
Chapter 3

Quantum key distribution

One of the first applications of quantum mechanics to the field of information
theory has been the 1984 proposal of Bennett and Brassard for a secure
protocol to distribute a secret private key that is common to two distant
parties. Since then there have been a few other similar protocols and a
new field has emerged nowadays called “quantum cryptography”. In this
chapter we limit ourself to original protocol - now called BB84 - and to a
simpler one found by Bennet in 1992 - in a later chapter we will also give
the EPR protocol proposed by Ekert in 1991. The general idea of BB84 is
as follows. Alice sends a string of classical bits - the secret key - to Bob by
using intermediate quantum mechanical Qbits (in pratice these are photons
transmitted in optic fibers). Any attempt by Eve to capture some information
about the key amounts to observe the Qbits and this observation, according,
to the postulates of QM will perturb the quantum system. Alice and Bob are
then able to detect the presence of Eve and abort communication.

The subject is in fact more complicated because in reality the channel
(the optic fiber) is noisy (there is classicla and quantum noise) and it is non-
trivial to distinguish Eve from noise. The full proof of security for BB84
was completed around 1993-1996 by anumber of reserachers, and because
of the issue of noise, requires a combination of non-trivial methods from
classical and quantum information theory (and these will be developped in
later chapters). Here we will analyze only the two basic attacks from Eve,
that were originaly considered by Bennett and Brassard, and we will assume
the channel is not noisy.

Quantum cryptography is not only a theoretical idea. It is also a truly ex-
perimental subject since the protocols have been implemented and shown to
work in the laboratory (first at IBM by Bennett et al in 1989 over a distance
of 32 cm !) and later outside the lab on distances of few tens of kilome-
ters (Geneva, Los Alamos ...). Nowadays there exist companies proposing
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Figure 3.1: Alice and Bon exchange a private key over an optic fiber

commercial systems (Idquantique, MagiQ). These real life implementations
require extensive knowledge of optics and will not be discussed here.

3.1 Key generation according to BB84

There are four essential phases: encoding procedure of Alice, a decoding
procedure of Bob, a public discussion between the two parties and finaly the
common secret key generation.

Encoding procedure of Alice. She generates a classical random binary
string x1, ..., xN , xi ∈ {0, 1} that she keeps secret (the common key will be a
subset of those). She also generates a second classical random binary string
e1, ..., eN , ei ∈ {0, 1} that she keeps secret for the moment. Alice then encodes
the classical bits into Qbits as follows:

• For ei = 0 she generates a Qbit in the state |xi〉. Concretely this can
be done by sending a beam through a polarizer in the Z basis (figure
1)

{|0〉, |1〉}

If the polarizer is oriented horizontaly (resp. verticaly) only photons
in polarization state |0〉 go through, and if it is oriented verticaly only
photons in polarization state |1〉 go through. A single photon is then
selected from the outgoing beam (it is a big challenge for an experi-
mentalist to select a single photon !)

• For ei = 1 she generates a Qbit in the state*1 H|xi〉. Concretely this
can be done by sending a photon through a polarizer in the X basis

1we remaind the reader that H is the Hadamard matrix
(

1 1
1 −1

)
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Figure 3.2: preparation of photons in Z basis

Figure 3.3: preparation of photons in X basis

(figure 2)

{ 1√
2
(|0〉 + |1〉), 1√

2
(|0〉 − |1〉)}

If the polarizer is rotated to the right (resp. verticaly) only photons in
polarization state 1√

2
(|0〉 + |1〉) go through, and if it is rotated to the

left only photons in polarization state 1√
2
(|0〉 − |1〉) go through.

