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Problem 1.

(a) The functions gi : N → R+ (i = 1, 2) are Θ(f) for some function f . So there exist ci,j > 0
and ki > 0 (j = 1, 2) s.t.

ci,1|f(x)| ≤ |gi(x)| ≤ ci,2|f(x)| ∀x > ki.

Set k = max
i
ki. Then, for all x > k,

c1,1|f(x)| ≤ |g1(x)| ≤ c1,2|f(x)| and c2,1|f(x)| ≤ |g2(x)| ≤ c2,2|f(x)|.

Consequently,

(c1,1 + c2,1)|f(x)| ≤ |g1(x)|+ |g2(x)| ≤ (c1,2 + c2,2)|f(x)|.

The triangle inequality tells us that |g1(x)+g2(x)| ≤ |g1(x)|+|g2(x)|. Defining c2 = c1,2+c2,2,
we have that |g1(x) + g2(x)| ≤ c2|f(x)|. Therefore, we can conclude that g1 + g2 is O(f).

Since gi : N→ R+, |g1(x) + g2(x)| = |g1(x)|+ |g2(x)| = g1(x) + g2(x) and we obtain that

c1|f(x)| ≤ |g1(x) + g2(x)|,

where c1 = c1,1 + c2,1. As a result, g1 + g2 is Ω(f). Since g1 + g2 is also O(f), by definition
we find that g1 + g2 is Θ(f).

(b) We use the same notation as in (a) and we obtain that for all x > k,

(c1,1 · c2,1)f2(x) ≤ |g1(x)| · |g2(x)| ≤ (c1,2 · c2,2)f2(x).

Let cj = c1,j · c2,j . As |g1(x)g2(x)| = |g1(x)||g2(x)|,

c1f
2(x) ≤ |(g1 · g2)(x)| ≤ c2f2(x), ∀x > k,

which implies that g1 · g2 is Θ(f2).

(c) In this case, the functions g3, g4 may take negative values. We can follow the reasoning in
(a) to show that g3 + g4 is O(f). But there exist g3, g4 s.t. g3 + g4 is not Ω(f). For instance,
let g4(x) = −g3(x). Then, (g3 + g4)(x) = 0. Consequently ∀c > 0, ∀x > 0, we have that
|g3(x) + g4(x)| = 0 < c|f(x)| for any non-zero function f : N → R+. As a consequence
g3 + g4 is not Ω(f) and the statement is false.

(d) The statement is true and the proof is the same as in (b).

Problem 2.

(a) Pick

f(n) =


1

n
n even

nn n odd

Indeed, on the even numbers f(n) is NOT Ω(n) and on the odd numbers f(n) is not o(en).
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(b) (i) Recall that n! = Ω(an) for any fixed a ∈ R. Let a = 22013, then

(dlog2 ne)! = Ω((22013)log2 n) = Ω(n2013).

(ii) Recall that n! ≤ nn. Hence,

(dlog2 ne)! ≤ (log2 n)log2 n = 2log2 n·log2 log2 n ≤ 2(log2 n)
2

.

Since (log2 n)2 is o(n), the result follows.

Problem 3. Take C = {f (α) : α ∈ (0, 1)}, where f (α)(n) = n(log n)46+α. The three required
conditions are satisfied:

(i)-(ii) For any α, β ∈ [0, 1] with α < β, we have f (α) = o(f (β)) because

lim
n→∞

f (α)(n)

f (β)(n)
= lim
n→∞

n · (log n)46+α

n · (log n)46+β
= lim
n→∞

1

(log n)β−α
= 0.

As a result, condition (ii) is satisfied. Setting β = 1, we have that f (α) = o(n · (log n)47)
for any α ∈ (0, 1). In addition, setting α = 0, we obtain that f (β) = Ω(n · (log n)46) for
any β ∈ (0, 1). These two observations prove that condition (i) is fulfilled.

