Solution to Graded Problem Set 6

Date: 25.10.2013
Due date: 1.11.2013, noon

Problem 1.

(a) The functions $g_{i}: \mathbb{N} \rightarrow \mathbb{R}^{+}(i=1,2)$ are $\Theta(f)$ for some function f. So there exist $c_{i, j}>0$ and $k_{i}>0(j=1,2)$ s.t.

$$
c_{i, 1}|f(x)| \leq\left|g_{i}(x)\right| \leq c_{i, 2}|f(x)| \quad \forall x>k_{i} .
$$

Set $k=\max _{i} k_{i}$. Then, for all $x>k$,

$$
c_{1,1}|f(x)| \leq\left|g_{1}(x)\right| \leq c_{1,2}|f(x)| \quad \text { and } \quad c_{2,1}|f(x)| \leq\left|g_{2}(x)\right| \leq c_{2,2}|f(x)|
$$

Consequently,

$$
\left(c_{1,1}+c_{2,1}\right)|f(x)| \leq\left|g_{1}(x)\right|+\left|g_{2}(x)\right| \leq\left(c_{1,2}+c_{2,2}\right)|f(x)|
$$

The triangle inequality tells us that $\left|g_{1}(x)+g_{2}(x)\right| \leq\left|g_{1}(x)\right|+\left|g_{2}(x)\right|$. Defining $c_{2}=c_{1,2}+c_{2,2}$, we have that $\left|g_{1}(x)+g_{2}(x)\right| \leq c_{2}|f(x)|$. Therefore, we can conclude that $g_{1}+g_{2}$ is $O(f)$. Since $g_{i}: \mathbb{N} \rightarrow \mathbb{R}^{+},\left|g_{1}(x)+g_{2}(x)\right|=\left|g_{1}(x)\right|+\left|g_{2}(x)\right|=g_{1}(x)+g_{2}(x)$ and we obtain that

$$
c_{1}|f(x)| \leq\left|g_{1}(x)+g_{2}(x)\right|,
$$

where $c_{1}=c_{1,1}+c_{2,1}$. As a result, $g_{1}+g_{2}$ is $\Omega(f)$. Since $g_{1}+g_{2}$ is also $O(f)$, by definition we find that $g_{1}+g_{2}$ is $\Theta(f)$.
(b) We use the same notation as in (a) and we obtain that for all $x>k$,

$$
\left(c_{1,1} \cdot c_{2,1}\right) f^{2}(x) \leq\left|g_{1}(x)\right| \cdot\left|g_{2}(x)\right| \leq\left(c_{1,2} \cdot c_{2,2}\right) f^{2}(x)
$$

Let $c_{j}=c_{1, j} \cdot c_{2, j}$. As $\left|g_{1}(x) g_{2}(x)\right|=\left|g_{1}(x)\right|\left|g_{2}(x)\right|$,

$$
c_{1} f^{2}(x) \leq\left|\left(g_{1} \cdot g_{2}\right)(x)\right| \leq c_{2} f^{2}(x), \quad \forall x>k,
$$

which implies that $g_{1} \cdot g_{2}$ is $\Theta\left(f^{2}\right)$.
(c) In this case, the functions g_{3}, g_{4} may take negative values. We can follow the reasoning in (a) to show that $g_{3}+g_{4}$ is $O(f)$. But there exist g_{3}, g_{4} s.t. $g_{3}+g_{4}$ is not $\Omega(f)$. For instance, let $g_{4}(x)=-g_{3}(x)$. Then, $\left(g_{3}+g_{4}\right)(x)=0$. Consequently $\forall c>0, \forall x>0$, we have that $\left|g_{3}(x)+g_{4}(x)\right|=0<c|f(x)|$ for any non-zero function $f: \mathbb{N} \rightarrow \mathbb{R}^{+}$. As a consequence $g_{3}+g_{4}$ is not $\Omega(f)$ and the statement is false.
(d) The statement is true and the proof is the same as in (b).

Problem 2.

