Problem Set 8

Date: 10.04.2014
Not graded

The edge chromatic number of a graph G, namely $\chi^{\prime}(G)$ is the fewest number of colors necessary to color each edge of G such that no two edges incident on the same vertex have the same color.

Recall that, given a graph G, its largest vertex degree is denoted by $\Delta(G)$.
Problem 1. Let $n \geq 3$. What is χ^{\prime} for the following graphs?

(a) Path Graph P_{n}

(b) Cycle Graph C_{n}

(c) Wheel Graph W_{n+1}

Problem 2. Show that for a nonempty simple regular graph G with odd number of vertices $\chi^{\prime}(G) \geq$ $\Delta(G)+1$.

Problem 3. Let m^{*} be the size of the maximum matching of a graph with m edges. Then, prove that

$$
\chi^{\prime} \geq\left\lceil\frac{m}{m^{*}}\right\rceil
$$

Problem 4. Let $K_{m, n}$ denote the simple bipartite graph with bipartition (X, Y) s.t. $|X|=m,|Y|=n$, and for any $x \in X$ and $y \in Y \operatorname{deg}(x)=n$ and $\operatorname{deg}(y)=m$. Prove, by finding an appropriate edge coloring, that $\chi^{\prime}\left(K_{m, n}\right)=\Delta\left(K_{m, n}\right)$.

Problem 5. Let G be a 3-regular graph with $\chi^{\prime}=4$. Prove that G is not Hamiltonian.