Summarizing, Alice sends a string of Qbits |Aei,xi
〉 = Hei|xi〉, i = 1, ..., N

through a (perfect or possibly noisy) channel (in pratice this is an optic
fiber.
Decoding procedure of Bob. Bob generates a random classical binary
string d1, ..., dN , di ∈ {0, 1} that he keeps secret for the moment. He decodes
the received Qbits of Alice as follows:

• If di = 0 Bob performs a measurement of |Aei,xi
〉 in the Z basis

{|0〉, |1〉}

. The result of the measurement is

|yi〉 ∈ {|0〉, |1〉}

and he records the bit yi. To do this concretely he uses the analyser-
detector apparatus described in the first chapter: the analyser is placed
horizontaly (figure 3); if the detector clicks this means the photons state
has collapsed in the |0〉 state and if the detector does not click (the
photon has been absorbed by the analyser) it means that the photon
state has collapsed to |1〉. We stress that, according to the measurement
postulate, these outcomes are truly random and that for the moment
only Bob knows them.
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Figure 3.4: measurement of polarization in Z basis

D

Figure 3.5: measurement of polarization in X basis

• If di = 1 Bob performs a measurement of |Aei,xi
〉 in the X basis

{ 1√
2
(|0〉 + |1〉, 1√

2
(|0〉 − |1〉}

. The result of the measurement is in { 1√
2
(|0〉+ |1〉), 1√

2
(|0〉− |1〉)} and

he records the bit

yi ∈ {0, 1}

if the output is H|yi〉. To do this concretely he uses the analyser-
detector apparatus described in the first chapter: the analyser is rotated
to the right (figure 4) at 45 degrees; if the detector clicks this means the
photons state has collapsed in the H|0〉 state and if the detector does not
click (the photon has been absorbed by the analyser) it means that the
photon state has collapsed to H|1〉. We stress again that, according to
the measurement postulate, these outcomes are truly random and that
for the moment only Bob knows them.

In summary Bob has decoded the Qbits sent by Alice to a classical binary
string y1, ..., yN . This string is the outcome of measurements of Bob that can-
not be predicted (God does play with dice ... the statistics of these outcomes
can however be calculated according to the measurement postulate).

Public discussion. Alice has at her disposal two binary strings: e1, ..., eN

used to choose the encoding basis, and x1, ..., xN that was mapped to Qbits.
Bob also has two binary strings: d1, ..., dN used to choose a measurement
basis and y1, ..., yN that are his measurement outcomes.

Alice and Bob compare e1, ..., eN and d1, ..., dn over a public channel, but
still keep their two other strings secret. We will see that it is important
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that the public discussion starts only after Bob has finihed his measurements.
They can deduce the following information (and anybody else also can):

• If di = ei, i.e. if they used the same basis, then it must be the case that
yi = xi (the reader should convince himself of that by going through
some examples with polarizer, analyser pairs - basicaly if Bob and Alice
used the same basis it is as if they lived in a classical world).

• If di 6= ei, i.e. if Bob they did not use the same basis, then quantum
effects came into play when Bob did the measurement. According to
the measurement postulate yi 6= xi with probability 1

2
and yi = xi with

probability 1
2
. Let us formaly prove this. Bob receives the Qbit

|Aei,xi
〉 = Hei|xi〉

and measures in the basis

{Hdi|0〉, Hdi|1〉}

. The outcome will be one of two possibilities

Hdi|0〉, with prob |〈0|HdiHei|xi〉|2

or
Hdi|1〉, with prob |〈1|HdiHei|xi〉|2

The reader can check that for ei 6= di both probabilities are equal to 1
2

(and that for ei = di they are 0 and 1).

Key generation. Bob and Alice erase all bits xi and yi corresponding to
i such that ei 6= di. They keep the remaining substrings of x1, ..., xn and
y1, ..., yn such that ei = di. They are assured that these two substrings are
equal so this can potentialy constitute the common secret key. The length
of this substring is close to N

2
since prob(ei 6= di) = 1

2
. Finaly Alice and Bob

perform a security test: according to quantum mechanics for this perfect
setting (without noise or Eve) one must have

prob(xi = yi|ei = di) = 1

Alice and Bob test this by exchanging a small fraction of the common sub-
string over the public channel. If the test succeeds they keep the rest of
the common substring secret: they have succeeded in generating a common
secret key.
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3.2 Attacks from Eve

Here we suppose that there is no noise in the channel so that all errors
that Alice and Bob will detect, when performing the security test above,
come from attacks of Eve. Furthermore we suppose that Eve may attack
by performing operations on one Qbit at a time. We consider two possible
attacks : “the measurement” and “unitary” attacks. For each of them we
will see that the basic postulates of QM imply Eve fails.

