
Discrete Structures EPFL, Fall 2013

Solution to Problem Set 9
Date: 15.11.2013 Not graded

Problem 1.

(a) Let an be the answer to the problem and n = 2k. We have the following recursion : a1 = 1,
a2k = 2k + a2k−1 , which follows immediately from the structure of the algorithm.
Claim: For all k ≥ 0 we have that a2k = 2k+1 − 1.
Proof by induction.
Base step: a20 = 21 − 1 = 1. [And indeed, if n = 1, we print the sentence once.]
Induction step: Suppose that for k ≥ 0 it is true that a2k = 2k+1 − 1. Then, using the
recursion, we obtain a2k+1 = 2k+1 + 2k+1 − 1 = 2k+2 − 1.

As a result, the phrase is printed 2k+1 − 1 = 2n− 1 times.

(b) The main observation here is that after a “west” step, a “south” step necessarily follows,
and also a “south” step is followed by a “west” step if y is still > 0.
Also the assumption “x > y” is preserved during the recursive call: in case x + y is even,
x and y have the same parity, so x − y ≥ 2 and the condition ”x > y” is preserved after x
is decremented. In case x + y is odd, y is decremented, and, therefore, the condition still
holds.
After trying out some values for x and y, we can make the following conjecture. If f(x, y) is
the number of times the algorithm prints a sentence (any) when presented with parameters
x and y, then

f(x, y) =


2y, if x + y is even

2y − 1, if x + y is odd, and y 6= 0

0, if x + y is odd, and y = 0

Proof by induction (on y). The proposition that we want to prove is P (y), meaning “For
all x greater than y, the number of times the algorithm prints a sentence is f(x, y)”, which
depends only on y.

Base step. If y = 0, then we print 0 times a sentence, since we never enter into the if
construct, regardless of the parity of x + y.

Induction step. Assume that the proposition P (y− 1) is true for some y ≥ 1. We will prove
that P (y) is also true.

• Let x be such that x + y is even. After two recursive calls, the parameters become
(x′, y′) = (x−1, y−1) and clearly x′+y′ is even. By induction hypothesis, f(x−1, y−
1) = 2(y − 1). Then f(x, y) = 2 + f(x− 1, y − 1) = 2y.

• Let x be such that x + y is odd. After one recursive call the parameters become
(x′, y′) = (x, y − 1) and clearly x′ + y′ is even. In this case, we print a sentence
1 + f(x, y − 1) = 1 + 2(y − 1) = 2y − 1 times, which is exactly f(x, y).

1

Problem 2.

(a)

Algorithm 1 Mult(a ∈ R, n ∈ N≥1)

1: if n = 1 then return a
2: else return a + Mult(a, n− 1)

(b)

Algorithm 2 Power(n ∈ N≥0)

1: if n = 0 then return 3
2: else return Mult(Power(n− 1), Power(n− 1))

(c) The complexity of the algorithm Mult is O(n).

Algorithm 3 Mult-opt(a ∈ R, n ∈ N≥1)

1: if n = 1 then return a
2: k ← bn2 c
3: b ← Mult-opt(k,a)
4: if n is even then return b + b
5: else return a + b + b

The complexity of the algorithm Mult-opt is O(log n).

2

Problem 3.

(a) The first 3 digits are fixed, while the remaining 9 are free. Hence, this is equivalent to
counting the bit strings of length 9, of which there are exactly 29.

(b) We fix the first 2 and the last 2 digits, while the remaining 8 are free. Therefore, there are
28 possible bit strings.

(c) The number of bit strings which begin with 11 is 210, the number of bit strings which end
with 10 is 210 and the number of bit strings which begin with 11 and end with 10 is 28. By
inclusion-exlusion principle the number of bit strings which begin with 11 or end with 10 is

210 + 210 − 28 = 211 − 28 = 28 · 7

(d) Counting the bit strings with exactly 4 1’s is equivalent to counting the ways in which one
can choose the positions of these four 1’s. These are the combinations of 4 elements from a
class of 12 without replacement. Therefore the solution is

(
12
4

)
.

(e) (Bonus.) Let A be the set of bit strings of length 12 which have exactly four 1’s such that
none of these 1’s are adjacent to each other. Let B be the set of bit strings of length 9 with
exactly four 1’s.
Consider a string a ∈ A: it has four 1’s which are not adjacent to each other. Hence, each
of the first three 1’s has to be followed by a 0. Consider the function f : A → B which
maps the string a ∈ A into the string b ∈ B such that b is obtained removing the three 0’s
immediately after each of the first three 1’s of a. It is easy to check that the function f is
a bijection. Consequently, so |A| = |B|. By reasons similar to those of point (d), |B| =

(
9
4

)
and, as a result, the solution is

(
9
4

)
.

Problem 4.

(a1) Clearly, Ei ⊂ E for any i ∈ {0, 1, · · · , n}. Therefore E0 ∪ E1 ∪ · · · ∪ En ⊂ E. Also,
E ⊂ E0 ∪ E1 ∪ · · · ∪ En, because every string has a number of 1’s which is an integer
between 0 and n. Consequently, E = E0 ∪ E1 ∪ · · · ∪ En.

(a2) Counting the bit strings with exactly i 1’s is equivalent to counting the ways in which one
can choose the positions of these i 1’s. These are the combinations of i elements from a
class of n without replacement. Therefore, Ei =

(
n
i

)
.

(a3) |Ei ∩ Ej | = 0 for i 6= j, because a binary string cannot have simultaneously i and j 1’s
with i 6= j.

(a4) The number of binary strings of length n, i.e., the cardinality of E, is equal to 2n. In
addition, |E| =

∑n
i=0 |Ei|, because the sets Ei for i ∈ {0, 1, · · · , n} are pairwise disjoint by

point (a3). Using this last equation and the result of point (a2), we obtain that

2n = |E| =
n∑

i=0

|Ei| =
n∑

i=0

(
n

i

)
.

(b1) Recall that

(
m

n

)
=

m!

n!(m− n)!
. Then, for any m ≥ 1 and any 1 ≤ n ≤ m− 1,

(
m− 1

n

)
+

(
m− 1

n− 1

)
=

(m− 1)!

n!(m− 1− n)!
+

(m− 1)!

(n− 1)!(m− n)!

=
(m− 1)!(m− n + n)

n!(m− n)!
=

m!

n!(m− n)!
=

(
m

n

)
.

3

(b2) Base step. For n = 0,

n∑
i=0

(
n

i

)
= 1 and 2n = 1.

Induction step. Assume that

n∑
i=0

(
n

i

)
= 2n. Then, using the identity that has been proved

in point (b2) and the induction hypothesis, we obtain that

n+1∑
i=0

(
n + 1

i

)
=

(
n + 1

0

)
+

(
n + 1

n + 1

)
+

n−1∑
i=0

(
n + 1

i + 1

)
= 2 +

n−1∑
i=0

(
n

i

)
+

n−1∑
i=0

(
n

i + 1

)

=

(
n

n

)
+

(
n

0

)
+

n−1∑
i=0

(
n

i

)
+

n∑
i=1

(
n

i

)
= 2

n∑
i=0

(
n

i

)
= 2 · 2n = 2n+1.

4