(a) Pick

$$
f(n)= \begin{cases}\frac{1}{n} & n \text { even } \\ n^{n} & n \text { odd }\end{cases}
$$

Indeed, on the even numbers $f(n)$ is NOT $\Omega(n)$ and on the odd numbers $f(n)$ is not $o\left(e^{n}\right)$.
(b) (i) Recall that $n!=\Omega\left(a^{n}\right)$ for any fixed $a \in \mathbb{R}$. Let $a=2^{2013}$, then

$$
\left(\left\lceil\log _{2} n\right\rceil\right)!=\Omega\left(\left(2^{2013}\right)^{\log _{2} n}\right)=\Omega\left(n^{2013}\right) .
$$

(ii) Recall that $n!\leq n^{n}$. Hence,

$$
\left(\left\lceil\log _{2} n\right\rceil\right)!\leq\left(\log _{2} n\right)^{\log _{2} n}=2^{\log _{2} n \cdot \log _{2} \log _{2} n} \leq 2^{\left(\log _{2} n\right)^{2}}
$$

Since $\left(\log _{2} n\right)^{2}$ is $o(n)$, the result follows.

Problem 3. Take $\mathcal{C}=\left\{f^{(\alpha)}: \alpha \in(0,1)\right\}$, where $f^{(\alpha)}(n)=n(\log n)^{46+\alpha}$. The three required conditions are satisfied:
(i)-(ii) For any $\alpha, \beta \in[0,1]$ with $\alpha<\beta$, we have $f^{(\alpha)}=o\left(f^{(\beta)}\right)$ because

$$
\lim _{n \rightarrow \infty} \frac{f^{(\alpha)}(n)}{f^{(\beta)}(n)}=\lim _{n \rightarrow \infty} \frac{n \cdot(\log n)^{46+\alpha}}{n \cdot(\log n)^{46+\beta}}=\lim _{n \rightarrow \infty} \frac{1}{(\log n)^{\beta-\alpha}}=0
$$

As a result, condition (ii) is satisfied. Setting $\beta=1$, we have that $f^{(\alpha)}=o\left(n \cdot(\log n)^{47}\right)$ for any $\alpha \in(0,1)$. In addition, setting $\alpha=0$, we obtain that $f^{(\beta)}=\Omega\left(n \cdot(\log n)^{46}\right)$ for any $\beta \in(0,1)$. These two observations prove that condition (i) is fulfilled.
(iii) Consider the function $h:(0,1) \rightarrow \mathcal{C}$, defined as $h(\alpha)=f^{(\alpha)}$. This is clearly a bijection and therefore $|\mathcal{C}|=|(0,1)|$. To show that $|(0,1)|=|\mathbb{R}|$, it is enough to consider a function similar to that of the solution of Problem 4(b) in Homework 4. Indeed, let $g: \mathbb{R} \rightarrow(0,1)$ be defined as

$$
g(x)=\frac{\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}+1}{2}
$$

Then, g is bijective and thus $|(0,1)|=|\mathbb{R}|$.

Problem 4.

