
Graph Theory Applications EPFL, Spring 2014

Final Exam
Date: 27.06.2014

Rules:

• This exam is closed book. No electronic items are allowed. You are only allowed to have two
handwritten single-sided A4 pages of notes. Place all your personal items on the floor. Leave only
a pen and your ID on the desk. If you need extra scratch paper, please ask for it by raising your
hand.

• Please do not cheat. We will be forced to report any such occurrence to the president of EPFL.
This is not how you want to meet him. :-(

• The exam starts at 8:15 and lasts till 11:00 in INM10.

• If a question is not completely clear to you, don’t waste time and ask us for clarification right away.

• It is not necessarily expected that you solve all problems. Don’t get stuck. Start with the problem
which seems the easiest to you and try to collect as many points as you can.

Name : ........................................................................

Sciper : .....................

Problem 1 ... / 20

Problem 2 ... / 20

Problem 3 ... / 20

Problem 4 ... / 20

Problem 5 ... / 20

Problem 6 – Bonus ... / 10

TOTAL ... / 100+10
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Problem 1. [20pts] Let G = (V,E) be a graph with m edges. Prove that there exists a subset of E, call
it F , of cardinality at least m/2 so that the induced subgraph G(F ) is bipartite.

Hint. Probabilistic method.
Solution. Let G = (V,E) and choose a random subset T ⊆ V by inserting every vertex into T

independently with probability 1/2. For a given edge e = (u, v), let Xe denote the indicator random
variable of the event that exactly one of the vertices of e is in T . Then, we have

E(Xe) = P(u ∈ T, v 6∈ T ) + P(u 6∈ T, v ∈ T ) =
1

4
+

1

4
=

1

2
.

If X denotes the number of edges having exactly one vertex in T , then

E(X) =
∑
e∈E

E(Xe) =
m

2
.

Thus, for some T ⊆ V , there are at least m/2 edges crossing between T and V \ T forming a bipartite
graph.
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Problem 2. [20pts] Consider an (l, r)-regular bipartite graph G with 2 ≤ l ≤ r and n variable nodes
representing an error correcting code. Assume that the graph is an expander with expansion exceeding
1/2 for all sets of variable nodes of size up to αn, 0 < α ≤ 1. In class we showed that the corresponding
code has a minimum distance of at least αn, i.e., any non-zero codeword of this code has Hamming
weight at least αn.

Let us define a stopping set, call it S, as a subset of the set of variables so that in the induced subgraph
G(S) there is no check node of degree 1. To compare, one can think of a codeword as a subset of the set
of variable nodes, call it S, so that in the induced subgraph G(S) all check nodes have even degree.

Prove that in such a graph any non-zero stopping set must have size at least αn, i.e., there are no
small stopping sets.

Solution. The proof is essentially identical to the proof regarding the minimum distance and we
proceed by contradiction. Assume therefore that there is a non-zero subset of the set of variable nodes
which forms a stopping set, call it S, and let it be of cardinality S. Let C be the set of neighbors of S and
let it be of cardinality C. If S ≤ αn then by the expansion property we must have C > 1/2lS. Further,
since S is a stopping set, any element of C must be connected into S at least twice. Therefore, lS ≥ 2C,
contradicting the previous inequality.
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Problem 3. [20pts] Suppose that several families want to go to a picnic by car sharing. Unfortunately, the
members of each family constantly quarrel among themselves! To ensure a relaxing trip, the coordinator
wants to make sure that no two members of the same family travel in a car together. Given a set of
n families with F1, F2, . . . , Fn members and a set of m cars with capacity C1, C2, . . . , Cm, write this
problem as a graph problem and suggest an efficient algorithm to solve it.

Solution. Let us phrase the problem as a network flow problem. We have a source s, a sink t,
and in addition a bipartite graph with n nodes on one side (representing the families) and m nodes on
the other side (representing the cars). Connect the source to the node representing family i with an edge
of capacity Fi. Further, connect the node representing the car j to the sink t with an edge of capacity
Cj . Finally, connect each node connecting a family to each node representing a car with an edge of
capacity 1. Clearly, there exists a car sharing arrangement if and only if there exists a feasible flow of
value

∑n
i=1 Fi between s and t.

