Solution to Problem Set 13

Date: 13.12.2013
Not graded

Problem 1.

i) The complement of A occurs when 3 Heads or 3 Tails are obtained, which happens with probability $\frac{1}{4}$. Hence, $\mathbb{P}(A)=1-\frac{1}{4}=\frac{3}{4}$. The event B occurs when exactly 1 Heads is obtained or no Heads are obtained. Then, $\mathbb{P}(B)=\frac{3}{8}+\frac{1}{8}=\frac{1}{2}$. The event $A \cap B$ occurs when exactly 1 Heads is obtained. Then, $\mathbb{P}(A \cap B)=\frac{1}{8}=\mathbb{P}(A) \cdot \mathbb{P}(B)$. Hence, the events A and B are independent.
ii) Let n be the number of times the die is thrown and let $p(n)$ be the probability that we obtain at least a 6 . Then, $p(n)=1-\left(\frac{5}{6}\right)^{n}$. Consequently, after some calculations, we have that

$$
p(n)>\frac{99}{100} \Longleftrightarrow n>\frac{2}{\log _{10} 6-\log _{10} 5} .
$$

Since n has to be an integer, we need that $n \geq 26$.
iii) Let A be the event that the red die is even, B the event that the red die is odd, and C the event that the sum is 6 . Observe that if the red die is 6 , then no value of the green die can make the sum equal to 6 . In all the other cases, there is a unique value of the green die which makes the sum 6 . Therefore,

$$
\begin{aligned}
& \mathbb{P}(C \mid A)=\frac{\mathbb{P}(C \cap A)}{\mathbb{P}(A)}=\frac{\frac{2}{36}}{\frac{1}{2}}=\frac{1}{9}, \\
& \mathbb{P}(C \mid B)=\frac{\mathbb{P}(C \cap B)}{\mathbb{P}(B)}=\frac{\frac{3}{36}}{\frac{1}{2}}=\frac{1}{6} .
\end{aligned}
$$

Problem 2.

i. The equiprobable disjoint events are $A_{1}, A_{2}, A_{3}, A_{123}$, where the index shows which lights are on in that event. Since they are equiprobable, each has probability $1 / 4$. Consider one of the lights, without loss of generality let it be the first light. There are two disjoint events in which this light is on, A_{1} and A_{123}, and so the probability of the first light being on is $1 / 2$. Obviously, since the lights are symmetric under renaming we can say the same thing about the others.
ii. Consider without loss of generality the first two lights. Let X_{i} be a random variable that is 1 when light i is on and 0 otherwise. Then

$$
\begin{aligned}
& \mathbb{P}\left(X_{1}=0 \wedge X_{2}=0\right)=\mathbb{P}\left(A_{3}\right)=1 / 4=\mathbb{P}\left(X_{1}=0\right) \mathbb{P}\left(X_{2}=0\right), \\
& \mathbb{P}\left(X_{1}=0 \wedge X_{2}=1\right)=\mathbb{P}\left(A_{2}\right)=1 / 4=\mathbb{P}\left(X_{1}=0\right) \mathbb{P}\left(X_{2}=1\right), \\
& \mathbb{P}\left(X_{1}=1 \wedge X_{2}=0\right)=\mathbb{P}\left(A_{1}\right)=1 / 4=\mathbb{P}\left(X_{1}=1\right) \mathbb{P}\left(X_{2}=0\right), \\
& \mathbb{P}\left(X_{1}=1 \wedge X_{2}=1\right)=\mathbb{P}\left(A_{123}\right)=1 / 4=\mathbb{P}\left(X_{1}=1\right) \mathbb{P}\left(X_{2}=1\right),
\end{aligned}
$$

which means that X_{1} and X_{2} are independent.
iii. The three lights are not independent, since

$$
\mathbb{P}\left(X_{1}=1 \cap X_{2}=1 \cap X_{3}=1\right)=\frac{1}{4} \neq \mathbb{P}\left(X_{1}=1\right) \cdot \mathbb{P}\left(X_{2}=1\right) \cdot \mathbb{P}\left(X_{3}=1\right)=\frac{1}{8}
$$

This exercise shows that there can be events that are pairwise independent but still not independent!

Problem 3.

a) You walk away broke if you lose exactly 8 times in a row. This happens with probability $p_{\text {lose }}=2^{-8}$, since the coin flips are independent. Note that whenever you win (w.p. $1-p_{\text {lose }}$), you win exactly $1 \$$, so the expected value won is $p_{\text {lose }} \cdot(-255)+\left(1-p_{\text {lose }}\right) \cdot 1=0$.
b) If you have an infinite supply of money, it is not possible to become broke, so $p_{\text {lose }}=0$ and the expected value won is $1 \$$!

Problem 4.

i) The probability of picking the very easy question is clearly $\frac{1}{3}$.
ii) Suppose that the very easy question was picked initially. Then, it is in the student's box and this happens with probability $\frac{1}{3}$. Otherwise, if a very hard question was picked initially, then the easy question is in the remaining box, and this happens with probability $\frac{2}{3}$. Hence, you should exchange the original box, because the probability that the very easy question is in the unpicked box is equal to $\frac{2}{3}$. The reason why the probabilities change is that revealing a box with a very hard question gives the student some extra information about the other boxes.
Another way to see the same result is the following. Suppose without loss of generality that box 1 is chosen at the beginning. Then, the ETA opens box 2 . Denote by A_{i} the event that the very easy question is in box i, with $i \in\{1,2,3\}$, and by B the event that the ETA opens box 2 . The probability that the very easy question is in the unpicked box can be computed as follows,

$$
\mathbb{P}\left(A_{3} \mid B\right)=\frac{\mathbb{P}\left(B \mid A_{3}\right) \mathbb{P}\left(A_{3}\right)}{\mathbb{P}\left(B \mid A_{3}\right) \mathbb{P}\left(A_{3}\right)+\mathbb{P}\left(B \mid A_{1}\right) \mathbb{P}\left(A_{1}\right)+\mathbb{P}\left(B \mid A_{2}\right) \mathbb{P}\left(A_{2}\right)}
$$

