Problem Set 3

Date: 4.10.2013
Not graded

In the problems that follow we denote by \mathbb{N} the set of natural numbers including 0 .

Problem 1. Prove or disprove:
a) $A \backslash(B \cap C)=(A \backslash B) \cup(A \backslash C)$ by logical equivalence.
b) $A \oplus(B \oplus C)=(A \oplus B) \oplus C$ by Venn diagram.

Problem 2. Let A and B be disjoint sets such that $|A|=n$ and $|B|=m$. Find the cardinalities of the following sets:
a) $A \times B$
b) $\mathcal{P}(B)$
c) $\mathcal{P}(\mathcal{P}(A) \times B)$
d) $\mathcal{P}(A \cup B)$
e) $A \times \mathcal{P}(\mathcal{P}(A \cap B))$
f) $(A \backslash B) \times(B \backslash A)$

Problem 3. Determine whether the given set is the power set of some set. If the set is a power set, give the set of which it is a power set.
a) $\{\varnothing,\{\varnothing\},\{a\},\{\{a\}\},\{\{\{a\}\}\},\{\varnothing, a\},\{\varnothing,\{a\}\},\{\varnothing,\{\{a\}\}\},\{a,\{a\}\},\{a,\{\{a\}\}\},\{\{a\},\{\{a\}\}\}$, $\{\varnothing, a,\{a\}\},\{\varnothing, a,\{\{a\}\}\},\{\varnothing,\{a\},\{\{a\}\}\},\{a,\{a\},\{\{a\}\}\},\{\varnothing, a,\{a\},\{\{a\}\}\}$.
b) $\{\varnothing,\{a\}\}$.
c) $\{\varnothing,\{a\},\{\varnothing, a\}\}$.
d) $\{\varnothing,\{a\},\{\varnothing\},\{a, \varnothing\}\}$.
e) $\{\varnothing,\{a, \varnothing\}\}$.

Problem 4. At a dinner there are 35 people. You know that 18 of them are mathematicians, 13 of them are poets and 14 of them are painters. All the 35 people fit in at least one of these categories. In addition, there are 7 people who are poets and painters and all the people who are mathematicians and painters are also poets. Find the number of people who are mathematicians and poets.

Problem 5. Determine whether the rule describes a function with the given domain and codomain.
a) $f: \mathbb{N} \rightarrow \mathbb{N}$ where $f(n)=\sqrt{n}$.
b) $h: \mathbb{R} \rightarrow \mathbb{R}$ where $h(x)=\sqrt{x}$.
c) $g: \mathbb{N} \rightarrow \mathbb{N}$ where $g(n)=$ any integer $>n$.
d) $F: \mathbb{R} \rightarrow \mathbb{R}$ where $F(x)=\frac{1}{x-5}$.
e) $F: \mathbb{Z} \rightarrow \mathbb{R}$ where $F(x)=\frac{1}{x^{2}-5}$.
f) $F: \mathbb{Z} \rightarrow \mathbb{Z}$ where $F(x)=\frac{1}{x^{2}-5}$.
g) $G: \mathbb{R} \rightarrow \mathbb{R}$ where $G(x)= \begin{cases}x+2 & \text { if } x \geq 0 \\ x-1 & \text { if } x \leq 4 \text {. }\end{cases}$
h) $f: \mathbb{R} \rightarrow \mathbb{R}$ where $f(x)= \begin{cases}x^{2} & \text { if } x \leq 2 \\ x-1 & \text { if } x \geq 4 .\end{cases}$
i) $G: \mathbb{Q} \rightarrow \mathbb{Q}$ where $G(p / q)=q$.

Problem 6. Find if the following functions are injective, surjective, bijective or none of the previous:
a) $f: \mathbb{N} \rightarrow \mathbb{N}$ where $f(n)=4 n+1$.
b) $f: \mathbb{N} \rightarrow \mathbb{E}$ where $f(n)=2 n$ and \mathbb{E} is the set of nonnegative even numbers.
c) $f: \mathbb{R} \rightarrow(-1,1)$ where $f(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$.
d) $f: \mathbb{R} \rightarrow\{z \in \mathbb{C}:|z|=1\}$ where $f(x)=e^{i x}$.
e) $f: \mathbb{Z} \rightarrow \mathbb{R}$ where $f(x)=\lfloor x / 2\rfloor$.

Problem 7. Suppose $g: A \rightarrow B$ and $f: B \rightarrow C$ where $A=\{1,2,3,4\}, B=\{a, b, c\}, C=$ $\{2,8,10\}$, and g and f are defined by $g=\{(1, b),(2, a),(3, b),(4, a)\}$ and $f=\{(a, 8),(b, 10),(c, 2)\}$.

1. Find $f \circ g$.
2. Find f^{-1}.
3. Find $f \circ f^{-1}$.
4. Explain why g^{-1} is not a function.