(iii) Consider the function h : (0, 1) → C, defined as h(α) = f (α). This is clearly a bijection
and therefore |C| = |(0, 1)|. To show that |(0, 1)| = |R|, it is enough to consider a function
similar to that of the solution of Problem 4(b) in Homework 4. Indeed, let g : R → (0, 1)
be defined as

g(x) =

ex − e−x

ex + e−x
+ 1

2
.

Then, g is bijective and thus |(0, 1)| = |R|.

Problem 4.

(i) False. Indeed, pick a = b = c = 1 and d = 2. Then, 1 | 1 and 1 | 2, but 2 - 3.

(ii) True. Indeed, if a | b, then ∃k ∈ Z : b = ka. Analogously, if b | c, then ∃l ∈ Z : c = lb.
Consequently, c = lb = lka, which means that a | c.

(iii) False. Indeed, pick a = b = c = 1. Then, 1 | 1 and 1 | 1, but 2 - 1.

(iv) False. Indeed, pick a = b = 2, c = d = 1. Then, 2 | 2 and 1 | 1, but 2 - 3.

(v) True. Indeed, let a, b ∈ N. Then, if a | b, then ∃k ∈ N : b = ka. If b | a, then
∃k′ ∈ N : a = k′b. As a result, b = kk′b, which implies that k = k′ = 1. Therefore, a = b.

(vi) False. Indeed, pick a = 1 and b = −1. Then, a | b and b | a, but a 6= b.

(vii) False. Indeed, pick a = 2, and b = c = 3. Then, 2 | 6, but 2 - 3.

(viii) False. Indeed, pick a = 4, b = 2, and c = 6. Then, 4 | 12, but 4 - 2 and 4 - 6.

(ix) True. Indeed, if a | c, then ∃k ∈ Z : c = ka. If b | c, then ∃l ∈ Z : c = lb. Consequently,
c2 = klab, which implies that ab | c2.
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(x) True. Indeed, by the existence of the unique factorization, write b = pk11 · . . . · pknn and

c = pj11 · . . . · pjnn , where one of ki and ji can be zero, but not both for all 1 ≤ i ≤ n. Then

bc = pk1+j11 · . . . ·pkn+jnn . Since a | bc and a is a positive prime, there must be i ∈ {1, . . . , n}
s.t. a = pi. Either ki or ji is positive, so either a | pkii or a | pjii , which means that either
a | b or a | c.

Problem 5.

(i) If a and p are not coprime, then it must be that p | a. In this case, a ≡ 0 (mod p) and
ap ≡ 0 (mod p). Consequently, ap ≡ a (mod p).

(ii) Consider now a such that gcd(a, p) = 1. Then p - a and for any k ∈ {1, . . . , p − 1} also
p - ak. Using the converse of the statement Problem 4(x) of the current problem set, we
obtain ak 6≡ 0 (mod p) and thus A ⊆ {1, . . . , p − 1} (we used the fact that A is a set of
reminders).

To prove that A ⊇ {1, . . . , p− 1}, we just need to show that for any k, k′ ∈ {1, . . . , p− 1}
the corresponding remainders are different, i.e., ak 6≡ ak′ (mod p). This is equivalent to
a(k − k′) 6≡ 0 (mod p).

By hypothesis p - a and, in addition, p - (k − k′) because −p < k − k′ < p. Using again
the converse of the statement of Problem 4(x), we obtain that p - a(k − k′) and thus
A = {1, . . . , p− 1}.

(iii) By the properties of modular arithmetic, we have the following sequence of equivalences
modulo p:

(p− 1)!ap−1 ≡
p−1∏
k=1

ka ≡
p−1∏
k=1

(kamod p) ≡
∏
x∈A

x ≡ (p− 1)! (mod p),

where the third equivalence follows from point (ii).

Thus, we showed that for any a coprime with p, we have

(p− 1)!ap−1 ≡ (p− 1)! (mod p).

Therefore, p | (p − 1)!(ap−1 − 1). Since p is prime and cannot divide any k < p, again
using the statement of Problem 4(x), we obtain that p | (ap−1 − 1), which implies that
p | a(ap−1 − 1). This last expression is equivalent to ap ≡ a (mod p).
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