Solution to Problem Set 9

Date: 15.11.2013
Not graded

Problem 1.

(a) Let a_{n} be the answer to the problem and $n=2^{k}$. We have the following recursion : $a_{1}=1$, $a_{2^{k}}=2^{k}+a_{2^{k-1}}$, which follows immediately from the structure of the algorithm.
Claim: For all $k \geq 0$ we have that $a_{2^{k}}=2^{k+1}-1$.

Proof by induction.

Base step: $a_{2^{0}}=2^{1}-1=1$. [And indeed, if $n=1$, we print the sentence once.]
Induction step: Suppose that for $k \geq 0$ it is true that $a_{2^{k}}=2^{k+1}-1$. Then, using the recursion, we obtain $a_{2^{k+1}}=2^{k+1}+2^{k+1}-1=2^{k+2}-1$.
As a result, the phrase is printed $2^{k+1}-1=2 n-1$ times.
(b) The main observation here is that after a "west" step, a "south" step necessarily follows, and also a "south" step is followed by a "west" step if y is still >0.
Also the assumption " $x>y$ " is preserved during the recursive call: in case $x+y$ is even, x and y have the same parity, so $x-y \geq 2$ and the condition " $x>y$ " is preserved after x is decremented. In case $x+y$ is odd, y is decremented, and, therefore, the condition still holds.
After trying out some values for x and y, we can make the following conjecture. If $f(x, y)$ is the number of times the algorithm prints a sentence (any) when presented with parameters x and y, then

$$
f(x, y)= \begin{cases}2 y, & \text { if } x+y \text { is even } \\ 2 y-1, & \text { if } x+y \text { is odd, and } y \neq 0 \\ 0, & \text { if } x+y \text { is odd, and } y=0\end{cases}
$$

Proof by induction (on y). The proposition that we want to prove is $P(y)$, meaning "For all x greater than y, the number of times the algorithm prints a sentence is $f(x, y)$ ", which depends only on y.

Base step. If $y=0$, then we print 0 times a sentence, since we never enter into the if construct, regardless of the parity of $x+y$.
Induction step. Assume that the proposition $P(y-1)$ is true for some $y \geq 1$. We will prove that $P(y)$ is also true.

- Let x be such that $x+y$ is even. After two recursive calls, the parameters become $\left(x^{\prime}, y^{\prime}\right)=(x-1, y-1)$ and clearly $x^{\prime}+y^{\prime}$ is even. By induction hypothesis, $f(x-1, y-$ $1)=2(y-1)$. Then $f(x, y)=2+f(x-1, y-1)=2 y$.
- Let x be such that $x+y$ is odd. After one recursive call the parameters become $\left(x^{\prime}, y^{\prime}\right)=(x, y-1)$ and clearly $x^{\prime}+y^{\prime}$ is even. In this case, we print a sentence $1+f(x, y-1)=1+2(y-1)=2 y-1$ times, which is exactly $f(x, y)$.

Problem 2.

(a)

```
Algorithm \(1 \operatorname{Mult}\left(a \in \mathbb{R}, n \in \mathbb{N}_{\geq 1}\right)\)
    if \(n=1\) then return \(a\)
    else return \(a+\operatorname{Mult}(a, n-1)\)
```

(b)

```
Algorithm \(2 \operatorname{Power}\left(n \in \mathbb{N}_{\geq 0}\right)\)
    if \(n=0\) then return 3
    else return \(\operatorname{Mult}(\operatorname{Power}(n-1), \operatorname{Power}(n-1))\)
```

(c) The complexity of the algorithm Mult is $O(n)$.

```
Algorithm 3 Mult-opt \((a \in \mathbb{R}, n \in \mathbb{N} \geq 1)\)
    if \(n=1\) then return \(a\)
    \(k \leftarrow\left\lfloor\frac{n}{2}\right\rfloor\)
    \(b \leftarrow \operatorname{Mult-opt}(k, a)\)
    if \(n\) is even then return \(b+b\)
    else return \(a+b+b\)
```

The complexity of the algorithm Mult-opt is $O(\log n)$.

Problem 3.