Measurement attack. Suppose Eve captures a single photon in the optic
fiber (this it seems is not very hard: when fibers are twisted enough so that
their radius of curvature become small enough some light escapes). The
captured photon is in the state

|Aei,xi
〉 ∈ {|0〉, |1〉, H|0〉, H|1〉}

and she tries to measure it. We consider a “bad” situation where Eve knows
that Alice and Bob use the Z and X basis (in other words she knows what
the two parties call the vertical axis). But of course she does not know the
successive choices Z or X that Alice and Bob do. If Eve uses the Z basis
her outcome is in {|0〉, |1〉} and according to it she records a bit y′i ∈ {0, 1}.
If she uses the X basis her outcome is in {H|0〉, H|1〉} and she records a
corresponding bit y′i ∈ {0, 1}. Once she has finished the measurement she
sends the photon to Bob (in the state left over by the measurement) who
does not yet know about her presence. Two possibilities may occur:

• she used the same basis than Alice and then her outcome is y′i = xi

and the photon state received by Bob is the “correct one“,

• she used a different basis than Alice and then her outcome y′i = xi only
half of the time, so she sends the ”correct“ photon state only half of
the time.

Let us see what Alice and Bob find when they perform the security test.
Denote by EA the event ”Eve uses the same basis than Alice“

prob(xi = yi|ei = di) = prob(xi = yi|ei = di, EA)prob(EA)

+ prob(xi = yi|ei = di, not EA)prob(not EA)

= prob(xi = yi|ei = di)prob(EA)

+ prob(xi = yi|ei 6= di)prob(not EA)

= 1 · 1

2
+

1

2
· 1

2
=

3

4
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So Alice and Bob will notice that when they used the same basis a bout a
fourth of their bits do not agree and will conclude that an eavesdropper is at
work. They abort the communication.

Unitary attack. The problem of Eve is that when she makes a measurement
she does not know the basis of Alice. One possible solution for her would
be to copy the travelling Qbit |Aei,xi

〉, let the original state go to Bob, and
keep the copy. When Alice and Bob enter in the public discussion phase
she learns about the basis in which to measure the Qbit and thus gets the
outcome y′i = yi. However the no-cloning theorem (which is a consequence of
the unitary evolution postulate) garantees that there does not exist a unitary
”machine“ such that

U(|Aei,xi
〉 ⊗ |blank〉) = |Aei,xi

〉 ⊗ |Aei,xi
〉)

The point here is that |Aei,xi
〉 is one of

{|0〉, |1〉, 1

2
(|0〉 + |1〉), 1

2
(|0〉 − |1〉)}

which is a set of non-orthogonal states.
Eve could try to use two copy machines: one for copying the two states

of the Z basis and another for copying the two states of the X basis. But
this time she has no way of know which machine to use. She will use the
wrong machine half of the time and again Alice and Bob will find that

prob(xi = yi|ei = di) =
3

4

Full proof of security. In a more realistic context there are various problems
with the arguments above. First it is very difficult to produce single photons.
One produces a very low intensity beam and the photon number is a Poisson
random variable with mean µ (related to the intensity). Often more than one
photon is produced and Eve migth capture a few of these leaving the others
to Bob. In this case she doesnt have to copy anything and all she does is wait
for the public discussion phase. A second problem is that Alice and Bob will
make errors in their measurements, there is channel noise also and these have
to be distinguished from the perturbations inccured by the eavesdropper. A
third one is that Eve migth perform operations on many traveling photons
at the same time (and not on single ones as assumed above).

