥|B|α⊥〉

=
1

2
· 1 ·

(
|〈α|β〉|2 − |〈α|β⊥〉|2

)
+

1

2
· (−1) ·

(
|〈α⊥|β〉|2 − |〈α⊥|β⊥〉|2

)
=

1

2

(
cos2(α− β)− sin2(α− β)

)
− 1

2

(
sin2(α− β)− cos2(α− β)

)
= cos2(α− β)− sin2(α− β) = cos 2(α− β)
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a’

b’

a

b = pi/8

= 0

= −pi/8

= − pi/4

Figure 4.4: Optimal choice of analyzer orientation

Performing similar calculations for the other averages we find

XQM = cos 2(α− β) + cos 2(α− β′)− cos 2(α′ − β) + cos 2(α′ − β′)

This quantity is maximized for the following choice of angles (and all global
rotations of this choice of course, figure 4),

α = 0, α′ = −π

4
, β =

π

8
, β′ = −π

8

and equals

XQM = cos
π

4
+ cos

π

4
− cos

3π

4
+ cos

π

4
= 2

√
2

We see that the CHSH inequality is violated ! For the three other Bell states
on finds the same result. In the exercises you will show that this is the
maximum possible violation over all quantum states of C2 ⊗ C2. In this
sense the Bell states are maximaly entangled.

Experiments. In a famous set of experiments performed in the 80’s Aspect
and collaborators showed that experiment agrees with QM and not with
classical theories. The difficulty of these experiments is that to be really con-
vincing one must rotate the analysers of Alice and Bob fast enough so that
the measurement events are separated by a space-like interval. Otherwise
one may always argue that some form of classical communication, that will
conspire to make up the results, happens in the system (on speaks of local-
ity loophole). This is the challenge that the Aspect experiments were the
first to address, as compared with other slightly earlier experiments. This
locality loophole has been since then conclusively settled by more recent
experiments*11.

11see the review by Aton Zeilinger ”Experiment and the foundations of quantum
physics“, in Reviews of Modern Physics 71, S288-S297 (1999)
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These experiments tell us that we have to abandon the ”local realism“.
QM does not give up locality (fundamental models of interactions are local)
but rather it gives up realism (at least in the sense described above). Indeed
when Alice performs a measurement her outcome does not depend on what
Bob does (this is locality) but at the same time it is not a well defined function
f(·, λ) independent of her choice of analyzers (in this sense realism doesnt
hold). There cannot exist such a function depending on hidden variables λ
with distribution h(λ), which accounts for the experimanetal results. QM
predicts that the four histograms of Bob and Alice are

P1(a = 1, b = 1) = |〈α, β|B00〉|2 =
1

2
cos2(α− β)

P1(a = −1, b = 1) = |〈α⊥, β|B00〉|2 =
1

2
sin2(α− β)

P1(a = −1, b = −1) = |〈α⊥, β⊥|B00〉|2 =
1

2
cos2(α− β)

P1(a = 1, b = −1) = |〈α, β⊥|B00〉|2 =
1

2
sin2(α− β)

and similarly for P2, P3 and P4. These are not the marginals of a common
distribution otherwise we would have |X| ≤ 2: this is a mathematical fact.
Nature gives these four histograms in an experiment satisfying locality in
the sense that all analyser choices of Alice and Bob are independent. But
she plays a very subtle magic trick with us: the correlations that are built
up in Bell’s states are non-local in the sense that correlations are present in
the measurement outcomes even though the measurements on the photons
are space-like separated. At the same time remember Alice and Bob cannot
notice these non local correlations by purely local means in their own lab.
They have to meet or to communicate by exchanging matter.

It is sometimes said that QM is non-local: this has to be understood
in the sense that quantum mechanical states of the Hilbert space can be
non-local; however the physical laws of interactions are, as far as we know,
local.

As you can begin to suspect it does not make much sense to stick to
classical intuition, local realism or anything of this sort. You will have to
develop a new quantum like intuition...

4.3 Ekert protocol for QKD

A nice application of the CHSH inequality is a protocol for the generation
of a secret key by two parties. We assume that a localized source of EPR
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a_3

a_2

a_1

=0

= −pi/8

= −pi/4

b_1=−pi/8

b_2=0

b_3=pi/8

Figure 4.5: Alice and Bob’s random choices of analyzers

particles delivers entangled Qbits to Alice and Bob at each time instant n in
the state

|B00〉 =
1

2
(|00〉+ |11〉) =

1

2
(|θθ〉+ |θ⊥θ⊥〉)

Moreover they have also established a noiseless communication channel.

