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Problem 1. Let Cy,---,C} denote the connected components of G. We can assume that k& > 1,
otherwise G is connected and there is nothing to prove. Thus, by definition of connectedness, it suffices
to find a path between any two vertices in G¢. Note that for any two vertices belonging to different
connected components of G, there is an edge in G¢. Moreover, if © and v belong to the same connected
component C;, then there is path of length 2 between u and v via a vertex w belonging to another
connected component C;, with j # 1.

Problem 2. Let 7 = {x(1),7(2),...,m(n)}. It is easy to show that left multiplying a matrix A by P
results in permuting the rows of A according to 7, i.e., row ¢ of A becomes row (i) of PA, and right
multiplying A by P7 results in permuting the columns of A according to 7, i.e., column j of A becomes
column 7(j) of APT . Therefore, the (i, j)-th entry of A, henceforth denoted as A; ; , appears as the
(7 (i), m(5))-th entry of PAPT .

Now suppose that Ay = PAgPT . Then we know that for all 4, j,

Ap,, = (PAgP");; = An = (PAGP ) r(iym(i) = Aci

2% w(i),w(G)

where the last equality follows from the discussion above. We conclude that vertices ¢ and j of G are
adjacent if and only if vertices 7(¢) and 7 (j) of H are adjacent (since the corresponding entries of the
adjacency matrices are the same). Then, letting 6(4) = 7; map the vertices of G to the vertices of H we
conclude that two vertices  and j are adjacent in G if and only if their images 6(i) and 6(j) are adjacent
in H, and therefore G and H are isomorphic. In other words, G and H are the same graph with the
vertices renumbered.

Problem 3. We need to show that
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where the second equality follows from properties of the determinant and the third from the fact that in a
k-regular graph, every vertex i has exactly k£ neighbors, therefore each row (and each column) of A sum
up to k.

Problem 4. For the “if” part, we want to show that det(A + kI) = 0. If G is bipartite, then we can
relabel the vertices such that A looks like
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where B is a square matrix (B is square from regularity). So, A 4+ kI has the following structure:
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Take the vector
v=(1,...,1,—1,...,—1).
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From the regular property it is clear that
v(A+EkI)=0,

s0 v is a non-trivial linear combination of the rows which results 0, thus det(A + kI) = 0.
For the “only if” part, we know that there exists a v for which

v(A+kI) =0. (1)

We can also assume that the largest (absolute value) element of v is 1. (If not, we divide the vector
by its largest element.) Let 1 be the i-th element of v. Consider the i-th column of A’ = A + kI. We
know that the diagonal elements of A’ are at least k, so we have from (1) that

n
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Also, from regularity,
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Since v; = 1 is the largest element in v, we must have that (2) and (3) are equalities and v; = —1, if

A;l # 0. In other words, vertex ¢ doesn’t have self-loops and every vertex j that is connected to ¢ has
v = —1.

Consider a j for which (4, j) is an edge. We apply the same argument on the j-th column of A’. The
same holds, only the sign switch,

n

Z ’UgA/&j > k.

L=1,0#]



Again, from regularity,

so vg = 1 for every ¢ for which (j, ¢) is an edge. We can go on with the same reasoning and since G is
connected we eventually give a constraint on every element of v being equal to 1 or —1 and none of the
vertices can have self-loops. Thus every edge has the property that it connects two vertices (4, j) with
v; = —v;. Consequently, the sign of the elements in v gives a partitioning of the vertices, hence G is
bipartite.

Problem 5. The desired partition of the vertex set of G into two parts witnessing its bipartiteness looks
as follows.

Let Vi = {u € {0,1}"™ | u contains odd number of ones} and Vo = V' \ V;. We show that there is
no edge within V; and within V5. Indeed, if there is an edge between v and v and the number of ones in
u is odd, then the number of ones in v is even, because v and v must differ in exactly one component.
Similarly, if there is an edge between w and v and the number of ones in u is even, then the number of
ones in v is odd. This suffices to prove the claim.

Problem 6. Let S be the subset of R? that consists of all vectors (1, z2, ¥3) such that x; is non-negative
fori € {1,2,3} and 1 + x2 + z3 = 1. If there exists z € S such that Ax = 0, then we are done.
Otherwise, we know that for every z € S, Ax has non-negative entries, not all of them zero. Let us write
| Az| for the sum of the coefficients of Az. Then, the map ¢(z) = Az /|Az| is a continuous map from S
to S.

Now, geometrically S is a simplex of dimension 2, and therefore it is homeomorphic to a ball of
dimension 2. The Brouwer fixed point theorem implies that ¢ has a fixed point, so there must be some =
such that AZ = | AZ|Z. Hence, T is an eigenvector with eigenvalue | AZ|. Since & € S, it has non-negative
coefficients, so the result is proved.