Clearly, $\mathbb{P}\left(A_{1}\right)=\mathbb{P}\left(A_{2}\right)=\mathbb{P}\left(A_{3}\right)=\frac{1}{3}$. Since box 1 is chosen at the beginning, if the very easy question is in box 3 , the ETA must open box 2 . Then, $\mathbb{P}\left(B \mid A_{3}\right)=1$. If the very easy question is in box 1 , the ETA can open either box 2 or box 3 . Hence, $\mathbb{P}\left(B \mid A_{2}\right)=\frac{1}{2}$. If the very easy question were in box 2 , then the ETA would not have opened that box! Therefore, $\mathbb{P}\left(B \mid A_{2}\right)=0$. As a result, we obtain $\mathbb{P}\left(A_{3} \mid B\right)=\frac{2}{3}$.
This problem is a form of the well-known Monty Hall problem.

Problem 5.

a) For each $j=1, \ldots, K$, with probability p the person chosen votes yes and with probability $1-p$ she votes no. Thus $\mathbb{P}\left(A_{j}=1\right)=p$ and $\mathbb{P}\left(A_{j}=0\right)=1-p$. The expectation is given by $\mathbb{E}\left(A_{j}\right)=1 \cdot p+0 \cdot(1-p)=p$. The variance is given by

$$
\operatorname{Var}\left(A_{j}\right)=\mathbb{E}\left(A_{j}^{2}\right)-\left(\mathbb{E}\left(A_{j}\right)\right)^{2}=p-p^{2}=p(1-p)
$$

where we used the fact $A_{j}^{2}=A_{j}$.
b) The expectation of X is given by $\mathbb{E}(X)=\frac{1}{K} \sum_{j=1}^{K} \mathbb{E}\left(A_{j}\right)=p$. Since the A_{j} are independent, the variance is also additive so we obtain

$$
\operatorname{Var}(X)=\frac{1}{K^{2}} \operatorname{Var}\left(A_{1}+\ldots+A_{K}\right)=\frac{1}{K^{2}}\left(\operatorname{Var}\left(A_{1}\right)+\ldots+\operatorname{Var}\left(A_{K}\right)\right)=\frac{p(1-p)}{K}
$$

c) We apply the Chebyshev inequality for X which reads for any $u \in \mathbb{R}_{>0}$

$$
\mathbb{P}(|X-p| \geq u \sigma) \leq \frac{1}{u^{2}}
$$

where σ is the standard deviation of X, defined by $\sigma=\sqrt{\operatorname{Var}(X)}=\sqrt{\frac{p(1-p)}{K}}$. We wish to have ϵ instead of $u \sigma$ so we use $u=\epsilon / \sigma$ and obtain

$$
\mathbb{P}(|X-p| \geq \epsilon) \leq \frac{p(1-p)}{K \epsilon^{2}}
$$

Setting $p=1 / 2, K=1000$ and $\epsilon=0.05$, we get $\mathbb{P}(|X-p| \geq \epsilon) \leq \frac{1}{10}$. Note that this is only a bound! The actual value of the error probability is in fact somewhat smaller and can be approximated better using the Central Limit Theorem.

Problem 6.

a) The event A corresponds to the scrutinies in which the two candidates at no point in time have the same number of votes. The event B corresponds to the scrutinies which are not in A and s.t. the first vote is for Alice. The event C corresponds to the scrutinies which are not in A and s.t. the first vote is for Bob. Then, it is clear that the sets A, B, and C are disjoint and that their union is Ω.
b) The cardinality of Ω is given by the number of combination of a votes from the total of N votes (without replacement). In formulas,

$$
|\Omega|=\binom{a+b}{a}
$$

c) Consider $f: B \rightarrow C$ defined as follows. Let $x=\left(x_{1}, \cdots, x_{N}\right) \in B$ and $y=\left(y_{1}, \cdots, y_{N}\right) \in C$ s.t. $y=f(x)$. Denote by k the smallest integer s.t. $\sum_{i=0}^{k} x_{i}=0$. Notice that such a k must exist because $x \in B$. Then, take $y_{i}=-x_{i}$ for $i \leq k$ and $y_{i}=x_{i}$, otherwise. In words, the function f changes the first k votes, k being the point in which there is the first tie between Alice and Bob. It is easy to check that f is a bijection.
d) The cardinality of C is given by the number of combinations of a elements from a class of $a+b-1$ elements without replacement. Indeed, the first vote is fixed and it is for Bob, so we need to count in how many ways we can extract a votes for Alice from a total of $a+b-1$ votes (without replacement). Therefore,

$$
|C|=\binom{a+b-1}{a}
$$

e) Remember that the elements of Ω are equally likely and that the scrutinies in which Alice has always strictly more preferences than Bob are the ones in A. Then, $p=\frac{|A|}{|\Omega|}$.

From point a), we have that A, B, and C form a partition of Ω. Then, $|\Omega|=|A|+|B|+|C|$.
Using the fact that $|B|=|C|=\binom{a+b-1}{a}$, we obtain that

$$
p=\frac{|A|}{|\Omega|}=\frac{|\Omega|-|B|-|C|}{|\Omega|}=1-2 \frac{\binom{a+b-1}{a}}{\binom{a+b}{a}}=1-\frac{2 b}{a+b}=\frac{a-b}{a+b} .
$$

