
Graph Theory Applications EPFL, Spring 2014

Solution to Problem Set 9: Project
Date: 01.05.2014 Due by 29.05.2014

1. Consider a graph G(n, p) with n vertices s.t. for any pair of nodes the edge connecting them is
included in the graph with probability p independently from every other edge. Recall that you
saw a similar model in Problem Set 4. Associate to the i-th vertex a value vi ∈ {0, 1}, which
represents the color of Rivella which is drunk by that specific person. In addition, associate to the
edge connecting the i-th vertex with the j-th vertex the value vi ⊕ vj , where ⊕ denotes the XOR
operation. The aim is to find the vector v = (v1, · · · , vn), given the values of the edges of the
graph.

Let p = 1. Then, all the edges are known, i.e., all the pairwise XORs are known. Suppose that you
find a specific solution v∗ = (v∗1 , · · · , v∗n), which fulfills all the conditions coming from the edges.
Consider the vector v̄∗ = (v̄∗1 , · · · , v̄∗n) = (1 ⊕ v∗1 , · · · , 1 ⊕ v∗n), which is obtained by negating
each component of v∗. It is easy to check that also v̄∗ fulfills all the conditions coming from the
edges. Consequently, the solution to the problem is not unique and you are not able to discriminate
who drinks red Rivella and who drinks green Rivella.

2. If you know the value of a specific vertex, then you can distinguish the two groups if and only if
G(n, p) is connected. The proof of this statement goes as follows.

Denote by v1 the vertex whose value is known (i.e., the vertex associated to your friend Jean).
Suppose that G(n, p) is connected. Then, for any i ∈ {2, · · · , n}, there exists a walk from v1 to
vi, say (ev1,vi1 , · · · , ev1,vim ). Consequently, vi = v1 ⊕ ev1,vi1 ⊕ · · · ⊕ ev1,vi

m . Therefore, you can
distinguish the two groups.

Suppose that G(n, p) is not connected. Then, there are at least two connected component inside
the graph and one of those connected components does not contain v1. For the same reason seen
at point 1, the values of the vertices of this connected component cannot be found unequivocally.
Hence, the problem does not have a unique solution and the two groups cannot be distinguished.

When p = 1, the G(n, p) is the complete graph with n vertices, which is clearly connected. Hence,
the problem can be solved.

3. Given the previous discussion, the aim is to find the range of values of p s.t. G(n, p) is connected
with high probability when n is large.

As can be seen in Figure 1, if p scales as
1

n
, then with high probability G(n, p) is not connected.

If p scales as
1√
n

, then with high probability G(n, p) is connected. No threshold behavior can be

observed in these two cases. On the other hand, if p scales as
lnn

n
, then there is a sharp threshold

for c = 1, i.e. for p <
lnn

n
with high probability G(n, p) is not connected and for p >

lnn

n
with

high probability G(n, p) is connected.

4. The problem consists in recovering a hidden clique (complete graph) of k vertices inside a bigger
graph of n vertices. More specifically, consider the random graph G(n, 1/2) and pick at random
a subset of k vertices. Pick the subgraph associated to this subset of vertices and make it the
complete graph, i.e., add all the missing edges. Let us denote this new graph as G(n, 1/2, k).
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Take a graph G(n, 1/2, k). Now, the task consists of finding the hidden complete subgraph of size
k in G(n, 1/2, k). If k is large enough, the first idea is to check the degree of the vertices. Indeed,
intuitively the vertices in the hidden clique are more connected than the other vertices.

More specifically, let us denote by S the set of vertices in the clique and by di the degree of vertex
i. Suppose that i 6∈ S. Then, di is the sum of n − 1 i.i.d. Bernoulli(1/2) random variables.
Therefore, by Chernoff bound,

P
(
di ≥

n− 1

2
+ t

)
≤ exp

(
−2t2

n

)
,

which, by taking t =
√
n log n +

1

2
, yields

P
(
di ≥

n

2
+
√
n log n

)
≤ exp

(
−2

(
√
n log n + 1/2)2

n

)
≤ 1

n2
.

Consequently, as the random variables di for i 6∈ S are i.i.d.,

P
(

max
i 6∈S

di ≥
n

2
+
√
n log n

)
= 1− P

(
max
i 6∈S

di <
n

2
+
√
n log n

)
= 1−

∏
i 6∈S

P
(
di <

n

2
+
√
n log n

)
≤ 1−

(
1− 1

n2

)n

≤ 1

n
.

(1)

Since the last term goes to 0 as n grows large, we can conclude that with high probability maxi6∈S di ≤
n

2
+
√

n log n.

Consider now a vertex which is in the clique. Then, di is equal to k− 1 plus the sum of n− k i.i.d.
Bernoulli(1/2) random variables. Therefore, by Chernoff bound,

P
(
di ≤ k − 1 +

n− k

2
− t

)
≤ exp

(
− 2t2

n− k

)
,

which, by taking t =
√
n log n− 1 and k = 4

√
n log n yields

P
(
di ≤

n

2
+
√
n log n

)
≤ exp

(
−2

(
√
n log n− 1)2

n− 4
√
n log n

)
.

The RHS is clearly O

(
1

n2

)
. Hence, since the random variables di for i ∈ S are also i.i.d., by

using similar passages to (1), we have that

P
(

min
i∈S

di ≥
n

2
+
√
n log n

)
= O

(
1

n

)
,

which implies that with high probability mini∈S di ≥
n

2
+
√
n log n.

This suffices to conclude that with high probability the k vertices in the hidden clique have the
highest degrees.

Suppose now that k = 10
√
n. Then this method does not work simply because the size of the

clique is comparable to the variance of di for i 6∈ S. In other words, the (deterministic) increase
in the degree due to the fact that a vertex is in the clique is comparable to the random variations of
the vertex degree itself. Therefore, we need to resort to more sophisticated techniques, such as, for
instance, the algorithm which is suggested in the text.
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p = c ln(n)/n

p = c/
√

n

p = c/n

Figure 1: Probability of success as a function of c ∈ {0, 0.1, · · · , 1.9, 2} when p scales as
lnn

n
, as

1√
n

,

and as
1

n
.
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