Solution to Problem Set 3

Date: 06.03.2014
Not graded

Problem 1. Let C_{1}, \cdots, C_{k} denote the connected components of G. We can assume that $k>1$, otherwise G is connected and there is nothing to prove. Thus, by definition of connectedness, it suffices to find a path between any two vertices in G^{c}. Note that for any two vertices belonging to different connected components of G, there is an edge in G^{c}. Moreover, if u and v belong to the same connected component C_{i}, then there is path of length 2 between u and v via a vertex w belonging to another connected component C_{j}, with $j \neq i$.

Problem 2. Let $\pi=\{\pi(1), \pi(2), \ldots, \pi(n)\}$. It is easy to show that left multiplying a matrix A by P results in permuting the rows of A according to π, i.e., row i of A becomes row $\pi(i)$ of $P A$, and right multiplying A by P^{T} results in permuting the columns of A according to π, i.e., column j of A becomes column $\pi(j)$ of $A P^{T}$. Therefore, the (i, j)-th entry of A, henceforth denoted as $A_{i, j}$, appears as the $(\pi(i), \pi(j))$-th entry of $P A P^{T}$.

Now suppose that $A_{H}=P A_{G} P^{T}$. Then we know that for all i, j,

$$
A_{H_{i, j}}=\left(P A_{G} P^{T}\right)_{i, j} \Longrightarrow A_{H_{\pi(i), \pi(j)}}=\left(P A_{G} P^{T}\right)_{\pi(i), \pi(j)}=A_{G_{i, j}},
$$

where the last equality follows from the discussion above. We conclude that vertices i and j of G are adjacent if and only if vertices $\pi(i)$ and $\pi(j)$ of H are adjacent (since the corresponding entries of the adjacency matrices are the same). Then, letting $\theta(i)=\pi_{i}$ map the vertices of G to the vertices of H we conclude that two vertices i and j are adjacent in G if and only if their images $\theta(i)$ and $\theta(j)$ are adjacent in H, and therefore G and H are isomorphic. In other words, G and H are the same graph with the vertices renumbered.

Problem 3. We need to show that

$$
\operatorname{det}(A-k I)=0
$$

We have that

$$
\begin{aligned}
\operatorname{det}(A-k I) & =\operatorname{det}\left(\begin{array}{cccc}
a_{1,1}-k & a_{1,2} & \ldots & a_{1, n} \\
a_{2,1} & a_{2,2}-k & \ldots & a_{2, n} \\
\vdots & \vdots & & \vdots \\
a_{n, 1} & a_{n, 2} & \ldots & a_{n, n}-k
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{cccc}
\left(\sum_{j=1}^{n} a_{1, j}\right)-k & a_{1,2} & \ldots & a_{1, n} \\
\left(\sum_{j=1}^{n} a_{2, j}\right)-k & a_{2,2}-k & \ldots & a_{2, n} \\
\vdots & & \vdots & \\
\left(\sum_{j=1}^{n} a_{n, j}\right)-k & a_{n, 2} & \ldots & a_{n, n}-k
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{cccc}
0 & a_{1,2} & \ldots & a_{1, n} \\
0 & a_{2,2}-k & \ldots & a_{2, n} \\
\vdots & \vdots & & \vdots \\
0 & a_{n, 2} & \ldots & a_{n, n}-k
\end{array}\right)=0,
\end{aligned}
$$

where the second equality follows from properties of the determinant and the third from the fact that in a k-regular graph, every vertex i has exactly k neighbors, therefore each row (and each column) of A sum up to k.

Problem 4. For the "if" part, we want to show that $\operatorname{det}(A+k I)=0$. If G is bipartite, then we can relabel the vertices such that A looks like

$$
A=\left(\begin{array}{cc}
0 & B \\
B^{T} & 0
\end{array}\right)
$$

where B is a square matrix (B is square from regularity). So, $A+k I$ has the following structure:

$$
A+k I=\left(\begin{array}{ccccccccccc}
k & 0 & \ldots & & 0 & & & & & \\
0 & k & 0 & \ldots & 0 & & & & & \\
\vdots & \ddots & \ddots & \ddots & \vdots & & & B & & \\
0 & \ldots & 0 & k & 0 & & & & & \\
0 & \ldots & & 0 & k & & & & & \\
& & & & & k & 0 & & \ldots & 0 \\
& & B^{T} & & & 0 & k & 0 & \ldots & 0 \\
& & & & & \vdots & \ddots & \ddots & \vdots \\
& & & & & 0 & \ldots & 0 & k & 0 \\
& & & & & & \ldots & & 0 & k
\end{array}\right) .
$$

