Solution to Graded Problem Set 12

Date: 6.12.2013
Due date: 13.12.2013, noon

Problem 1.

a) It is possible to write $F(x)=\sum_{k=1}^{5} \sum_{j=1}^{k} \frac{\beta_{k, j}}{(k-x)^{j}}$, where $\beta_{k, k}$ are non-zero for $k=1, \ldots, 5$. Indeed, $\beta_{k, k}=\left.(k-x)^{k} F(x)\right|_{x=k} \neq 0$. It was seen in class that

$$
\frac{1}{(k-x)^{j}}=\frac{(1 / k)^{j}}{\left(1-\frac{x}{k}\right)^{j}}=\sum_{n=0}^{\infty}\binom{n+j-1}{j-1} \frac{1}{k^{n+j}} x^{n} .
$$

Putting everything together, we get

$$
F(x)=\sum_{n=0}^{\infty} x^{n} \sum_{k=1}^{5} \sum_{j=1}^{k} \beta_{k, j}\binom{n+j-1}{j-1} \frac{1}{k^{n+j}},
$$

which is the generating function of the sequence $a_{n}=\sum_{k=1}^{5} \sum_{j=1}^{k} \beta_{k, j}\binom{n+j-1}{j-1} \frac{1}{k^{n+j}}$. This sequence is $\Theta(1)$ because of the term corresponding to $k=j=1$. All other terms are $O\left(n^{j-1} 2^{-n}\right)$. Note that the binomial coefficient $\binom{n+j-1}{j-1}$ is $O\left(n^{j-1}\right)$, which grows much slower than the exponential k^{n+j} in the denominator.
b) Multiplying $F(x)$ with x corresponds to a shift of one position to the right, which does not affect the growth of the sequence, i.e., the sequence with generating function $G(x)$ is $b_{n}=\left\{\begin{array}{ll}a_{n-1}, & \text { when } n>0 \\ 0, & \text { when } n=0\end{array}\right.$. Therefore, the answer is also $\Theta(1)$.
c) We have

$$
H(x)=\frac{1-x}{\prod_{k=1}^{5}(k-x)^{k}}=\prod_{k=2}^{5} \frac{1}{(k-x)^{k}} .
$$

In a similar manner to point a), we obtain

$$
H(x)=\sum_{n=0}^{\infty} x^{n} \sum_{k=2}^{5} \sum_{j=1}^{k} \gamma_{k, j}\binom{n+j-1}{j-1} \frac{1}{k^{n+j}} .
$$

Note that the only difference is that now k starts at 2 . The term that increases fastest is the one corresponding to $k=j=2$, i.e., $(n+1) 2^{-(n+2)}$. Using the fact that $\gamma_{2,2}$ is non-zero, we conclude that the sequence is $\Theta\left(n 2^{-n}\right)$.

Problem 2. The problem is equivalent to finding the coefficient of x^{n} in the formal series

$$
F(x)=\left(1+x+x^{2}+\ldots\right)\left(1+x+x^{2}+\ldots\right)\left(1+x^{2}+x^{4}+\ldots\right)=\frac{1}{(1-x)^{2}} \frac{1}{1-x^{2}} .
$$

By using partial fraction expansion, there are numbers $\alpha, \beta, \gamma, \delta$ such that

$$
\begin{aligned}
F(x) & =\frac{\alpha}{1-x}+\frac{\beta}{(1-x)^{2}}+\frac{\gamma}{(1-x)^{3}}+\frac{\delta}{1+x} \\
& =\frac{\alpha(1-x)^{2}(1+x)+\beta\left(1-x^{2}\right)+\gamma(1+x)+\delta(1-x)^{3}}{(1-x)^{3}(1+x)} .
\end{aligned}
$$