(i) False. Indeed, pick $a=b=c=1$ and $d=2$. Then, $1 \mid 1$ and $1 \mid 2$, but $2 \nmid 3$.
(ii) True. Indeed, if $a \mid b$, then $\exists k \in \mathbb{Z}: b=k a$. Analogously, if $b \mid c$, then $\exists l \in \mathbb{Z}: c=l b$. Consequently, $c=l b=l k a$, which means that $a \mid c$.
(iii) False. Indeed, pick $a=b=c=1$. Then, $1 \mid 1$ and $1 \mid 1$, but $2 \nmid 1$.
(iv) False. Indeed, pick $a=b=2, c=d=1$. Then, $2 \mid 2$ and $1 \mid 1$, but $2 \nmid 3$.
(v) True. Indeed, let $a, b \in \mathbb{N}$. Then, if $a \mid b$, then $\exists k \in \mathbb{N}: b=k a$. If $b \mid a$, then $\exists k^{\prime} \in \mathbb{N}: a=k^{\prime} b$. As a result, $b=k k^{\prime} b$, which implies that $k=k^{\prime}=1$. Therefore, $a=b$.
(vi) False. Indeed, pick $a=1$ and $b=-1$. Then, $a \mid b$ and $b \mid a$, but $a \neq b$.
(vii) False. Indeed, pick $a=2$, and $b=c=3$. Then, $2 \mid 6$, but $2 \nmid 3$.
(viii) False. Indeed, pick $a=4, b=2$, and $c=6$. Then, $4 \mid 12$, but $4 \nmid 2$ and $4 \nmid 6$.
(ix) True. Indeed, if $a \mid c$, then $\exists k \in \mathbb{Z}: c=k a$. If $b \mid c$, then $\exists l \in \mathbb{Z}: c=l b$. Consequently, $c^{2}=k l a b$, which implies that $a b \mid c^{2}$.
(x) True. Indeed, by the existence of the unique factorization, write $b=p_{1}^{k_{1}} \cdot \ldots \cdot p_{n}^{k_{n}}$ and $c=p_{1}^{j_{1}} \cdot \ldots \cdot p_{n}^{j_{n}}$, where one of k_{i} and j_{i} can be zero, but not both for all $1 \leq i \leq n$. Then $b c=p_{1}^{k_{1}+j_{1}} \cdot \ldots \cdot p_{n}^{k_{n}+j_{n}}$. Since $a \mid b c$ and a is a positive prime, there must be $i \in\{1, \ldots, n\}$ s.t. $a=p_{i}$. Either k_{i} or j_{i} is positive, so either $a \mid p_{i}^{k_{i}}$ or $a \mid p_{i}^{j_{i}}$, which means that either $a \mid b$ or $a \mid c$.

Problem 5.

(i) If a and p are not coprime, then it must be that $p \mid a$. In this case, $a \equiv 0(\bmod p)$ and $a^{p} \equiv 0(\bmod p)$. Consequently, $a^{p} \equiv a(\bmod p)$.
(ii) Consider now a such that $\operatorname{gcd}(a, p)=1$. Then $p \nmid a$ and for any $k \in\{1, \ldots, p-1\}$ also $p \nmid a k$. Using the converse of the statement Problem 4(x) of the current problem set, we obtain $a k \not \equiv 0(\bmod p)$ and thus $\mathcal{A} \subseteq\{1, \ldots, p-1\}$ (we used the fact that \mathcal{A} is a set of reminders).
To prove that $\mathcal{A} \supseteq\{1, \ldots, p-1\}$, we just need to show that for any $k, k^{\prime} \in\{1, \ldots, p-1\}$ the corresponding remainders are different, i.e., $a k \not \equiv a k^{\prime}(\bmod p)$. This is equivalent to $a\left(k-k^{\prime}\right) \not \equiv 0(\bmod p)$.
By hypothesis $p \nmid a$ and, in addition, $p \nmid\left(k-k^{\prime}\right)$ because $-p<k-k^{\prime}<p$. Using again the converse of the statement of Problem 4(x), we obtain that $p \nmid a\left(k-k^{\prime}\right)$ and thus $\mathcal{A}=\{1, \ldots, p-1\}$.
(iii) By the properties of modular arithmetic, we have the following sequence of equivalences modulo p :

$$
(p-1)!a^{p-1} \equiv \prod_{k=1}^{p-1} k a \equiv \prod_{k=1}^{p-1}(k a \bmod p) \equiv \prod_{x \in \mathcal{A}} x \equiv(p-1)!\quad(\bmod p)
$$

where the third equivalence follows from point (ii).
Thus, we showed that for any a coprime with p, we have

$$
(p-1)!a^{p-1} \equiv(p-1)!(\bmod p)
$$

Therefore, $p \mid(p-1)!\left(a^{p-1}-1\right)$. Since p is prime and cannot divide any $k<p$, again using the statement of Problem 4(x), we obtain that $p \mid\left(a^{p-1}-1\right)$, which implies that $p \mid a\left(a^{p-1}-1\right)$. This last expression is equivalent to $a^{p} \equiv a(\bmod p)$.

