Solution to Graded Problem Set 7

Date: 04.04.2014
Due by 18:00-11.04.2014

Problem 1. The adjacency matrix of a bipartite graph whose parts have r and s vertices has the form

$$
\left(\begin{array}{cc}
0_{r, r} & A \\
A^{T} & 0_{s, s}
\end{array}\right)
$$

where A is an $r \times s$ matrix which is called the bipartite adjacency matrix, and 0 represents the zero matrix. Let the matrix A of the problem be the bipartite adjacency matrix of a graph G. Then, α corresponds to the minimum size of a covering in G, because it counts the lines (i.e., the nodes) which contain all the 1^{\prime} 's (i.e., the edges) of the matrix (i.e., the bipartite graph). On the other hand, a marking of the 1's s.t. no two of them is on a line corresponds to a matching in G. Hence, β is the maximum size of a matching. As a result, the statement is a consequence of König's theorem.

Problem 2. Suppose the contrary, i.e., there's no matching of X. Then, by Hall's theorem there exists $A \subseteq X$ s.t. $|A|>|N(A)|$. Choose among such sets A one whose cardinality is the smallest. Since there are no isolated vertices, $|N(A)| \geq 1$ and $|A|>1$. Take an arbitrary $x \in A$. Suppose that there exists no matching covering $A \backslash\{x\}$. Then, $|N(A \backslash\{x\})|<|A \backslash\{x\}|$ contradicting the minimality of A. Therefore, there exists a matching covering $A \backslash\{x\}$ and the following chain of inequalities holds:

$$
|N(A)| \geq|N(A \backslash\{x\})| \geq|A \backslash\{x\}|=|A|-1
$$

Since $|A|>|N(A)|$, we conclude that $|N(A)|=|N(A \backslash\{x\})|=|A|-1$. As a result,

$$
\sum_{v \in A} \operatorname{deg}(v)>\sum_{v \in A \backslash\{x\}} \operatorname{deg}(v) \geq \sum_{v \in N(A \backslash\{x\})} \operatorname{deg}(v)=\sum_{v \in N(A)} \operatorname{deg}(v),
$$

where the second inequality comes from the fact that $\operatorname{deg}(x) \geq \operatorname{deg}(y)$ for any $x \in X$ and $y \in Y$ connected by an edge.

Now, note that $\sum_{v \in A} \operatorname{deg}(v)$ counts the edges starting from the set $A \subseteq X$. All these edges will arrive into the set $N(A)$, whose vertices may have some other edge which does not go toward A. Hence, $\sum_{v \in A} \operatorname{deg}(v) \leq \sum_{v \in N(A)} \operatorname{deg}(v)$, which is a contradiction.

Problem 3. For an arbitrary $A \subseteq X$ consider the bipartite adjacency matrix between A and $N(A)$. The idea is to consider this matrix over \mathbb{F}_{2}. Any two vertices of A have an even number of common neighbors and an odd total number of neighbors. Therefore, the inner product between any two rows is 0 , which means that the rows of the matrix are pairwise orthogonal.

Since any set of non-zero pairwise orthogonal vectors is linearly independent, the rows are linearly independent, which is possible only if $|A| \leq|N(A)|$, and we are done by Hall's theorem.

Problem 4. Consider a bipartite graph G with bipartition (X, Y), where X is the set of 13 piles and Y is the set of 13 possible ranks. Each pile is connected by an edge with the ranks that appear in it. Clearly, for any k piles, there are at least k ranks appearing in them. Thus, by Hall's theorem, there exists a matching which saturates all elements of X. Since $|X|=|Y|$, such a matching is perfect.

Problem 5. Let X_{1}, \ldots, X_{n} be independent exponentially distributed random variables with parameters $\lambda_{1}, \ldots, \lambda_{n}$. Then $\min \left\{X_{1}, \ldots, X_{n}\right\}$ is also exponentially distributed, with parameter $\lambda=\lambda_{1}+\cdots+\lambda_{n}$. This can be seen by considering the complementary cumulative distribution function:

$$
\begin{align*}
\operatorname{Pr}\left(\min \left\{X_{1}, \ldots, X_{n}\right\}>x\right) & =\operatorname{Pr}\left(X_{1}>x \wedge \cdots \wedge X_{n}>x\right) \tag{1}\\
& =\prod_{i=1}^{n} \operatorname{Pr}\left(X_{i}>x\right) \tag{2}\\
& =\prod_{i=1}^{n} \exp \left(-x \lambda_{i}\right)=\exp \left(-x \sum_{i=1}^{n} \lambda_{i}\right) \tag{3}
\end{align*}
$$

As a result, the minimum edge weight in K_{n} is an exponential random variable with parameter $\binom{n}{2} / n$. Therefore, the expected minimum weight is $n /\binom{n}{2}$.

As concerns the expected minimal cost of a perfect matching in K_{n} divided by n when the edges are i.i.d. exponential random variables with mean n, such a value converges to $\pi^{2} / 12$ as n grows large. In particular, you should obtain a behavior similar to the one exemplified in Figure 1.

Figure 1: Expected minimal cost of a perfect matching in K_{n} as a function of n. As n increases, this value quickly converges to $\pi^{2} / 12$.

