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Problem 1. Let G = (V,E) and choose a random subset T ⊆ V by inserting every vertex into T
independently with probability 1/2. For a given edge e = (u, v), let Xe denote the indicator random
variable of the event that exactly one of the vertices of e is in T . Then, we have

E(Xe) = P(u ∈ T, v 6∈ T ) + P(u 6∈ T, v ∈ T ) = 1
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If X denotes the number of edges having exactly one vertex in T , then

E(X) =
∑
e∈E

E(Xe) =
m

2
.

Thus, for some T ⊆ V , there are at least m/2 edges crossing between T and V \ T forming a bipartite
graph.

Problem 2. The proof is essentially identical to the proof regarding the minimum distance and we
proceed by contradiction. Assume therefore that there is a non-zero subset of the set of variable nodes
which forms a stopping set, call it S, and let it be of cardinality S. Let C be the set of neighbors of S and
let it be of cardinality C. If S ≤ αn then by the expansion property we must have C > 1/2lS. Further,
since S is a stopping set, any element of C must be connected into S at least twice. Therefore, lS ≥ 2C,
contradicting the previous inequality.

Problem 3. Let us phrase the problem as a network flow problem. We have a source s, a sink t, and
in addition a bipartite graph with n nodes on one side (representing the families) and m nodes on the
other side (representing the cars). Connect the source to the node representing family i with an edge
of capacity Fi. Further, connect the node representing the car j to the sink t with an edge of capacity
Cj . Finally, connect each node connecting a family to each node representing a car with an edge of
capacity 1. Clearly, there exists a car sharing arrangement if and only if there exists a feasible flow of
value

∑n
i=1 Fi between s and t.

Run the Ford-Fulkerson algorithm to find the maximum flow of the network. If and only if such a
flow has capacity

∑n
i=1 Fi, then a relaxing car is ensured.

Problem 4. Note that if we remove the two squares with coordinates (1, 1) and (8, 8), then there are 30
squares of one color and 32 squares of the other color. Each domino piece covers exactly one white and
one black square. Hence, it is not possible to cover the whole area with dominoes.

Problem 5. Pick a node v. Since the graph is complete v has 5 neighbors, and hence 5 outgoing edges.
Out of these 5 edges, there are at least 3 of them, which are painted in the same color. Without loss of
generality that there are at least 3 red edges.

These 3 red edges connect v to 3 nodes, call them v1, v2 and v3. The nodes v1, v2 and v3 are
connected by a triple of edges, call them e1, e2 and e3. Now, there are just two possibilities:

1. The edges e1, e2 and e3 are all painted blue.

2. At least one of the edges e1, e2 and e3 is painted red.
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In the first case, there is a blue triangle. In the second case, there is a red triangle, since the edges
connecting v with v1, v2 and v3 are red.

Problem 6. [Bonus] Let a(n)i,j be the number of walks of length n from vertex i to vertex j for i, j ∈
{1, 2, 3}. Then, as we have seen in Problem Set 2, a(n)i,j is the (i, j)-th entry ofAn. Our goal is to estimate

a
(n)
1,1 .

Now, by definition of eigenvalue and eigenvector,

Anx = λnx.

Hence,
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= λn,

which, as the elements of An are all positive, gives us the upper bound

a
(n)
1,1 ≤ λn.

Similarly we have that
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This implies that
a
(n−1)
1,1 + a

(n−1)
1,2 + a

(n−1)
1,3 ≥ λn−1.

Observe that there is an edge from vertex 1 to any other vertex (included vertex 1 itself), which
means that any walk of length n from vertex 1 back to vertex 1 is the union of a walk of length n − 1

from vertex 1 to vertex i (i ∈ {1, 2, 3}) and the edge from vertex i to vertex 1. Therefore a(n)1,1 =

a
(n−1)
1,1 + a

(n−1)
1,2 + a

(n−1)
1,3 , which gives the lower bound

a
(n)
1,1 ≥ λn−1.

The bounds are good since their ratio is λ = 1 +
√
2 and it stays constant as n goes large.
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