We identify the polynomial in the numerator with 1 and we obtain the system of equations

$$
\left\{\begin{array}{l}
\alpha+\beta+\gamma+\delta=1 \\
-\alpha+\gamma-3 \delta=0 \\
-\alpha-\beta+3 \delta=0 \\
\alpha-\delta=0
\end{array}\right.
$$

whose resolution (by elimination, for example) gives $\alpha=\delta=1 / 8, \beta=1 / 4$ and $\gamma=1 / 2$.
We retrieve

$$
\begin{aligned}
F(x) & =\frac{1 / 8}{1-x}+\frac{1 / 4}{(1-x)^{2}}+\frac{1 / 2}{(1-x)^{3}}+\frac{1 / 8}{1+x} \\
& =\frac{1}{8} \sum_{n=0}^{\infty} x^{n}+\frac{1}{4} \sum_{n=0}^{\infty}(n+1) x^{n}+\frac{1}{2} \sum_{n=0}^{\infty}\binom{n+2}{2} x^{n}+\frac{1}{8} \sum_{n=0}^{\infty}(-1)^{n} x^{n} \\
& =\sum_{n=0}^{\infty} x^{n}\left(\frac{1}{8}\left((-1)^{n}+1\right)+\frac{1}{4}(n+1)+\frac{1}{2}\binom{n+2}{2}\right),
\end{aligned}
$$

from where we can read off each coefficient, so the answer is

$$
a_{n}=\frac{1}{8}\left((-1)^{n}+1\right)+\frac{1}{4}(n+1)+\frac{1}{2}\binom{n+2}{2}=\left\lceil\frac{(n+3)(n+1)}{4}\right\rceil .
$$

Do not forget to always check your result by computing a_{n} for a couple of indices by hand!

Problem 3.

i) The probability that a fair coin lands Heads in a single trial is $\frac{1}{2}$. As the $2 n$ trials are independent and in each of them the probability of obtaining Heads is $\frac{1}{2}$, the probability of having $2 n$ Heads is $\frac{1}{2^{2 n}}$.
Another way to see the result is the following. There are $2^{2 n}$ possible outcomes which are all equiprobable. Only 1 consists of $2 n$ Heads. Hence, the required probability is $\frac{1}{2^{2 n}}$.
ii) There are $2^{2 n}$ possible outcomes which are all equiprobable. In $\binom{2 n}{2}$ of them, we obtain 2 Tails. Hence, the required probability is $\frac{\binom{2 n}{2}}{2^{2 n}}$.
iii) Generalizing the argument above, we have that the probability of observing k Tails is given by

$$
p(k)=\frac{\binom{2 n}{k}}{2^{2 n}}
$$

We should bet on \tilde{k} s.t. $p(k)$ attains its maximum at \tilde{k}. Let us consider the ratio $\frac{p(k+1)}{p(k)}$. After some simplifications, we obtain that

$$
\frac{p(k+1)}{p(k)}=\frac{2 n-k}{k+1} \geq 1 \Longleftrightarrow k \leq n-\frac{1}{2}
$$

Recalling that k and n are integers, we deduce that $p(k+1) \geq p(k)$ for $k<n$ and that $p(k+1) \leq p(k)$ for $k \geq n$. Hence, $p(k)$ attains its maximum when $\tilde{k}=n$ and you should bet on n Tails.
iv) The probability of getting Heads is $1-\frac{1}{3}=\frac{2}{3}$. As the $2 n$ trials are independent and in each of them the probability of obtaining Heads is $\frac{2}{3}$, the probability of having $2 n$ Heads is $\left(\frac{2}{3}\right)^{2 n}$. In addition, in $\binom{2 n}{2}$ cases, we obtain 2 Tails and each of these cases occurs with probability $\left(\frac{2}{3}\right)^{2 n-2} \cdot\left(\frac{1}{3}\right)^{2}$. Hence, the probability of getting 2 Tails out of $2 n$ trials is $\frac{2^{2 n-2}\binom{2 n}{2}}{3^{2 n}}$.

