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Problem 1.

(a) By the product rule, there are 5× 3× 10× 5× 4 = 3000 different special dinner.

(b) There are 6! ways to rearrange the word GOOGOL but we need to eliminate the repetitions
(when an O is switched with another O for example). There are 3 O’s and 2 G’s, so we get
6!

3!2!
possible distinct rearrangements.

(c) i) We choose 6 people among 20 + 17 = 37 without replacement and the selection is

unordered. This can be done in

(
37

6

)
ways.

ii) We select 3 women among 20 and 3 men among 17. The selections are unordered and

without replacement. By the product rule, this can be done in

(
20

3

)
·
(

17

3

)
ways.

iii) There are two ways to find the solution. The first is to find the number of committees
for exactly 2, 3, 4, 5 or 6 and sum them all. The second is to subtract committees with
no men or exactly one man from the number of all possible committees. Therefore, the
answer is

6∑
i=2

(
17

i

)(
20

6− i

)
=

(
37

6

)
−
(

20

6

)
− 17

(
20

5

)
.

iv) There are

(
17

6

)
all-men committees and

(
20

6

)
all-women committees, so the answer is(

17

6

)
+

(
20

6

)
by the sum rule.

(d) There are 2k ways to choose the values of the variables and on each of these choices the

proposition can take the values T or F. Thus, by the product rule, there are 22
k

propositions.

Problem 2. The same hand is counted twice. For example, getting the kings of hearts and
diamonds first and the sevens of clubs and hearts second is the same as getting the pair of sevens
first and the pair of kings second. To obtain the correct answer, divide the given answer by 2.

Problem 3.

(a) The number of codes is 26 ·103 = 26, 000. Since d60, 000/26, 000e = 3, by pigeonhole at least
three parts have the same code number.

(b) Divide the square into four 1×1 squares. At least two of the five points lie in or on the edge
of one of these 1× 1 squares. The maximum distance between two such points is

√
2.

Problem 4. We propose two distinct proofs of the claim.
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First proof: binomial theorem. The number of binary strings with an even number of 1’s

is

n∑
k=1

k even

(
n

k

)
by the sum rule. Observe that

1 + (−1)k

2
is equal to 1 if k is even and is equal to

0 otherwise. Remark also that by the binomial theorem we have that

n∑
k=1

(
n

k

)
= (1 + 1)n = 2n

and that

n∑
k=1

(−1)k
(
n

k

)
=

n∑
k=1

(−1)k1n−k
(
n

k

)
= (1 − 1)n = 0. Putting all these steps together,

we obtain

n∑
k=1

k even

(
n

k

)
=

n∑
k=1

1 + (−1)k

2

(
n

k

)
=

1

2

n∑
k=1

(
n

k

)
+

1

2

n∑
k=1

(−1)k
(
n

k

)
= 2n−1 +

(1− 1)n

2
= 2n−1,

which is exactly half of the total number of binary strings of length n. The other half of the
binary strings of length n contains an odd number of 1’s and the proof is complete.

Second proof: bijection. Let A be the set of binary strings of length n with an even
number of 1’s and let B be the set of binary strings of length n with an odd number of 1’s.
Define f : A → B as the function which flips the first bit of the binary string given as input.
Formally, let w = (w1, w2, . . . , wn) ∈ A, then f(w) = w′, where w′ = (1 − w1, w2, . . . , wn). It
can be verified that f is a function and, moreover, a bijection. Then, A and B have the same
cardinality and the claim is proved.

Problem 5.

(a) The number of increasing functions from {1, . . . , k} to {1, . . . , n} equals the combinations
of k elements chosen from a class of n without replacement. Indeed, we need to count the
choices for the images of the k elements of the domain into the n elements of the codomain.
The selection is unordered, because the order is fixed by the monotonicity of the function.
In addition, no repetitions are allowed, since the functions are increasing, and, therefore,
injective. As a result,

|F| =
(
n

k

)
.

(b) The number of non-decreasing functions from {1, . . . , k} to {1, . . . , n} equals the combina-
tions of k elements chosen from a class of n with replacement. Indeed, in this case, we need
to count the choices for the images of the k elements of the domain into the n elements
of the codomain, where the selection is still unordered because the order is fixed by the
monotonicity of the function, but repetitions are allowed, because the functions are non-
decreasing, i.e., two distinct elements of the domain can be mapped into the same element
of the codomain. As a result,

|G| =
(
n + k − 1

k

)
.

Another way to prove this result consists in associating to each non-decreasing function g
the function h, defined as

h(i) = g(i) + i− 1.

It is easy to check that h goes from {1, · · · , k} to {1, · · · , n + k − 1} and is increasing.
Basically, we are defining a bijection between G and the set H of increasing functions h :

{1, . . . , k} → {1, . . . , n + k − 1}. Then, |G| = |H| =

(
n + k − 1

k

)
, where the last equality

comes from point (a).
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Problem 6. First of all, let us compute in two ways the product of all the elements of a matrix
which satisfies the required conditions (product of the elements of each row equal to −1 and
product of the elements of each column equal to −1). Since there are m rows, then the product
of the elements of the matrix done row by row is (−1)m. In addition, there are n columns, so
the product of the elements of the matrix done column by column is (−1)n. Consequently, if
m and n do not have the same parity, i.e. n 6≡ m (mod 2), then there is no matrix with the
required property.

Let n ≡ m (mod 2). Consider the submatrix As obtained removing the last row and the last
column of the original matrix A. Clearly, there are 2(n−1)(m−1) possible ways of choosing this
submatrix. Denote by ri, i ∈ {1, . . . ,m− 1}, the product of the elements of the i-th row of the
submatrix. Now, the last element of each row of A has to be set to −ri, in order to ensure that
the product of the elements of each row is −1. Analogously, denote by ci, i ∈ {1, . . . , n − 1},
the product of the elements of the i-th column of the submatrix. Now, the last element of each
column of A has to be set to −ci, in order to ensure that the product of the elements of each
column is −1. With this procedure, only one element is left, namely the element in the lower
right corner xnm (the element at the intersection between the m-th row and the n-th column).
This value has to be chosen so that the product of the elements of the last row is −1 and the
product of the elements of the last column is −1. In formulas,

xnm ·
m−1∏
i=1

(−ri) = −1, (1)

xnm ·
n−1∏
i=1

(−ci) = −1. (2)

Therefore, since the elements of the matrix are in {−1,+1},

xnm = −
m−1∏
i=1

(−ri) = (−1)m
m−1∏
i=1

ri, (3)

xnm = −
n−1∏
i=1

(−ci) = (−1)n
n−1∏
i=1

ci. (4)

Observe that

m−1∏
i=1

ri =

n−1∏
i=0

ci, since both the expressions are equal to the product of all the

elements of the submatrix As (done row by row and column by column, respectively). In
addition, as n ≡ m (mod 2), then (−1)m = (−1)n and the two conditions (3) and (4) reduce to
the same equation. This equation fixes the value of xnm.

As a result, if n 6≡ m (mod 2), there is no matrix which fulfills the required condition.
Otherwise, there are 2(m−1)(n−1) possible matrices.

3


