Solution to Graded Problem Set 12

Date: 6.12.2013

Due date: 13.12.2013, noon

Problem 1.

a) It is possible to write $F(x) = \sum_{k=1}^{5} \sum_{j=1}^{k} \frac{\beta_{k,j}}{(k-x)^{j}}$, where $\beta_{k,k}$ are non-zero for $k = 1, \dots, 5$. Indeed, $\beta_{k,k} = (k-x)^k F(x)|_{x=k} \neq 0$. It was seen in class that

$$\frac{1}{(k-x)^j} = \frac{(1/k)^j}{(1-\frac{x}{k})^j} = \sum_{n=0}^{\infty} \binom{n+j-1}{j-1} \frac{1}{k^{n+j}} x^n.$$

Putting everything together, we get

$$F(x) = \sum_{n=0}^{\infty} x^n \sum_{k=1}^{5} \sum_{j=1}^{k} \beta_{k,j} \binom{n+j-1}{j-1} \frac{1}{k^{n+j}},$$

which is the generating function of the sequence $a_n = \sum_{k=1}^{5} \sum_{j=1}^{k} \beta_{k,j} \binom{n+j-1}{j-1} \frac{1}{k^{n+j}}$. This sequence is $\Theta(1)$ because of the term corresponding to k = j = 1. All other terms are $O(n^{j-1}2^{-n})$. Note that the binomial coefficient $\binom{n+j-1}{j-1}$ is $O(n^{j-1})$, which grows much slower than the exponential k^{n+j} in the denominator.

- b) Multiplying F(x) with x corresponds to a shift of one position to the right, which does not affect the growth of the sequence, i.e., the sequence with generating function G(x) is $b_n = \begin{cases} a_{n-1}, & \text{when } n > 0 \\ 0, & \text{when } n = 0 \end{cases}$. Therefore, the answer is also $\Theta(1)$.
- c) We have

$$H(x) = \frac{1-x}{\prod_{k=1}^{5} (k-x)^k} = \prod_{k=2}^{5} \frac{1}{(k-x)^k}.$$

In a similar manner to point a), we obtain

$$H(x) = \sum_{n=0}^{\infty} x^n \sum_{k=2}^{5} \sum_{j=1}^{k} \gamma_{k,j} \binom{n+j-1}{j-1} \frac{1}{k^{n+j}}.$$

Note that the only difference is that now k starts at 2. The term that increases fastest is the one corresponding to k = j = 2, i.e., $(n + 1)2^{-(n+2)}$. Using the fact that $\gamma_{2,2}$ is non-zero, we conclude that the sequence is $\Theta(n2^{-n})$.

Problem 2. The problem is equivalent to finding the coefficient of x^n in the formal series

$$F(x) = (1 + x + x^{2} + \ldots)(1 + x + x^{2} + \ldots)(1 + x^{2} + x^{4} + \ldots) = \frac{1}{(1 - x)^{2}} \frac{1}{1 - x^{2}}.$$

By using partial fraction expansion, there are numbers $\alpha, \beta, \gamma, \delta$ such that

$$\begin{split} F(x) &= \frac{\alpha}{1-x} + \frac{\beta}{(1-x)^2} + \frac{\gamma}{(1-x)^3} + \frac{\delta}{1+x} \\ &= \frac{\alpha(1-x)^2(1+x) + \beta(1-x^2) + \gamma(1+x) + \delta(1-x)^3}{(1-x)^3(1+x)}. \end{split}$$

We identify the polynomial in the numerator with 1 and we obtain the system of equations

$$\begin{cases} \alpha + \beta + \gamma + \delta = 1 \\ -\alpha + \gamma - 3\delta = 0 \\ -\alpha - \beta + 3\delta = 0 \\ \alpha - \delta = 0 \end{cases}$$

,

whose resolution (by elimination, for example) gives $\alpha = \delta = 1/8$, $\beta = 1/4$ and $\gamma = 1/2$. We retrieve

$$\begin{split} F(x) &= \frac{1/8}{1-x} + \frac{1/4}{(1-x)^2} + \frac{1/2}{(1-x)^3} + \frac{1/8}{1+x} \\ &= \frac{1}{8} \sum_{n=0}^{\infty} x^n + \frac{1}{4} \sum_{n=0}^{\infty} (n+1)x^n + \frac{1}{2} \sum_{n=0}^{\infty} \binom{n+2}{2} x^n + \frac{1}{8} \sum_{n=0}^{\infty} (-1)^n x^n \\ &= \sum_{n=0}^{\infty} x^n \left(\frac{1}{8} ((-1)^n + 1) + \frac{1}{4} (n+1) + \frac{1}{2} \binom{n+2}{2} \right) \right), \end{split}$$

from where we can read off each coefficient, so the answer is

$$a_n = \frac{1}{8}((-1)^n + 1) + \frac{1}{4}(n+1) + \frac{1}{2}\binom{n+2}{2} = \left\lceil \frac{(n+3)(n+1)}{4} \right\rceil.$$

Do not forget to always check your result by computing a_n for a couple of indices by hand!

Problem 3.

i) The probability that a fair coin lands Heads in a single trial is $\frac{1}{2}$. As the 2n trials are independent and in each of them the probability of obtaining Heads is $\frac{1}{2}$, the probability of having 2n Heads is $\frac{1}{2^{2n}}$.