Problem 4. Let us denote by A the event that urn 1 is chosen and by B the event that the token is blue. Then, we are required to compute the conditional probability $\mathbb{P}(A \mid B)$. By Bayes theorem we obtain that

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(B \mid A) \mathbb{P}(A)}{\mathbb{P}(B \mid A) \mathbb{P}(A)+\mathbb{P}(B \mid \bar{A}) \mathbb{P}(\bar{A})},
$$

where \bar{A} denotes the complementary event to A, i.e., the event that urn 2 is chosen. Now, all the probabilities in the previous formula can be easily computed: $\mathbb{P}(A)=\frac{1}{3}, \mathbb{P}(\bar{A})=\frac{2}{3}, \mathbb{P}(B \mid A)=\frac{1}{5}$, and $\mathbb{P}(B \mid \bar{A})=\frac{4}{5}$. Hence, we conclude that $\mathbb{P}(A \mid B)=\frac{1}{9}$.

Problem 5.

a1) The probability of getting a sum equal to 2 is $p_{1} q_{1}$. This probability is also equal to $\frac{1}{11}$, since the sum of the outcomes is uniform in $\{2,3, \cdots, 12\}$. Therefore,

$$
\begin{equation*}
p_{1} q_{1}=\frac{1}{11} \tag{1}
\end{equation*}
$$

a2) The probability of getting a sum equal to 12 is $p_{6} q_{6}$. This probability is also equal to $\frac{1}{11}$, since the sum of the outcomes is uniform in $\{2,3, \cdots, 12\}$. Therefore,

$$
p_{6} q_{6}=\frac{1}{11} .
$$

a3)

$$
\frac{a+b}{2} \geq \sqrt{a b} \Longleftrightarrow a+b \geq 2 \sqrt{a b} \Longleftrightarrow(a+b)^{2} \geq 4 a b
$$

where the last \Longleftrightarrow is allowed because a and b are non-negative and, therefore, their sum is non-negative. In addition,

$$
(a+b)^{2}-4 a b=(a-b)^{2} \geq 0
$$

which is enough to prove the desired inequality.
a4) Let s be the probability that the sum of the outcomes of the two dice is 7 . Then,

$$
s=p_{1} q_{6}+p_{2} q_{5}+p_{3} q_{4}+p_{4} q_{3}+p_{5} q_{2}+p_{6} q_{1} \geq p_{1} q_{6}+p_{6} q_{1}=\frac{1}{11}\left(\frac{p_{1}}{p_{6}}+\frac{p_{6}}{p_{1}}\right)
$$

where the last equality comes from points a1) and a2). Using point a3), we also obtain that

$$
\frac{p_{1}}{p_{6}}+\frac{p_{6}}{p_{1}} \geq 2 \sqrt{\frac{p_{1}}{p_{6}} \cdot \frac{p_{6}}{p_{1}}}=2 .
$$

Consequently, $s \geq \frac{2}{11}$. In addition, s must be equal to $\frac{1}{11}$, because the sum of the outcomes is uniform in $\{2,3, \cdots, 12\}$, from which we obtain a contradiction.
b) (Bonus) The generating function of the sum of independent random variables is the product of the individual generating functions, i.e., $s(x)=p(x) q(x)$. In addition, using the fact that the sum of outcomes is uniform in $\{2,3, \cdots, 12\}$, we obtain that

$$
s(x)=\frac{1}{11} \sum_{i=2}^{11} x^{i}=\frac{1}{11} \cdot x^{2} \cdot \frac{x^{11}-1}{x-1} .
$$

The polynomial $\frac{x^{11}-1}{x-1}$ has no real roots: the fact that $x=1$ is not a root can be easily checked by euclidean division; if $x>1$, then $x^{11}-1>x-1$ and the inequality is reversed for $x<1$. On the other hand, $p(x)$ is equal to x times a polynomial of odd degree and the same reasoning applies to $q(x)$. Hence, $s(x)=p(x) q(x)$ has two roots in 0 plus two other real roots, which is a contradiction.