The protocol:

• Alice has analyzers oriented in directions a1, a2, a3 and records the
results of measurements, at each time instant, for the observables

A(a) = (+1)|a〉〈a|+ (−1)|a⊥〉〈a⊥|

where she chooses a randomly among a1, a2, a3 (figure 5).

• Bob has three analyzers oriented along b1, b2, b3 and records the
results of measurements, at each time instant, for the observables

B(b) = (+1)|b〉〈b|+ (−1)|b⊥〉〈b⊥|

where he chooses b randomly among b1, b2, b3 (figure 5).

• Alice and Bob start a public discussion over the communication chan-
nel: they inform each other on what vectors they used at each time
instant.

• They do a security check to ensure that no eavesdropper is present.
Alice and Bob select all time instants when the basis choices were

(a3,b3), (a3,b1), (a1,b1), (a1,b3)

Note that these are the same four analyzer arrangements used for the
Bell inequalities (figure 6). For such configurations and only for such
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b_3=pi/8

a_3=0

b_1=−pi/8

a_1=−pi/4

Figure 4.6: CHSH configuration

ones they exchange their measurement results. Each party computes a
correlation coefficient

Xexp = Av(an(a3)bn(b3)) + Av(an(a3)bn(b1))

−Av(an(a1)bn(b3))+ Av(an(a1)bn(b1))

where Av is the empirical average. In a perfect world they should find
Xexp = 2

√
2. We will see later that when an eavesdropper is present

they will certainly find Xexp ≤ 2 because the effect of the eavesdropper
is to destroy the entanglement of the EPR pair and the system behaves
”classicaly“. The security check thus consists in checking that

Xexp > 2

If the test passes they conclude there is no eavesdropper and generate
the key, if not they stop communication.

• The key generation process is as follows. For every time n such that
they used the same basis - that is (a3,b2) or (a2,b1) - they know for
sure that

an = bn = 1, or an = bn = −1

(one can also check that in this case 〈B00|A⊗B|B00〉 = cos 2 ˆ(a,b) = 1).
This is a common subsequence of ±1 that they keep secret and forms
their shared secret key.

Attacks form Eve. Let us consider the simplest measurement attack in
which Eve captures each photon of the EPR pair and makes a measurement
(figure 7). Then she sends each photon (in the resulting state) to Alice and
Bob. She measures Alice’s photon in the basis {ea, e

⊥
a } and Bob’s photon
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ALICE
BOB

EVE

|B>

e_a e_b

a_1, a_2, a_3 b_1,b_2,b_3

Figure 4.7: Eve collapses the pair in a tensor product state

in the basis {eb, e
⊥
b }. Her strategy for the sucessive choices of basis at each

time instant is described by a probability distribution

ρ(ea, eb) ≥ 0,

∫ ∫
d2ead

2eb ρ(ea, eb) = 1

After Eve’s measurement the pair of photons is left in one of the four
tensor product states

|ea, eb〉, |ea, e
⊥
b 〉, |e⊥a , eb〉, |e⊥a , e⊥b 〉

with corresponding probabilities

|〈ea, eb|B00〉|2 =
1

2
cos2 ̂(ea, eb), |〈ea, e

⊥
b |B00〉|2 =

1

2
sin2 ̂(ea, eb)

|〈e⊥a , eb|B00〉|2 =
1

2
sin2 ̂(ea, eb), |〈e⊥a , e⊥b |B00〉|2 =

1

2
cos2 ̂(ea, eb)

Let us compute the correlation coefficient that Alice and Bob would find
during the security test. Given Eve’s choice (ea, eb) we have

X(ea, eb) =
1

2
cos2 ̂(ea, eb)S(ea, eb) +

1

2
sin2 ̂(ea, e⊥b )S(ea, e

⊥
b )

+
1

2
sin2 ̂(e⊥a , eb)S(e⊥a , eb) +

1

2
cos2 ̂(e⊥a , e⊥b )S(e⊥a , e⊥b )

where S(v,w) is the correlation coefficient corresponding to Eve’s measure-
ment outcome |v〉, |w〉,

S(v,w) = 〈v,w|A(a3)⊗B(b3)+A(a3)⊗B(b1)−A(a1)⊗B(b3)+A(a1)⊗B(b1)|v,w〉

The average correlation coefficient found by Alice and Bob when Eve operates
is

X =

∫ ∫
d2ead

2eb ρ(ea, eb)X(ea, eb)
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We leave it as an exercise to check that |S(v,w)| ≤ 2 which then leads to

|X| ≤ 2

Thus Alice and Bob notice the presence of Eve. Note that Eve could ma-
nipulate (unitarily) the pair after her measurements in order to send other
photon states to Alice and Bob. However if she re-entangles the photons she
behaves as a new source for Alice and Bob, and she gets no information from
their measurements.

