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Problem 1.

(a)

Let a,, be the answer to the problem and n = 2¥. We have the following recursion : a; = 1,
agr = 2F + age—1, which follows immediately from the structure of the algorithm.

Claim: For all k£ > 0 we have that age = 2F+1 — 1.

Proof by induction.

Base step: az = 2' —1 = 1. [And indeed, if n = 1, we print the sentence once.]

Induction step: Suppose that for k > 0 it is true that asx = 2! — 1. Then, using the
recursion, we obtain agri1 = 28+ 4 2k _ 1 = 9k+2 _ 1

As a result, the phrase is printed 281 — 1 = 2n — 1 times.

The main observation here is that after a “west” step, a “south” step necessarily follows,
and also a “south” step is followed by a “west” step if y is still > 0.

Also the assumption “x > y” is preserved during the recursive call: in case x + y is even,
x and y have the same parity, so x — y > 2 and the condition "z > y” is preserved after x
is decremented. In case x + y is odd, ¥y is decremented, and, therefore, the condition still
holds.

After trying out some values for x and y, we can make the following conjecture. If f(x,y) is
the number of times the algorithm prints a sentence (any) when presented with parameters
x and y, then

2y, if x +y is even
flz,y)=<¢2y—1, ifz+yisodd, and y #0
0, if x+yisodd, and y =0

Proof by induction (on y). The proposition that we want to prove is P(y), meaning “For
all x greater than y, the number of times the algorithm prints a sentence is f(z,y)”, which
depends only on y.

Base step. If y = 0, then we print 0 times a sentence, since we never enter into the if
construct, regardless of the parity of x + y.

Induction step. Assume that the proposition P(y — 1) is true for some y > 1. We will prove
that P(y) is also true.

e Let x be such that x + y is even. After two recursive calls, the parameters become
(2',y) = (x—1,y—1) and clearly 2’ + ¢’ is even. By induction hypothesis, f(z— 1,y —
1) =2(y —1). Then f(z,y) =2+ f(x — 1L,y — 1) =2y.

e Let x be such that = + y is odd. After one recursive call the parameters become
(2',y) = (z,y — 1) and clearly 2’ + 3’ is even. In this case, we print a sentence
1+ f(z,y—1) =1+ 2(y — 1) = 2y — 1 times, which is exactly f(z,y).



Problem 2.
(a)

Algorithm 1 Mult(a € R,n € N>q)

1: if n =1 then return a
2: else return a + Mult(a,n — 1)

(b)

Algorithm 2 Power(n € Nx)

1: if n =0 then return 3
2: else return Mult(Power(n — 1), Power(n — 1))

(¢) The complexity of the algorithm Mult is O(n).

Algorithm 3 Mult-opt(a € R,n € N>q)

if n =1 then return a

k< 3]

b + Mult-opt(k,a)

if n is even then return b + b
else return a +b+b

The complexity of the algorithm Mult-opt is O(logn).



Problem 3.

(a)

(b)

()

The first 3 digits are fixed, while the remaining 9 are free. Hence, this is equivalent to
counting the bit strings of length 9, of which there are exactly 2°.

We fix the first 2 and the last 2 digits, while the remaining 8 are free. Therefore, there are
28 possible bit strings.

The number of bit strings which begin with 11 is 2'°, the number of bit strings which end
with 10 is 2% and the number of bit strings which begin with 11 and end with 10 is 2%. By
inclusion-exlusion principle the number of bit strings which begin with 11 or end with 10 is

210+210_28:211_28:28.7

Counting the bit strings with exactly 4 1’s is equivalent to counting the ways in which one
can choose the positions of these four 1’s. These are the combinations of 4 elements from a

class of 12 without replacement. Therefore the solution is (142).

(Bonus.) Let A be the set of bit strings of length 12 which have exactly four 1’s such that
none of these 1’s are adjacent to each other. Let B be the set of bit strings of length 9 with
exactly four 1’s.

Consider a string a € A: it has four 1’s which are not adjacent to each other. Hence, each
of the first three 1’s has to be followed by a 0. Consider the function f : A — B which
maps the string a € A into the string b € B such that b is obtained removing the three 0’s
immediately after each of the first three 1’s of a. It is easy to check that the function f is
a bijection. Consequently, so |A| = |B|. By reasons similar to those of point (d), |B| = (3)
and, as a result, the solution is (Z).

Problem 4.

(al) Clearly, E; C E for any ¢ € {0,1,--- ,n}. Therefore Ey UFE, U---UE, C E. Also,

E C EgU Ey U ---U E,, because every string has a number of 1’s which is an integer
between 0 and n. Consequently, £ = EgU FE1 U---U E,.

(a2) Counting the bit strings with exactly ¢ 1’s is equivalent to counting the ways in which one

can choose the positions of these ¢ 1’s. These are the combinations of i elements from a

class of n without replacement. Therefore, F; = (7;)

(a3) |E; N Ej| = 0 for i # j, because a binary string cannot have simultaneously i and j 1’s

with i # j.

(a4) The number of binary strings of length n, i.e., the cardinality of E, is equal to 2". In

addition, |E| = >_"" , |E;|, because the sets E; for i € {0,1,--- ,n} are pairwise disjoint by
point (a3). Using this last equation and the result of point (a2), we obtain that
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bl) Recall that L L. Then, for any m > 1 and any 1 <n <m — 1,
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b2) Base step. For n = 0, ") =1and 2" = 1.
(b2) Base step. For n ;<z) an
Induction step. Assume that Z <n> = 2". Then, using the identity that has been proved
i
=0
in point (b2) and the induction hypothesis, we obtain that
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