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Problem 1.

a) It is possible to write F(x ZZ o7 where i are non-zero for k = 1,...,5.
k=1j=1

Indeed, Bix = (k — ) F(x)|,=1 # 0. It was seen in class that

1 (1/k)? (n+ji-1\ 1
(k—ax)y  (1- %) Z(j—l)k"ﬂ‘”

n=0

Putting everything together, we get

S . . n+j— .

which is the generating function of the sequence a,, = kz: z; Bk,g( y ) g This
1j

sequence is O(1) because of the term corresponding to kK = j = 1. All other terms are

n+j—
ji—1
slower than the exponential £”7 in the denominator.

O(n/=127m). Note that the binomial coefficient ( ) is O(n/~1), which grows much

b) Multiplying F(z) with x corresponds to a shift of one position to the right, which does
not affect the growth of the sequence, i.e., the sequence with generating function G(z) is

b — {an_l, when n > 0

. Therefore, the answer is also ©(1).
0, when n =0

¢) We have
H(z) = _ -z _ ﬁ _1
AU = UE

In a similar manner to point a), we obtain

Note that the only difference is that now k starts at 2. The term that increases fastest is the
one corresponding to k = j =2, i.e, (n+ 1)2_("+2). Using the fact that 72 2 is non-zero, we
conclude that the sequence is ©(n27").

Problem 2. The problem is equivalent to finding the coefficient of ™ in the formal series

1 1

Flz)=(l+4z+2°+.. )(1+z+2°+.. )1+ +a'+..) = A—aZi—a2



By using partial fraction expansion, there are numbers «, 3,7, such that

«@ B y é
F(x)zl—x+(1—x)2+(1— )3+1+x
a(l—2)*(1+z) + (1 —2? )—l—’y(l—i—a:)—i—é(l—x)

(1—xz)3(1+x)

We identify the polynomial in the numerator with 1 and we obtain the system of equations

at+pf4+y+d=1
—a+v—-30=0
—a—f+36=0
a—90=0

whose resolution (by elimination, for example) gives « =6 =1/8, §=1/4 and v =1/2.
We retrieve

1/8 1/4 1/2 1/8

F@) =15+ MR
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from where we can read off each coefficient, so the answer is

1<n+2>"ﬁn+3xn+1W'

1 1
=((-)"+1D)+-(n+1

Do not forget to always check your result by computing a,, for a couple of indices by hand!

Problem 3.

i) The probability that a fair coin lands Heads in a single trial is % As the 2n trials are

independent and in each of them the probability of obtaining Heads is 5, the probability of
having 2n Heads is Jan-
Another way to see the result is the following. There are 22" possible outcomes which are

1
all equiprobable. Only 1 consists of 2n Heads. Hence, the required probability is Jon
2
ii) There are 22" possible outcomes which are all equiprobable. In ( 271) of them, we obtain 2

(2)

Tails. Hence, the required probability is on

iii) Generalizing the argument above, we have that the probability of observing k Tails is given

’ )

p(k) =~




p(k+1)
p(k)

We should bet on k s.t. p(k) attains its maximum at k. Let us consider the ratio

After some simplifications, we obtain that

plk+1) 2n—k 1
(k) Kyl o s

Recalling that & and n are integers, we deduce that p(k + 1) > p(k) for k < n and that
p(k+ 1) < p(k) for k > n. Hence, p(k) attains its maximum when k = n and you should
bet on n Tails.

iv) The probability of getting Heads is 1 — % = % As the 2n trials are independent and in

each of them the probability of obtaining Heads is %, the probability of having 2n Heads is

2\ 2n 2
(g) . In addition, in ( 2n> cases, we obtain 2 Tails and each of these cases occurs with

2\ 2n—2 1\2
probability (5) . (5) . Hence, the probability of getting 2 Tails out of 2n trials is
-2 ()
32n

Problem 4. Let us denote by A the event that urn 1 is chosen and by B the event that the
token is blue. Then, we are required to compute the conditional probability P(A|B). By Bayes
theorem we obtain that

P(B|A)P(A)
(B|A)P(A) +P(B|A)P(A)’

P(AIB) = =

where A denotes the complementary event to A4, i.e., the event that urn 2 is chosen. Now, all the
1 — 2 1
probabilities in the previous formula can be easily computed: P(A4) = 3’ P(A) = 3 P(B|A) = 5
1

— 4
and P(B|A) = = Hence, we conclude that P(A|B) = g

Problem 5.
al) The probability of getting a sum equal to 2 is p1q;. This probability is also equal to 1—11,
since the sum of the outcomes is uniform in {2,3,---,12}. Therefore,
1
=—. 1
piqa 11 (1)

a2) The probability of getting a sum equal to 12 is pggs. This probability is also equal to 1—11,

since the sum of the outcomes is uniform in {2,3,---,12}. Therefore,
1
Pegs = 11
a3)
a+b

> Vab <= a+b > 2Vab < (a +b)? > 4ab,

where the last <= is allowed because a and b are non-negative and, therefore, their sum
is non-negative. In addition,

(a+b)? —4ab = (a —b)* >0,

which is enough to prove the desired inequality.



ad)

Let s be the probability that the sum of the outcomes of the two dice is 7. Then,

L (pr | ps
$ = P1ge + P2qs + P3qa + Paqs + P5q2 + Peq1 > P1ge + Deq1 = i <pe + o)

where the last equality comes from points al) and a2). Using point a3), we also obtain

that
be D1 \/ Pe D1

Consequently, s > % In addition, s must be equal to 1—11, because the sum of the outcomes
is uniform in {2,3,---,12}, from which we obtain a contradiction.

(Bonus) The generating function of the sum of independent random variables is the product
of the individual generating functions, i.e., s(z) = p(x)q(x). In addition, using the fact

that the sum of outcomes is uniform in {2,3,---,12}, we obtain that
11
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The polynomial has no real roots: the fact that = 1 is not a root can be easily

checked by euclidean division; if > 1, then ' —1 > 2 — 1 and the inequality is reversed
for x < 1. On the other hand, p(z) is equal to x times a polynomial of odd degree and the
same reasoning applies to g(x). Hence, s(x) = p(x)q(x) has two roots in 0 plus two other
real roots, which is a contradiction.