Take the vector

$$
v=(\underbrace{1, \ldots, 1}_{n / 2}, \underbrace{-1, \ldots,-1}_{n / 2}) .
$$

From the regular property it is clear that

$$
v(A+k I)=0
$$

so v is a non-trivial linear combination of the rows which results 0 , thus $\operatorname{det}(A+k I)=0$.
For the "only if" part, we know that there exists a v for which

$$
\begin{equation*}
v(A+k I)=0 \tag{1}
\end{equation*}
$$

We can also assume that the largest (absolute value) element of v is 1 . (If not, we divide the vector by its largest element.) Let 1 be the i-th element of v. Consider the i-th column of $A^{\prime}=A+k I$. We know that the diagonal elements of A^{\prime} are at least k, so we have from (1) that

$$
\begin{equation*}
\sum_{j=1, j \neq i}^{n} v_{j} A_{j, i}^{\prime} \leq-k \tag{2}
\end{equation*}
$$

Also, from regularity,

$$
\begin{equation*}
\sum_{j=1, j \neq i}^{n} A_{j, i}^{\prime} \leq k \tag{3}
\end{equation*}
$$

Since $v_{i}=1$ is the largest element in v, we must have that (2) and (3) are equalities and $v_{j}=-1$, if $A_{j, i}^{\prime} \neq 0$. In other words, vertex i doesn't have self-loops and every vertex j that is connected to i has $v_{j}=-1$.

Consider a j for which (i, j) is an edge. We apply the same argument on the j-th column of A^{\prime}. The same holds, only the sign switch,

$$
\sum_{\ell=1, \ell \neq j}^{n} v_{\ell} A_{\ell, j}^{\prime} \geq k
$$

Again, from regularity,

$$
\sum_{\ell=1, \ell \neq j}^{n} A_{\ell, j}^{\prime} \leq k
$$

so $v_{\ell}=1$ for every ℓ for which (j, ℓ) is an edge. We can go on with the same reasoning and since G is connected we eventually give a constraint on every element of v being equal to 1 or -1 and none of the vertices can have self-loops. Thus every edge has the property that it connects two vertices (i, j) with $v_{i}=-v_{j}$. Consequently, the sign of the elements in v gives a partitioning of the vertices, hence G is bipartite.

Problem 5. The desired partition of the vertex set of G_{C} into two parts witnessing its bipartiteness looks as follows.

Let $V_{1}=\left\{u \in\{0,1\}^{n} \mid u\right.$ contains odd number of ones $\}$ and $V_{2}=V \backslash V_{1}$. We show that there is no edge within V_{1} and within V_{2}. Indeed, if there is an edge between u and v and the number of ones in u is odd, then the number of ones in v is even, because u and v must differ in exactly one component. Similarly, if there is an edge between u and v and the number of ones in u is even, then the number of ones in v is odd. This suffices to prove the claim.

Problem 6. Let S be the subset of \mathbb{R}^{3} that consists of all vectors $\left(x_{1}, x_{2}, x_{3}\right)$ such that x_{i} is non-negative for $i \in\{1,2,3\}$ and $x_{1}+x_{2}+x_{3}=1$. If there exists $x \in S$ such that $A x=0$, then we are done. Otherwise, we know that for every $x \in S, A x$ has non-negative entries, not all of them zero. Let us write $|A x|$ for the sum of the coefficients of $A x$. Then, the map $\phi(x)=A x /|A x|$ is a continuous map from S to S.

Now, geometrically S is a simplex of dimension 2 , and therefore it is homeomorphic to a ball of dimension 2. The Brouwer fixed point theorem implies that ϕ has a fixed point, so there must be some \tilde{x} such that $A \tilde{x}=|A \tilde{x}| \tilde{x}$. Hence, \tilde{x} is an eigenvector with eigenvalue $|A \tilde{x}|$. Since $\tilde{x} \in S$, it has non-negative coefficients, so the result is proved.