Finaly let us note that if Eve copies the EPR pair (this can be done
with a machine that copies the four orthogonal Bell states) and waits for the
public discussion before doing the measurements, she gets no information
about the secret key. Indeed her measurement operate on a different pair
and thus there is only half of the time will she get the same result than Alice
and Bob. This is equivalent to flip a coin at each time instant and cannot
yield information.

Experiments. see in Review of Modern Physics 74 p 145-190 (2002) the ex-
tensive article ”Quantum cryptography“ by N. Gisin, G. Ribordy, W. Tittel,
H. Zbinden.

4.4 Quantum teleportation

Suppose that Alice and Bob are spatialy separated and that Alice possesses
a Qbit state,

|Φ〉 = α|0〉+ β|1〉, |α|2 + |β|2 = 1

The state (i.e α and β) is not necessarily known to Alice and is not known
to Bob. They share an EPR pair

|B00 =
1√
2
(|00〉+ |11〉

and a classical communication channel.
We are going to explain that by sending only two classical bits of infor-

mation over the clasical channel, Alice can teleport the state to Bob. Here
teleportation means that |Φ〉 is destroyed in Alice’s lab and is reconstructed
in Bob’s lab. Note that desctruction in Alice’s lab is to be expeceted because
of the no-cloning theorem. After the teleportation process, Bob knows that
he possesses the state but still does not know the state itself (i.e he does not
know α and β). The teleportation process itself does not involve physical
transport of matter - except for the two classical bits that Alice communi-
cates to Bob. Of course this later process cannot happen at speeds greater
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than that of light, so that the whole teleportation process does not violate
the principles of relativity.

We also note that the material support of the state |Φ〉 = α|0〉 + β|1〉 is
not necessarily the same in Alice’s and Bob’s lab. Thus in principle a photon
polarization state can be teleported to a distant electron spin state !

Teleportation can be summarized by the following ”law“

teleporting 1 Qbit = sending 2 Cbits + sharing 1 EPR pair

and can be thought of as some form of communication between Alice and Bob
which share a classical channel and an ”EPR like channel“. The quantum
state ||Phi〉 in Alice’s lab is erased on her side and reproduced in Bob’s lab
- the information contained in α and β has not been communicated.

The protocol.

• A source produces an EPR pair of particles in the Bell state |B00〉23.
One particle, called particle 2 is sent to Alice and one particle , called
particle 3 is sent to Bob. The Hilbert space of the entangled system 23
is H2 ⊗H3 = C2 ⊗ C2.

• Alice prepare a particle, called 1, in the state |Φ〉 = α|0〉 + |β〉. The
Hilbert space of particle 1 is H1 = C2.

• The total Hilbert space of the composite system 123 is H1⊗H2⊗H3 =
C2 ⊗ C2 ⊗ C2 and the total state is

|Ψ〉 = |Φ〉1 ⊗ |B00〉23

At this point a short calculation will facilitate the subsequent discussion

|Ψ〉 =
α√
2
|000〉+

β√
2
|100〉+

α√
2
|011〉+

β√
2
|111〉

• Alice makes a local measurement in her lab, i.e on partiles 12. She uses
an apparatus that has measurement basis of H1 ⊗H2

{|B00〉12, |B01〉12, |B10〉12, |B11〉12}

The associated projectors for the total system are

P00 = |B00〉〈B00|⊗I3, P01 = |B01〉〈B01|⊗I3, P10 = |B10〉〈B10|⊗I3, P11 = |B11〉〈B11|⊗I3
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As usual the outcome of the measurement is one of the four possible
collapsed states*12 (check this calculation and also that the probability
of each outcome is 1

4
)

P00|Ψ〉 =
1

2
|B00〉12 ⊗ (α|0〉3 + β|1〉3)

P01|Ψ〉 =
1

2
|B01〉12 ⊗ (β|0〉3 + α|1〉3)

P10|Ψ〉 =
1

2
|B10〉12 ⊗ (α|0〉3 − β|1〉3)

P11|Ψ〉 =
1

2
|B11〉12 ⊗ (−β|0〉3 − α|1〉3)

• Depending on the random outcome Bob has one of the four states

α|0〉3 + β|1〉3 = |Φ〉
β|0〉3 + α|1〉3 = X|Φ〉
α|0〉3 − β|1〉3 = Z|Φ〉
β|0〉3 − α|1〉3 = iY |Φ〉

but he does not know the state he has.