Another way to see the result is the following. There are 2^{2n} possible outcomes which are all equiprobable. Only 1 consists of 2n Heads. Hence, the required probability is $\frac{1}{2^{2n}}$.

ii) There are 2^{2n} possible outcomes which are all equiprobable. In $\binom{2n}{2}$ of them, we obtain 2

Tails. Hence, the required probability is $\frac{\binom{2n}{2}}{2^{2n}}$.

iii) Generalizing the argument above, we have that the probability of observing k Tails is given by

$$p(k) = \frac{\binom{2n}{k}}{2^{2n}}.$$

We should bet on \tilde{k} s.t. p(k) attains its maximum at \tilde{k} . Let us consider the ratio $\frac{p(k+1)}{p(k)}$. After some simplifications, we obtain that

$$\frac{p(k+1)}{p(k)} = \frac{2n-k}{k+1} \ge 1 \Longleftrightarrow k \le n-\frac{1}{2}.$$

Recalling that k and n are integers, we deduce that $p(k+1) \ge p(k)$ for k < n and that $p(k+1) \le p(k)$ for $k \ge n$. Hence, p(k) attains its maximum when $\tilde{k} = n$ and you should bet on n Tails.

iv) The probability of getting Heads is $1 - \frac{1}{3} = \frac{2}{3}$. As the 2n trials are independent and in each of them the probability of obtaining Heads is $\frac{2}{3}$, the probability of having 2n Heads is $\left(\frac{2}{3}\right)^{2n}$. In addition, in $\binom{2n}{2}$ cases, we obtain 2 Tails and each of these cases occurs with probability $\left(\frac{2}{3}\right)^{2n-2} \cdot \left(\frac{1}{3}\right)^2$. Hence, the probability of getting 2 Tails out of 2n trials is $\frac{2^{2n-2}\binom{2n}{2}}{3^{2n}}$.

Problem 4. Let us denote by A the event that urn 1 is chosen and by B the event that the token is blue. Then, we are required to compute the conditional probability $\mathbb{P}(A|B)$. By Bayes theorem we obtain that $\mathbb{P}(D|A)\mathbb{P}(A)$

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B|A)\mathbb{P}(A) + \mathbb{P}(B|\overline{A})\mathbb{P}(\overline{A})}$$

where \overline{A} denotes the complementary event to A, i.e., the event that urn 2 is chosen. Now, all the probabilities in the previous formula can be easily computed: $\mathbb{P}(A) = \frac{1}{3}$, $\mathbb{P}(\overline{A}) = \frac{2}{3}$, $\mathbb{P}(B|A) = \frac{1}{5}$, and $\mathbb{P}(B|\overline{A}) = \frac{4}{5}$. Hence, we conclude that $\mathbb{P}(A|B) = \frac{1}{9}$.

Problem 5.

a1) The probability of getting a sum equal to 2 is p_1q_1 . This probability is also equal to $\frac{1}{11}$, since the sum of the outcomes is uniform in $\{2, 3, \dots, 12\}$. Therefore,

$$p_1 q_1 = \frac{1}{11}.$$
 (1)

a2) The probability of getting a sum equal to 12 is p_6q_6 . This probability is also equal to $\frac{1}{11}$, since the sum of the outcomes is uniform in $\{2, 3, \dots, 12\}$. Therefore,

$$p_6 q_6 = \frac{1}{11}.$$

a3)

$$\frac{a+b}{2} \ge \sqrt{ab} \Longleftrightarrow a+b \ge 2\sqrt{ab} \Longleftrightarrow (a+b)^2 \ge 4ab,$$

where the last \iff is allowed because a and b are non-negative and, therefore, their sum is non-negative. In addition,

$$(a+b)^2 - 4ab = (a-b)^2 \ge 0,$$

which is enough to prove the desired inequality.

a4) Let s be the probability that the sum of the outcomes of the two dice is 7. Then,

$$s = p_1 q_6 + p_2 q_5 + p_3 q_4 + p_4 q_3 + p_5 q_2 + p_6 q_1 \ge p_1 q_6 + p_6 q_1 = \frac{1}{11} \left(\frac{p_1}{p_6} + \frac{p_6}{p_1} \right),$$

where the last equality comes from points a1) and a2). Using point a3), we also obtain that

$$\frac{p_1}{p_6} + \frac{p_6}{p_1} \ge 2\sqrt{\frac{p_1}{p_6} \cdot \frac{p_6}{p_1}} = 2.$$

Consequently, $s \ge \frac{2}{11}$. In addition, s must be equal to $\frac{1}{11}$, because the sum of the outcomes is uniform in $\{2, 3, \dots, 12\}$, from which we obtain a contradiction.

b) (Bonus) The generating function of the sum of independent random variables is the product of the individual generating functions, i.e., s(x) = p(x)q(x). In addition, using the fact that the sum of outcomes is uniform in $\{2, 3, \dots, 12\}$, we obtain that

$$s(x) = \frac{1}{11} \sum_{i=2}^{11} x^i = \frac{1}{11} \cdot x^2 \cdot \frac{x^{11} - 1}{x - 1}.$$

The polynomial $\frac{x^{11}-1}{x-1}$ has no real roots: the fact that x = 1 is not a root can be easily checked by euclidean division; if x > 1, then $x^{11}-1 > x-1$ and the inequality is reversed for x < 1. On the other hand, p(x) is equal to x times a polynomial of odd degree and the same reasoning applies to q(x). Hence, s(x) = p(x)q(x) has two roots in 0 plus two other real roots, which is a contradiction.