Problem Set 3

Date: 3.10.2014
Not graded

In the problems that follow we denote by \mathbb{N} the set of natural numbers including 0 .

Problem 1. Prove or disprove:
a) $\overline{A \cap B}=\bar{A} \cup \bar{B}$ by giving a containment proof (that is, prove that the left side is a subset of the right side and that the right side is a subset of the left side).
b) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ by Venn diagram.

Problem 2. Let $A=\{a, b, c\}$ and $B=\{b,\{c\}\}$. Mark the following statements TRUE or FALSE:
a) $c \in A \backslash B$
b) $|\mathcal{P}(A \times B)|=64$
c) $\varnothing \in \mathcal{P}(B)$
d) $B \subseteq A$
e) $\{c\} \subseteq B$
f) $\{a, b\} \in A \times A$

Problem 3. Determine whether the set is finite or infinite. If the set is finite, find its size.
a) $\left\{x \mid x \in \mathbb{Z}\right.$ and $\left.x^{2}<10\right\}$
b) $\{x \mid x \in \mathbb{N}$ and x odd $\}$
c) $\left\{x \mid x \in \mathbb{N}\right.$ and $\left.9 x^{2}-1=0\right\}$
d) $A \times B$, where $A=\{a, b, c\}$ and $B=\varnothing$
e) $\left\{x \mid x \in \mathbb{Z}\right.$ and $\left.x^{2}=2\right\}$
f) $\left\{x \mid x \in \mathbb{N}\right.$ and $x=10^{t}$ for some $\left.t \in \mathbb{N}\right\}$
g) $\left\{x \mid x \in \mathbb{Z}\right.$ and $\left.x^{2}<8\right\}$

Problem 4. Let A be the set of integers between 1 and 100. How many numbers in A are multiples of 2,3 , and 5 ? How many numbers in A are multiples of 2,3 , or 5 ?

Problem 5. Determine whether the rule describes a function. If it does so, find if the function is injective, surjective, bijective or none of the previous.
a) $f: \mathbb{R} \rightarrow \mathbb{R}$ where $f(x)=x^{2014}$.
b) $f: \mathbb{R} \rightarrow \mathbb{R}$ where $f(x)=x^{1 / 2014}$.
c) $f: \mathbb{N} \rightarrow \mathbb{R}$ where $f(x)=\sin x$.
d) $f: \mathbb{Z} \rightarrow \mathbb{Q}$ where $f(x)=x+2014$.
e) $f: \mathbb{Z} \rightarrow \mathbb{Z}$ where $f(x)=x+2014$.
f) $f: \mathbb{R} \rightarrow[-1,1]$ where $f(x)=\cos x$.
g) $f: \mathbb{R} \rightarrow \mathbb{R}$ where $f(x)=\left\{\begin{array}{ll}\frac{1}{x} & x>1 \\ 6 x & x<2\end{array}\right.$.
h) $f: \mathbb{R} \rightarrow \mathbb{R}$ where $f(x)= \begin{cases}4 x & x>1 \\ (1+x)^{2}-(1-x)^{2} & x<2\end{cases}$
i) $f: \mathbb{R} \rightarrow \mathbb{R}$ where $f(x)=x^{-2014}$.
j) $f: \mathbb{R} \rightarrow \mathbb{R}$ where $f(x)=\frac{1}{3-e^{-e^{-x}}}$.

Problem 6. Let $A=\{1,2,3,4\}$. Consider $f: A \rightarrow A$ and $g: A \rightarrow A$ with $f=\{(1,3),(2,2),(3,4),(4,2)\}$ and $g=\{(1,4),(4,1),(2,3),(3,2)\}$.

1. Find $f \circ g$.
2. Find $g \circ f$.
3. Find g^{-1}.
4. Find $g \circ g$.
5. Find $f^{-1} \circ g$.
