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Problem 1.

a) It is possible to write F (x) =

5∑
k=1

k∑
j=1

βk,j
(k − x)j

, where βk,k are non-zero for k = 1, . . . , 5.

Indeed, βk,k = (k − x)kF (x)|x=k 6= 0. It was seen in class that

1

(k − x)j
=

(1/k)j

(1− x
k )j

=

∞∑
n=0

(
n+ j − 1

j − 1

)
1

kn+j
xn.

Putting everything together, we get

F (x) =

∞∑
n=0

xn
5∑

k=1

k∑
j=1

βk,j

(
n+ j − 1

j − 1

)
1

kn+j
,

which is the generating function of the sequence an =

5∑
k=1

k∑
j=1

βk,j

(
n+ j − 1

j − 1

)
1

kn+j
. This

sequence is Θ(1) because of the term corresponding to k = j = 1. All other terms are

O(nj−12−n). Note that the binomial coefficient

(
n+ j − 1

j − 1

)
is O(nj−1), which grows much

slower than the exponential kn+j in the denominator.

b) Multiplying F (x) with x corresponds to a shift of one position to the right, which does
not affect the growth of the sequence, i.e., the sequence with generating function G(x) is

bn =

{
an−1, when n > 0

0, when n = 0
. Therefore, the answer is also Θ(1).

c) We have

H(x) =
1− x∏5

k=1(k − x)k
=

5∏
k=2

1

(k − x)k
.

In a similar manner to point a), we obtain

H(x) =

∞∑
n=0

xn
5∑

k=2

k∑
j=1

γk,j

(
n+ j − 1

j − 1

)
1

kn+j
.

Note that the only difference is that now k starts at 2. The term that increases fastest is the
one corresponding to k = j = 2, i.e., (n+ 1)2−(n+2). Using the fact that γ2,2 is non-zero, we
conclude that the sequence is Θ(n2−n).

Problem 2. The problem is equivalent to finding the coefficient of xn in the formal series

F (x) = (1 + x+ x2 + . . .)(1 + x+ x2 + . . .)(1 + x2 + x4 + . . .) =
1

(1− x)2
1

1− x2
.
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By using partial fraction expansion, there are numbers α, β, γ, δ such that

F (x) =
α

1− x
+

β

(1− x)2
+

γ

(1− x)3
+

δ

1 + x

=
α(1− x)2(1 + x) + β(1− x2) + γ(1 + x) + δ(1− x)3

(1− x)3(1 + x)
.

We identify the polynomial in the numerator with 1 and we obtain the system of equations
α+ β + γ + δ = 1

−α+ γ − 3δ = 0

−α− β + 3δ = 0

α− δ = 0

,

whose resolution (by elimination, for example) gives α = δ = 1/8, β = 1/4 and γ = 1/2.
We retrieve

F (x) =
1/8

1− x
+

1/4

(1− x)2
+

1/2

(1− x)3
+

1/8

1 + x

=
1

8

∞∑
n=0

xn +
1

4

∞∑
n=0

(n+ 1)xn +
1

2

∞∑
n=0

(
n+ 2

2

)
xn +

1

8

∞∑
n=0

(−1)nxn

=

∞∑
n=0

xn
(

1

8
((−1)n + 1) +

1

4
(n+ 1) +

1

2

(
n+ 2

2

))
,

from where we can read off each coefficient, so the answer is

an =
1

8
((−1)n + 1) +

1

4
(n+ 1) +

1

2

(
n+ 2

2

)
=

⌈
(n+ 3)(n+ 1)

4

⌉
.

Do not forget to always check your result by computing an for a couple of indices by hand!

Problem 3.

i) The probability that a fair coin lands Heads in a single trial is 1
2 . As the 2n trials are

independent and in each of them the probability of obtaining Heads is 1
2 , the probability of

having 2n Heads is
1

22n
.

