
Graph Theory Applications EPFL, Spring 2014

Solution to Problem Set 10
Date: 08.05.2014 Not graded

Problem 1. Construct a network with source s, category node C1, . . . , C10, question nodes Q1, . . . , Q100

and a sink t. Connect s to each Ci with capacity 10 edges. Connect each Qi to t with capacity 1 edges.
Connect question Qj to Ci1 , . . . , Cik if that question has those corresponding categories. One can make
a question paper if of 100 questions if and only if there is the maximum flow of the network has value
100. Such a maximum flow can be found, for instance, by means of the Ford-Fulkerson algorithm.

Problem 2.

1. Split the vertex v into two vertices vin and vout and join them with an edge of capacity equal to
the node capacity.

2. If the capacity of an edge e = (u, v) is ce and the lower bound is le, then define an equivalent
network N ′ on the same node and edge set such that the capacity of e is c′e = ce − le and lower
bound is 0 (the standard flow problem). Further, we add an extra source s′e and an extra sink t′e
for each edge, s.t. u is connected to t′e by a link of capacity le and s′e is connected to v by a link
of capacity le. This equivalent network has multiple sources and sinks and, therefore, it can be
reduced to a new network N ′′ with a single source and a single sink, as seen in class.

Problem 3.

1. Suppose that there are M people that need to be moved out. First, we provide an algorithm to
decide if all people can be moved out in T steps. Given this algorithm, we can do a binary search
on T between 1 to |V |M/c to find the shortest time in which all the people can move out. Our
algorithm is as follows: given the graph G, we construct GT as follows. For each v ∈ V , we make
T copies of v : v1, . . . , vT , where copy vi corresponds to time step i. For each i, we construct an
edge from vi to vi+1 with infinite capacity (people can just stay in rooms at a time step). We then
construct an edge from vi to wi+1 with capacity c if there exists an edge from v to w with capacity
c in G. Suppose everyone is in room a initially, and the exit is room b. Then we set the source
s = a1, and the sink t = bT . To test if all the people can get from the source to the sink in T time
steps, we check if the max flow in GT is greater than or equal to the number of people initially at
the source. If so, we can move all the people across this graph in T time steps.

2. We can use the same overall idea: construct a graph GT , and compute its max flow. The construc-
tion of GT is the same, except for the following. We create a source s and sink t. Let S be the
start vertices corresponding to the rooms that initially contain all the people, and let U be the sink
vertices that correspond to all the exits. We create a link from s to each x1, for each x ∈ S with
capacity equal to the number of people starting at x. Similarly, we create a link from each xT (for
each x ∈ U) to t with infinite capacity.

3. Again, the overall idea is the same. But when we construct GT now, we create edges between the
layers in a different way: construct the edge linking vi to wi+t(v,w) with capacity c if there is an
edge between v and w in G with transit time t(v, w).

Problem 4. Let us state the vertex version of Menger’s theorem: if u and v are non-adjacent vertices of

1

a graph, the maximum number of internally disjoint (u, v)-paths in G is equal to the minimum number
of vertices whose deletion destroys all (u, v)-paths.

As G is k-connected and Y contains at least k vertices, the claim follows by applying the vertex
version of Menger’s theorem to N(x) (the set of neighbors of x ∈ G) and Y .

2

