
Graph Theory Applications EPFL, Spring 2014

Solution to Problem Set 3
Date: 06.03.2014 Not graded

Problem 1. Let C1, · · · , Ck denote the connected components of G. We can assume that k > 1,
otherwise G is connected and there is nothing to prove. Thus, by definition of connectedness, it suffices
to find a path between any two vertices in Gc. Note that for any two vertices belonging to different
connected components of G, there is an edge in Gc. Moreover, if u and v belong to the same connected
component Ci, then there is path of length 2 between u and v via a vertex w belonging to another
connected component Cj , with j 6= i.

Problem 2. Let π = {π(1), π(2), . . . , π(n)}. It is easy to show that left multiplying a matrix A by P
results in permuting the rows of A according to π, i.e., row i of A becomes row π(i) of PA, and right
multiplying A by PT results in permuting the columns of A according to π, i.e., column j of A becomes
column π(j) of APT . Therefore, the (i, j)-th entry of A, henceforth denoted as Ai,j , appears as the
(π(i), π(j))-th entry of PAPT .

Now suppose that AH = PAGP
T . Then we know that for all i, j,

AHi,j = (PAGP
T )i,j =⇒ AHπ(i),π(j)

= (PAGP
T )π(i),π(j) = AGi,j ,

where the last equality follows from the discussion above. We conclude that vertices i and j of G are
adjacent if and only if vertices π(i) and π(j) of H are adjacent (since the corresponding entries of the
adjacency matrices are the same). Then, letting θ(i) = πi map the vertices of G to the vertices of H we
conclude that two vertices i and j are adjacent in G if and only if their images θ(i) and θ(j) are adjacent
in H , and therefore G and H are isomorphic. In other words, G and H are the same graph with the
vertices renumbered.

Problem 3. We need to show that

det(A− kI) = 0

We have that

det(A− kI) = det


a1,1 − k a1,2 . . . a1,n
a2,1 a2,2 − k . . . a2,n

...
...

...
an,1 an,2 . . . an,n − k



= det


(
∑n
j=1 a1,j)− k a1,2 . . . a1,n

(
∑n
j=1 a2,j)− k a2,2 − k . . . a2,n

...
...

...
(
∑n
j=1 an,j)− k an,2 . . . an,n − k



= det


0 a1,2 . . . a1,n
0 a2,2 − k . . . a2,n
...

...
...

0 an,2 . . . an,n − k

 = 0,
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where the second equality follows from properties of the determinant and the third from the fact that in a
k-regular graph, every vertex i has exactly k neighbors, therefore each row (and each column) of A sum
up to k.

Problem 4. For the “if” part, we want to show that det(A + kI) = 0. If G is bipartite, then we can
relabel the vertices such that A looks like

A =

(
0 B
BT 0

)
,

where B is a square matrix (B is square from regularity). So, A+ kI has the following structure:

A+ kI =



k 0 . . . 0

B
0 k 0 . . . 0
...

. . . . . . . . .
...

0 . . . 0 k 0
0 . . . 0 k

BT

k 0 . . . 0
0 k 0 . . . 0
...

. . . . . . . . .
...

0 . . . 0 k 0
0 . . . 0 k


.

Take the vector
v = (1, . . . , 1︸ ︷︷ ︸

n/2

,−1, . . . ,−1︸ ︷︷ ︸
n/2

).

From the regular property it is clear that

v(A+ kI) = 0,

so v is a non-trivial linear combination of the rows which results 0, thus det(A+ kI) = 0.
For the “only if” part, we know that there exists a v for which

v(A+ kI) = 0. (1)

We can also assume that the largest (absolute value) element of v is 1. (If not, we divide the vector
by its largest element.) Let 1 be the i-th element of v. Consider the i-th column of A′ = A + kI . We
know that the diagonal elements of A′ are at least k, so we have from (1) that

n∑
j=1,j 6=i

vjA
′
j,i ≤ −k. (2)

Also, from regularity,

n∑
j=1,j 6=i

A′
j,i ≤ k. (3)

Since vi = 1 is the largest element in v, we must have that (2) and (3) are equalities and vj = −1, if
A′
j,i 6= 0. In other words, vertex i doesn’t have self-loops and every vertex j that is connected to i has

vj = −1.
Consider a j for which (i, j) is an edge. We apply the same argument on the j-th column of A′. The

same holds, only the sign switch,

n∑
`=1, 6̀=j

v`A
′
`,j ≥ k.
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Again, from regularity,
n∑

`=1, 6̀=j

A′
`,j ≤ k,

so v` = 1 for every ` for which (j, `) is an edge. We can go on with the same reasoning and since G is
connected we eventually give a constraint on every element of v being equal to 1 or −1 and none of the
vertices can have self-loops. Thus every edge has the property that it connects two vertices (i, j) with
vi = −vj . Consequently, the sign of the elements in v gives a partitioning of the vertices, hence G is
bipartite.

Problem 5. The desired partition of the vertex set of GC into two parts witnessing its bipartiteness looks
as follows.

Let V1 = {u ∈ {0, 1}n | u contains odd number of ones} and V2 = V \ V1. We show that there is
no edge within V1 and within V2. Indeed, if there is an edge between u and v and the number of ones in
u is odd, then the number of ones in v is even, because u and v must differ in exactly one component.
Similarly, if there is an edge between u and v and the number of ones in u is even, then the number of
ones in v is odd. This suffices to prove the claim.

Problem 6. Let S be the subset of R3 that consists of all vectors (x1, x2, x3) such that xi is non-negative
for i ∈ {1, 2, 3} and x1 + x2 + x3 = 1. If there exists x ∈ S such that Ax = 0, then we are done.
Otherwise, we know that for every x ∈ S, Ax has non-negative entries, not all of them zero. Let us write
|Ax| for the sum of the coefficients of Ax. Then, the map φ(x) = Ax/|Ax| is a continuous map from S
to S.

Now, geometrically S is a simplex of dimension 2, and therefore it is homeomorphic to a ball of
dimension 2. The Brouwer fixed point theorem implies that φ has a fixed point, so there must be some x̃
such thatAx̃ = |Ax̃|x̃. Hence, x̃ is an eigenvector with eigenvalue |Ax̃|. Since x̃ ∈ S, it has non-negative
coefficients, so the result is proved.
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