Problem Set 7

Date: 1.11.2013

Not graded

Problem 1.

- a) Recall that n! is defined as the product of all natural numbers between 1 and n, i.e., $n! = n \cdot (n-1) \cdot \ldots \cdot 2 \cdot 1$. In how many 0's does 104! end (in the usual, decimal notation)?
- b) Compute the remainder of the division of $25^{3702298}$ by 53.
- c) Prove or disprove: A positive integer congruent to 1 modulo 4 cannot have a prime factor congruent to 3 modulo 4.
- d) Prove or disprove: If p and q are primes greater than 2, then $p \cdot q + 1$ is never prime.
- e) Prove or disprove: There exist two consecutives primes, each of them being greater than 2.

Problem 2. Prove that $\sum_{n=1}^{+\infty} \frac{1}{n} = +\infty$.

Hint 1: Write n as $2^k + j$ where $k \in \mathbb{N}$ and $j \in \{0, \ldots, 2^k - 1\}$. Why is this representation unique?

Hint 2: Observe that $2^k + j \le 2 \cdot 2^k$ for any $k \in \mathbb{N}$ and any $j \in \{0, \dots, 2^k - 1\}$.

Problem 3. In this problem we will show, by steps, that also $\sum_{\substack{p \ge 1 \\ p \text{ prime}}} \frac{1}{p}$ diverges.

Let p_k be the k^{th} largest prime, and let the set \mathcal{A}_n be defined by

$$\mathcal{A}_n = \{ p_1^{i_1} p_2^{i_2} \cdots p_n^{i_n} : 0 \le i_1, i_2, \dots, i_n \le n \}.$$

It is very important that you work the details of each step!

a) Convince yourself, using the unique factorization theorem, that

$$\left(1 + \frac{1}{p_1} + \dots + \frac{1}{p_1^n}\right) \left(1 + \frac{1}{p_2} + \dots + \frac{1}{p_2^n}\right) \dots \left(1 + \frac{1}{p_n} + \dots + \frac{1}{p_n^n}\right) = \sum_{m \in \mathcal{A}_n} \frac{1}{m}.$$
 (1)

b) Use the sum of the geometric series to show that the left hand side of the equation above is upper bounded by

$$\left(1+\frac{1}{p_1-1}\right)\left(1+\frac{1}{p_2-1}\right) \dots \left(1+\frac{1}{p_n-1}\right).$$

c) Take the natural logarithm on both sides of (1) and, using b), show that

$$\sum_{j=1}^n \frac{1}{p_j - 1} \ge \ln \sum_{m \in \mathcal{A}_n} \frac{1}{m}.$$

d) After proving that $\{1, \ldots, n\} \subseteq \mathcal{A}_n$, use it to show that

$$1 + \sum_{j=1}^{n-1} \frac{1}{p_j} \ge \ln \sum_{m=1}^n \frac{1}{m}.$$
 (2)

e) Conclude, using the statement of the previous problem, that $\sum_{j=1}^{n} \frac{1}{p_j}$ diverges when $n \to \infty$.

Problem 4. Use mathematical induction (in its original or strong form) to show the following:

a) For any n > 1, given the sets A_1, \ldots, A_n ,

$$A_1 \cap (A_2 \cup \ldots \cup A_n) = (A_1 \cap A_2) \cup (A_1 \cap A_3) \cup \ldots \cup (A_1 \cap A_n).$$

- b) For all n > 0, it holds that $13 \mid 17^n 4^n$.
- c) The Swiss National Bank goes insane and decides that from now on it will only mint coins of 5 francs and 9 francs. Show that you can pay any amount of francs strictly greater than 31 using such coins.

d) For all
$$n > 0$$
, it holds that $\sum_{i=0}^{n} (-2)^{i} = \frac{(-1)^{n} \cdot 2^{n+1} + 1}{3}$.

Problem 5. Find the error in the proof of the following "theorem".

Theorem. Let \mathcal{A} be any set of *n* girls. Then, all the girls in \mathcal{A} have the same hair color.

Proof. By induction.

Base step, n = 1: As \mathcal{A} contains exactly one girl, the statement is trivially true.

Induction step: Assume that in any set of n girls, all elements have the same color.

Let us consider a set \mathcal{A} of n + 1 girls and let us remove a girl g from it, obtaining a set \mathcal{A}' consisting of n girls. Then by the induction hypothesis, all the girls in \mathcal{A}' have the same hair color. Now, let us put back the girl g, and instead remove another random girl, obtaining a set \mathcal{A}'' . As \mathcal{A}'' still consists of n girls, by the induction hypothesis, we can conclude that the girl g (which is inside \mathcal{A}'') has the same hair color as the others. Thus \mathcal{A} consists of n + 1 girls with the same hair color.