In order to deal with such problems one has to add two more phases to
the original BB84 protocol. these are called information reconciliation and
privacy amplification and will be explianed towards the end of the course.
One needs tools from coding and information theory.
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3.3 The Bennett 1992 scheme

The analysis of BB84 has shown that the security ultimately relies on the fact
that Alice encodes Qbits in non-orthogonal states. The B92 scheme retains
this very fact and is even simpler than BB84. Below we just sketch the main
idea. There are again four main phases:

Alice encodes. Alice prepares a random binary string e1, ..., eN . She sends
to Bob |Aei

〉 = |0〉 if ei = 0 and |Aei
〉 = 1

2
(|0〉 + |1〉) if ei = 1. The encoding

is thus Hei|0〉.

Bob decodes. Bob generates a random binary string d1, ..., dN and measures
the received Qbit according to the value of di in the Z or X basis. and obtains
an outcome in {|0〉, |1〉} or in {H|0〉, H|1〉} He decodes the bit as yi = 0 or
yi = 1 (in the obvious way).

Public discussion. Bob announces over the public channel the bits yi. Note
that when ei = di we have yi = 0 with probability 1. On the other hand
when ei 6= di we have yi = 0 with probability 1

2
and yi = 1 with probability

1
2
. Therefore from the public discussion Alice and Bob deduce that surely

di = 1 − ei if yi = 1.

Key generation. Alice and Bob keep the secret bits (ei, di = 1 − ei) for i
such that yi = 1 and discard the rest. The length of this substring is about
N
2
. they perform a security test on a fraction of the substring on the public

channel by checking that

prob(di = 1 − ei|yi = 1) = 1

If that is not the case they abort communication.

3.4 Conjugate coding

In the encoding method of Alice above the two basis that are used correspond

to the basis diagonalizing the two Pauli matrices Z =

(
1 0
0 −1

)
and X =(

0 1
1 0

)
. These two observables do not commute and are called conjugate

observables by analogy with position and momentum; therefore the two basis
are sometimes called conjugate and the corresponding scheme called conjagate
coding.

In fact this scheme was first introduced in 1969 by Wiesner then a grad-
uate student. Wiesner, basing himself on the principles of QM, indicated
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Figure 3.6: unforgeable bank note: it buys one Schroedinger cat

how to ”fabricate unforgeable bank notes“. Unfortunately nobody took him
seriously, except for Bennett then also a graduate student, and his paper
didnt get published till*2 1983. Bennett was one of the few persons who kept
thinking about such problems and, with Gilles Brassard a computer scientist,
had the idea to reconsider conjugate coding in the context of cryptography.

Let us briefly explain the original idea of Wiesner. One generates a ran-
dom binary string e1, ..., e20, and prepares 20 photons in vertical |0〉, |1〉 or
diagonal 1

2
(|0〉+ |1〉), 1

2
(|0〉−|1〉), polarization states using Z or X polarizers.

Then one traps the 20 photons in 20 small cavities inside the bank note. The
bank note also contains a readable serial number which corresponds to the
random string e1, ..., e20. Only the bank knows what is the mapping from the
serial number to the binary string.

Suppose somebody attempts to copy the bank note. Because of the no-
cloning theorem there is no single machine U which copies simultaneously
vertical and diagonal photon polarizations. If one uses two different machines
one will make mistakes (with prob 1−2−20) because one doesnt know when to
use a UZ or a UX . Moreover the bank can check if a bank note has been forged
or not. Indeed from the serial number it deduces the binary string e1, ..., e20

and therefore knows the sequence of basis used to prepare the photons. A
measurement in the correct basis (for each little cavity) is done to observe
if the photons have the correct polarization. Note that if the bank note has
not been forged it will not be destroyed by such a procedure. To summarize
one may say that the bank knows what exact sequence of analysers to use so
that the system behaves classicaly for the bank. For any other person that
doesnt possess this information the system behaves quantum mechanicaly.

2around 1982 quantum computation came into fashion because of an equaly pioneering
work of Feynman