Another way to see the result is the following. There are 22n possible outcomes which are

all equiprobable. Only 1 consists of 2n Heads. Hence, the required probability is
1

22n
.

ii) There are 22n possible outcomes which are all equiprobable. In

(
2n

2

)
of them, we obtain 2

Tails. Hence, the required probability is

(
2n

2

)
22n

.

iii) Generalizing the argument above, we have that the probability of observing k Tails is given
by

p(k) =

(
2n

k

)
22n

.
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We should bet on k̃ s.t. p(k) attains its maximum at k̃. Let us consider the ratio
p(k + 1)

p(k)
.

After some simplifications, we obtain that

p(k + 1)

p(k)
=

2n− k
k + 1

≥ 1⇐⇒ k ≤ n− 1

2
.

Recalling that k and n are integers, we deduce that p(k + 1) ≥ p(k) for k < n and that
p(k + 1) ≤ p(k) for k ≥ n. Hence, p(k) attains its maximum when k̃ = n and you should
bet on n Tails.

iv) The probability of getting Heads is 1 − 1
3 = 2

3 . As the 2n trials are independent and in
each of them the probability of obtaining Heads is 2

3 , the probability of having 2n Heads is(2

3

)2n
. In addition, in

(
2n

2

)
cases, we obtain 2 Tails and each of these cases occurs with

probability
(2

3

)2n−2
·
(1

3

)2
. Hence, the probability of getting 2 Tails out of 2n trials is

22n−2
(
2n
2

)
32n

.

Problem 4. Let us denote by A the event that urn 1 is chosen and by B the event that the
token is blue. Then, we are required to compute the conditional probability P(A|B). By Bayes
theorem we obtain that

P(A|B) =
P(B|A)P(A)

P(B|A)P(A) + P(B|A)P(A)
,

where A denotes the complementary event to A, i.e., the event that urn 2 is chosen. Now, all the

probabilities in the previous formula can be easily computed: P(A) =
1

3
, P(A) =

2

3
, P(B|A) =

1

5
,

and P(B|A) =
4

5
. Hence, we conclude that P(A|B) =

1

9
.

Problem 5.

a1) The probability of getting a sum equal to 2 is p1q1. This probability is also equal to 1
11 ,

since the sum of the outcomes is uniform in {2, 3, · · · , 12}. Therefore,

p1q1 =
1

11
. (1)

a2) The probability of getting a sum equal to 12 is p6q6. This probability is also equal to 1
11 ,

since the sum of the outcomes is uniform in {2, 3, · · · , 12}. Therefore,

p6q6 =
1

11
.

a3)
a+ b

2
≥
√
ab⇐⇒ a+ b ≥ 2

√
ab⇐⇒ (a+ b)2 ≥ 4ab,

where the last ⇐⇒ is allowed because a and b are non-negative and, therefore, their sum
is non-negative. In addition,

(a+ b)2 − 4ab = (a− b)2 ≥ 0,

which is enough to prove the desired inequality.
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a4) Let s be the probability that the sum of the outcomes of the two dice is 7. Then,

s = p1q6 + p2q5 + p3q4 + p4q3 + p5q2 + p6q1 ≥ p1q6 + p6q1 =
1

11

(
p1
p6

+
p6
p1

)
,

where the last equality comes from points a1) and a2). Using point a3), we also obtain
that

p1
p6

+
p6
p1
≥ 2

√
p1
p6
· p6
p1

= 2.

Consequently, s ≥ 2
11 . In addition, s must be equal to 1

11 , because the sum of the outcomes
is uniform in {2, 3, · · · , 12}, from which we obtain a contradiction.

b) (Bonus) The generating function of the sum of independent random variables is the product
of the individual generating functions, i.e., s(x) = p(x)q(x). In addition, using the fact
that the sum of outcomes is uniform in {2, 3, · · · , 12}, we obtain that

s(x) =
1

11

11∑
i=2

xi =
1

11
· x2 · x

11 − 1

x− 1
.

The polynomial
x11 − 1

x− 1
has no real roots: the fact that x = 1 is not a root can be easily

checked by euclidean division; if x > 1, then x11− 1 > x− 1 and the inequality is reversed
for x < 1. On the other hand, p(x) is equal to x times a polynomial of odd degree and the
same reasoning applies to q(x). Hence, s(x) = p(x)q(x) has two roots in 0 plus two other
real roots, which is a contradiction.
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