Solution to Special Problem Set 8

Date: 8.11.2013

Problem.

(a) Base step. Let $n=1$. Since $\sum_{i=1}^{1} f_{i}^{2}=f_{i}^{2}=1$ and $f_{1} f_{2}=1$, then the assertion is true.

Induction step. Assume that $\sum_{i=1}^{n} f_{i}^{2}=f_{n} \cdot f_{n+1}$ for some $n \geq 1$. Then, using the induction hypothesis and the fact that $f_{n+2}=f_{n+1}+f_{n}$, we obtain that

$$
\sum_{i=1}^{n+1} f_{i}^{2}=\sum_{i=1}^{n} f_{i}^{2}+f_{n+1}^{2}=f_{n} \cdot f_{n+1}+f_{n+1}^{2}=f_{n+1}\left(f_{n}+f_{n+1}\right)=f_{n+1} \cdot f_{n+2}
$$

(b) Base step. Let $n=1$. Since $f_{2} f_{0}-f_{1}^{2}=0-1=-1$ and $(-1)^{1}=-1$, then the assertion is true.
Induction step. Assume that $f_{n+1} \cdot f_{n-1}-f_{n}^{2}=(-1)^{n}$ for some $n \geq 1$. Using the recursive definition $f_{n+2}=f_{n+1}+f_{n}, f_{n+1}=f_{n}+f_{n-1}$ and applying the induction hypothesis, we obtain

$$
\begin{aligned}
f_{n+2} f_{n}-f_{n+1}^{2} & =\left(f_{n+1}+f_{n}\right) f_{n}-f_{n+1}\left(f_{n}+f_{n-1}\right) \\
& =f_{n+1} f_{n}+f_{n}^{2}-f_{n+1} f_{n}-f_{n+1} f_{n-1} \\
& =-\left(f_{n+1} f_{n-1}-f_{n}^{2}\right) \\
& =(-1) \cdot(-1)^{n} \\
& =(-1)^{n+1} .
\end{aligned}
$$

(c) Base step. Let $n=1$. Observing that $\left[\begin{array}{ll}f_{2} & f_{1} \\ f_{1} & f_{0}\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$ and recalling the definition of A, we easily check the equality.
Induction step. Assume that $A^{n}=\left[\begin{array}{cc}f_{n+1} & f_{n} \\ f_{n} & f_{n-1}\end{array}\right]$. Then, using the recursive definition $f_{n+2}=f_{n+1}+f_{n}, f_{n+1}=f_{n}+f_{n-1}$ and applying the induction hypothesis, we obtain

$$
A^{n+1}=A^{n} A=\left[\begin{array}{cc}
f_{n+1} & f_{n} \\
f_{n} & f_{n-1}
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
f_{n+1}+f_{n} & f_{n+1} \\
f_{n}+f_{n-1} & f_{n}
\end{array}\right]=\left[\begin{array}{cc}
f_{n+2} & f_{n+1} \\
f_{n+1} & f_{n}
\end{array}\right] .
$$

Solution to mock midterm. The numbers indicate the position of the correct answer to each of the questions.

1. (a) $3-(\mathrm{b}) 2-$ (c) 2
2. (a) 4 - (b) 2 - (c) 3
3. (a) 3 - (b) 2 - (c) 3
4. (a) 2 - (b) 4 - (c) 4
5. (a) $2-(\mathrm{b}) 2-$ (c) 1
6. (a) $2-(\mathrm{b}) 3-$ (c) 3