Run the Ford-Fulkerson algorithm to find the maximum flow of the network. If and only if such a
flow has capacity

∑n
i=1 Fi, then a relaxing car is ensured.
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Problem 4. [20pts] Take an 8× 8 chessboard and remove from it the two squares with coordinates (1, 1)
and (8, 8) (these are two squares opposite to each other along a diagonal).

Show that it is not possible to cover the remaining area consisting of 62 squares with dominoes of
size 1× 2 (the dominoes can be put horizontally or vertically).

Hint. Phrase this as a matching problem and show that no appropriate matching exists.
Solution. Note that if we remove the two squares with coordinates (1, 1) and (8, 8), then there are

30 squares of one color and 32 squares of the other color. Each domino piece covers exactly one white
and one black square. Hence, it is not possible to cover the whole area with dominoes.
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Problem 5. [20pts] Consider the complete graph on 6 vertices. Show that, for any coloring of the edges
with blue and red, there exists always either a red or a blue triangle.

Solution. Pick a node v. Since the graph is complete v has 5 neighbors, and hence 5 outgoing edges.
Out of these 5 edges, there are at least 3 of them, which are painted in the same color. Without loss of
generality that there are at least 3 red edges.

These 3 red edges connect v to 3 nodes, call them v1, v2 and v3. The nodes v1, v2 and v3 are
connected by a triple of edges, call them e1, e2 and e3. Now, there are just two possibilities:

1. The edges e1, e2 and e3 are all painted blue.

2. At least one of the edges e1, e2 and e3 is painted red.

In the first case, there is a blue triangle. In the second case, there is a red triangle, since the edges
connecting v with v1, v2 and v3 are red.
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Problem 6. [Bonus – 10points] Déjà vu. Consider the graph G(V,E) with adjacency matrix

A =

 1 1 1
1 0 1
1 1 0

 .

(Note that this graph one vertex has a self loop.)
This matrix has a maximum eigenvalue of λ = 1 +

√
2 and an associated eigenvector xT =

(1, 1/
√

2, 1/
√

2).
Give a good upper and lower bound on the number of walks of length n from vertex 1 back to vertex 1.
Note: Good here means that the ratio of the two bounds is Θ(1), i.e., it stays constant as n grows

large.
Solution.
Let a(n)i,j be the number of walks of length n from vertex i to vertex j for i, j ∈ {1, 2, 3}. Then, as we

have seen in Problem Set 2, a(n)i,j is the (i, j)-th entry of An. Our goal is to estimate a(n)1,1 .
Now, by definition of eigenvalue and eigenvector,

Anx = λnx.

Hence,

a
(n)
1,1 +

a
(n)
1,2√
2

+
a
(n)
1,3√
2

= λn,

which, as the elements of An are all positive, gives us the upper bound

a
(n)
1,1 ≤ λn.

Similarly we have that

a
(n−1)
1,1 +

a
(n−1)
1,2√

2
+
a
(n−1)
1,3√

2
= λn−1.

This implies that
a
(n−1)
1,1 + a

(n−1)
1,2 + a

(n−1)
1,3 ≥ λn−1.

Observe that there is an edge from vertex 1 to any other vertex (included vertex 1 itself), which
means that any walk of length n from vertex 1 back to vertex 1 is the union of a walk of length n − 1

from vertex 1 to vertex i (i ∈ {1, 2, 3}) and the edge from vertex i to vertex 1. Therefore a(n)1,1 =

a
(n−1)
1,1 + a

(n−1)
1,2 + a

(n−1)
1,3 , which gives the lower bound

a
(n)
1,1 ≥ λn−1.

The bounds are good since their ratio is λ = 1 +
√

2 and it stays constant as n goes large.
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