(a) The first 3 digits are fixed, while the remaining 9 are free. Hence, this is equivalent to counting the bit strings of length 9 , of which there are exactly 2^{9}.
(b) We fix the first 2 and the last 2 digits, while the remaining 8 are free. Therefore, there are 2^{8} possible bit strings.
(c) The number of bit strings which begin with 11 is 2^{10}, the number of bit strings which end with 10 is 2^{10} and the number of bit strings which begin with 11 and end with 10 is 2^{8}. By inclusion-exlusion principle the number of bit strings which begin with 11 or end with 10 is

$$
2^{10}+2^{10}-2^{8}=2^{11}-2^{8}=2^{8} \cdot 7
$$

(d) Counting the bit strings with exactly 4 1's is equivalent to counting the ways in which one can choose the positions of these four 1's. These are the combinations of 4 elements from a class of 12 without replacement. Therefore the solution is $\binom{12}{4}$.
(e) (Bonus.) Let A be the set of bit strings of length 12 which have exactly four 1's such that none of these 1's are adjacent to each other. Let B be the set of bit strings of length 9 with exactly four 1's.
Consider a string $a \in A$: it has four 1's which are not adjacent to each other. Hence, each of the first three 1 's has to be followed by a 0 . Consider the function $f: A \rightarrow B$ which maps the string $a \in A$ into the string $b \in B$ such that b is obtained removing the three 0 's immediately after each of the first three 1's of a. It is easy to check that the function f is a bijection. Consequently, so $|A|=|B|$. By reasons similar to those of point (d), $|B|=\binom{9}{4}$ and, as a result, the solution is $\binom{9}{4}$.

Problem 4.

(a1) Clearly, $E_{i} \subset E$ for any $i \in\{0,1, \cdots, n\}$. Therefore $E_{0} \cup E_{1} \cup \cdots \cup E_{n} \subset E$. Also, $E \subset E_{0} \cup E_{1} \cup \cdots \cup E_{n}$, because every string has a number of 1's which is an integer between 0 and n. Consequently, $E=E_{0} \cup E_{1} \cup \cdots \cup E_{n}$.
(a2) Counting the bit strings with exactly i ''s is equivalent to counting the ways in which one can choose the positions of these $i 1$'s. These are the combinations of i elements from a class of n without replacement. Therefore, $E_{i}=\binom{n}{i}$.
(a3) $\left|E_{i} \cap E_{j}\right|=0$ for $i \neq j$, because a binary string cannot have simultaneously i and j 's with $i \neq j$.
(a4) The number of binary strings of length n, i.e., the cardinality of E, is equal to 2^{n}. In addition, $|E|=\sum_{i=0}^{n}\left|E_{i}\right|$, because the sets E_{i} for $i \in\{0,1, \cdots, n\}$ are pairwise disjoint by point (a3). Using this last equation and the result of point (a2), we obtain that

$$
2^{n}=|E|=\sum_{i=0}^{n}\left|E_{i}\right|=\sum_{i=0}^{n}\binom{n}{i}
$$

(b1) Recall that $\binom{m}{n}=\frac{m!}{n!(m-n)!}$. Then, for any $m \geq 1$ and any $1 \leq n \leq m-1$,

$$
\begin{aligned}
\binom{m-1}{n}+\binom{m-1}{n-1} & =\frac{(m-1)!}{n!(m-1-n)!}+\frac{(m-1)!}{(n-1)!(m-n)!} \\
& =\frac{(m-1)!(m-n+n)}{n!(m-n)!}=\frac{m!}{n!(m-n)!}=\binom{m}{n}
\end{aligned}
$$

(b2) Base step. For $n=0, \sum_{i=0}^{n}\binom{n}{i}=1$ and $2^{n}=1$.
Induction step. Assume that $\sum_{i=0}^{n}\binom{n}{i}=2^{n}$. Then, using the identity that has been proved in point (b2) and the induction hypothesis, we obtain that

$$
\begin{aligned}
\sum_{i=0}^{n+1}\binom{n+1}{i} & =\binom{n+1}{0}+\binom{n+1}{n+1}+\sum_{i=0}^{n-1}\binom{n+1}{i+1}=2+\sum_{i=0}^{n-1}\binom{n}{i}+\sum_{i=0}^{n-1}\binom{n}{i+1} \\
& =\binom{n}{n}+\binom{n}{0}+\sum_{i=0}^{n-1}\binom{n}{i}+\sum_{i=1}^{n}\binom{n}{i}=2 \sum_{i=0}^{n}\binom{n}{i}=2 \cdot 2^{n}=2^{n+1} .
\end{aligned}
$$