• Alice knows that the outcome of the measurement (in her lab) is one of
the four Bell states. She can thus use the Bell basis to remeasure (this
will not perturb Bob’s particle this time) and determine her outcome.
This outcome can be encoded by two classical bits

00, 01, 10, 11

that she sends to Bob over the classical communication channel. Bob
can now decide which unitary operation he has to perform on his state
in order to recover |Φ〉,

I(α|0〉3 + β|1〉3) = |Φ〉
X(β|0〉3 + α|1〉3) = |Φ〉
Z(α|0〉3 − β|1〉3) = |Φ〉

−iY (β|0〉3 − α|1〉3) = |Φ〉

12up to normalization
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4.5 Dense coding

Suppose Alice and Bob have established a quantum channel over which they
can send Qbits (for example a optic fiber over which photons travel). We
will study the capacity of such a noisy channel later in the course but for
the moment let us address a simpler question. Assume that Alice and Bob
share an EPR pair. How much information does one Qbit convey over the
quantum channel ?

The answer is that 2 classical bits of information can be transmitted by
Alice to Bob, by sending only 1 Qbit as long as they share an Epair. The
protocol that achieves this is called dense coding.

We will come back to the problem of communicating classical/quantum
messages over noisy quantum channels assisted/or not by entanglement in
later chapters. As we will see even for simple analogs of Shannon’s channel
coding theorem there are various open questions.

Dense coding can be summarized as follows:

communicating 2 Cbits = sending 1 Qbit + sharing 1 EPR pair

This ”law“ may seem complementary to the one of teleportation. Note how-
ever that here only two particles are involved and it is the Qbit that is
physicaly transported form Alice to Bob.

Protocol.

• An EPR pair in the state 1
2
|B00〉 is prepared by a source and each

particle sent to Alice and Bob.

• Alice wants to communicate two bits of information to Bob:

– To send 00 she leaves her particle intact (or applies the unitary
gate I) and physicaly sends her particle to Bob. Bob receives the
particle and is now in possession of the whole state

|B00〉

– To send 01 she applies the unitary gate X to her particle and then
physicaly sends her particle to Bob. Bob is now in possession of
the pair in the state

X1 ⊗ I2|B00〉 = |B01〉
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– To send 10 she applies the unitary gate Z to her particle and then
physicaly sends her particle. Bob is now in possession of the pair
in the state

Z1 ⊗ I2|B00〉 = |B10〉

– To send 11 she applies the unitary gate iY to her particle and
then physicaly sends her particle. Bob is now in possession of the
pair in the state

(iY )1 ⊗ I2|B00〉 = |B11〉

• Bob now has the EPR pair 12 in some state |Bxy〉. In order to determine
the two Cbits that Alice sent he must decide which Bell state he has.
Since he knows that he has one of the four Bell states in his lab, he can
do a local measurement in the Bell basis, and access the information
xy.

Measurement in the Bell basis. One might think that measuring in
the Bell basis is a theoretician’s wishful thinking. In fact this has been
realized experimentaly, and although explaining how is beyond the scope of
this course, we give here an argument that shows that, in principle, it suffices
to have Hadamard and CNOT gates (the simplest unitary gates) together
with polarization analyzers (the simplest of all measurement apparatus).

We have seen at the beginning of this chapter that Bell states can be
generated from as |Bxy〉 = (CNOT )(H ⊗ I)|xy〉. The projectors on the Bell
basis states are therefore related to the ones over the Z basis,

|Bxy〉〈Bxy| = (CNOT )(H ⊗ I)|xy〉〈xy|(H ⊗ I)(CNOT )

(here we have used that the Hadamard and control not matrices are her-
mitian). The projectors |xy〉〈xy| correspond to the analyzer-phodetector
apparatus for photons or to spin analyzers (Stern-Gerlach anlyzer) for spins
(Z basis). The circuit representation of a measurement device in the Bell
basis in given on figure 8. The input is any state |Ψ〉, and the output is one
of the four states

|Bxy〉
〈Bxy|Ψ〉
|〈Bxy|Ψ〉|

Experiments. Quantum teleportation and dense coding have been realized
experimentaly. A summary of the subject can be found in ”Les dossiers de la
recherche“ no 18, février 2005, ”L’étrange pouvoir de l’intrication quantique“,
by N. Gisin.
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H H

Figure 4.8: Device for Bell basis measurements


