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Problem 1.

(a) The functions g; : N = Rt (i = 1,2) are O(f) for some function f. So there exist ¢; ; > 0
and k; >0 (5 =1,2) s.t.

cialf(@)] <|gi(z)| < ciolf(x)]  Va> k.

Set k = max k;. Then, for all z > k,

cialf(@)| <lgi(x)| <cizlf(@)]  and  coa|f(2)] < lg2(2)] < c22|f(2)]-
Consequently,
(c11 +c2,)|f(@)] < |g1(@)]| + [g2(2)| < (e1,2 + c2,2)|f(2)].

The triangle inequality tells us that |g1 (x)+g2(x)| < |g1(z)|+]g2(z)|. Defining c2 = ¢1 2+¢2 2,
we have that |g1(x) + g2(x)| < ca|f(x)|. Therefore, we can conclude that g; + g2 is O(f).

Since g; : N — RT, |g1(2) + g2(2)| = |g1(x)] + |g2(x)| = g1(x) + g2(x) and we obtain that
alf(@)] < lgi(z) + ga(w)l,

where ¢1 = ¢11 + ¢2,1. As aresult, g1 + g2 is Q(f). Since g1 + g2 is also O(f), by definition
we find that g1 + g2 is O(f).

(b) We use the same notation as in (a) and we obtain that for all > k,
(c1,1 - e20) 2 (@) < g1 ()] - [ga(@)] < (er2 - c2,2) f2(2)-
Let ¢j = 1 - ca5. As [91(2)g2(2)] = [91(2)]|92(2)];
af?(@) < (g1 g2)(@)] < c2f?(x), Vo >k,
which implies that gy - go is O(f2).

(¢) In this case, the functions gs, g4 may take negative values. We can follow the reasoning in
(a) to show that gs + g4 is O(f). But there exist g3, g4 s.t. g3+ g4 is not Q(f). For instance,
let ga(x) = —gs(z). Then, (g3 + g4)(z) = 0. Consequently V¢ > 0, Yz > 0, we have that
lg3(z) + ga(x)| = 0 < c|f(z)| for any non-zero function f : N — R*. As a consequence
g3 + g4 is not Q(f) and the statement is false.

(d) The statement is true and the proof is the same as in (b).

Problem 2.
(a) Pick
n even

n" n odd

Indeed, on the even numbers f(n) is NOT Q(n) and on the odd numbers f(n) is not o(e™).



(b) (i) Recall that n! = Q(a") for any fixed a € R. Let a = 22013 then
(Toga n])! = Q((22712)%7) = Qn213)
(ii) Recall that n! < n™. Hence,

(|‘10g2 n‘|)| < (10g2 n)10g2 n _ 2103;2 n-log, log, n < 2(10g2 n)2.

Since (logyn)? is o(n), the result follows.

Problem 3. Take C = {f(® : a € (0,1)}, where f(®)(n) = n(logn)**. The three required
conditions are satisfied:

(i)-(ii) For any a, 8 € [0,1] with a < 8, we have f(®) = o(f(?) because

(@) . (log n )46+ 1
fn F@) 0 (logn) .

- =0
nooo fB)(n)  noso n- (logn)i6+H8 ~ nibo (logn)P-e

As a result, condition (ii) is satisfied. Setting 3 = 1, we have that f(*) = o(n - (logn)*")
for any o € (0,1). In addition, setting & = 0, we obtain that f(*) = Q(n - (logn)*®) for

any 8 € (0,1). These two observations prove that condition (i) is fulfilled.

(iii) Conmsider the function h : (0,1) — C, defined as h(a) = f(®). This is clearly a bijection
and therefore |C| = |(0,1)]. To show that |(0,1)| = |R|, it is enough to consider a function
similar to that of the solution of Problem 4(b) in Homework 4. Indeed, let g : R — (0, 1)
be defined as

et — e %
et 4+ e * 1
gle) = “H—

Then, g is bijective and thus [(0,1)| = |R|.

Problem 4.
(i) False. Indeed, pick a =b=c=1and d=2. Then, 1|1 and 1|2, but 2¢3.

(ii) True. Indeed, if a | b, then 3k € Z : b = ka. Analogously, if b | ¢, then 3l € Z : ¢ = [b.
Consequently, ¢ = lb = lka, which means that a | c.

(iii) False. Indeed, pick a=b=c¢=1. Then, 1 |1 and 1|1, but 21 1.
(iv) False. Indeed, pick a =b=2,c=d=1. Then, 2|2 and 1|1, but 21 3.

(v) True. Indeed, let a,b € N. Then, if a | b, then 3k € N : b = ka. If b | a, then
Jk' € N:a =k'b. As a result, b = kk’b, which implies that k = k' = 1. Therefore, a = b.

(vi) False. Indeed, pick a =1 and b= —1. Then, a | b and b | a, but a # b.

)
(vii) False. Indeed, pick a =2, and b = ¢ = 3. Then, 2 | 6, but 21 3.
(viii) False. Indeed, pick a =4, b =2, and ¢ = 6. Then, 4 | 12, but 412 and 4 16.
)

(ix) True. Indeed, if a | ¢, then 3k € Z : ¢ = ka. If b | ¢, then 3 € Z : ¢ = Ib. Consequently,
c? = klab, which implies that ab | c2.



(x)

True. Indeed, by the existence of the unique factorization, write b = plfl - ... pkn and

c=pl* ... pin where one of k; and j; can be zero, but not both for all 1 <4 <n. Then
bc = p]flﬂl -...-pkntin_Since a | be and a is a positive prime, there must be i € {1,...,n}
s.t. a = p;. Either k; or j; is positive, so either a | pf’ or a | p!*, which means that either
alboralec.

Problem 5.

(i)

(i)

(iii)

If a and p are not coprime, then it must be that p | a. In this case, a = 0 (mod p) and
a? =0 (mod p). Consequently, a? = a (mod p).

Consider now a such that ged(a,p) = 1. Then p { a and for any k € {1,...,p — 1} also
p t ak. Using the converse of the statement Problem 4(x) of the current problem set, we
obtain ak # 0 (mod p) and thus A C {1,...,p — 1} (we used the fact that A is a set of
reminders).

To prove that A D {1,...,p — 1}, we just need to show that for any k, ¥ € {1,...,p—1}
the corresponding remainders are different, i.e., ak Z ak’ (mod p). This is equivalent to
a(k — k') # 0 (mod p).

By hypothesis p { a and, in addition, p { (k — k') because —p < k — k' < p. Using again
the converse of the statement of Problem 4(x), we obtain that p 1 a(k — k') and thus
A={1,...,p—1}.

By the properties of modular arithmetic, we have the following sequence of equivalences
modulo p:

p—1 p—1
(p—1Dla?™t = H ka = H(ka mod p) = H z=(p—1)! (modp),
k=1 k=1 z€A

where the third equivalence follows from point (ii).

Thus, we showed that for any a coprime with p, we have

(p—Dla?! = (p—1)! (mod p).

Therefore, p | (p — 1)!(a?~! — 1). Since p is prime and cannot divide any k& < p, again
using the statement of Problem 4(x), we obtain that p | (a?~! — 1), which implies that
p | a(aP~! —1). This last expression is equivalent to a? = a (mod p).



