Solution to Problem Set 7

Date: 1.11.2013
Not graded

Problem 1.

a) We look at the 104 factors that appear in $104!=1 \cdot 2 \cdot \ldots \cdot 104$. Out of those, exactly $\left\lfloor\frac{104}{5}\right\rfloor=20$ are divisible by 5 , of which $\left\lfloor\frac{104}{25}\right\rfloor=4$ are divisible by 25 . So $20-4=16$ factors contribute with 5 and 4 contribute with 5^{2}. Thus $5^{24} \mid 104$! and $5^{25} \upharpoonright 104$!.
In a similar manner, we have that $\left\lfloor\left.\frac{104}{2} \right\rvert\,=52>24\right.$ factors are divisible by two, thus 2^{24} | 104!.
Since 5^{24} and 2^{24} are coprime, their product 10^{24} also divides 104 ! and furthermore $10^{25} \nmid 104$!, because $5^{25} \nmid 104$!. This means there are exactly 24 zeroes in the decimal representation of 104!.
b) Using Fermat's Little Theorem (see last problem set), we have $25^{53-1} \equiv 1(\bmod 53)$. Since $3702298 \equiv 2(\bmod 52)$, there is $m \in \mathbb{N}$ such that $3702298=52 m+2$. We can then write

$$
25^{3702298} \equiv 25^{52 m+2} \equiv 1 \cdot 25^{2} \equiv 42(\bmod 53) .
$$

So the answer is 42 .
c) False: $21 \equiv 1(\bmod 4)$ but $7 \equiv 3(\bmod 4)$ and $7 \mid 21$.
d) True. Since $p, q>2$, there are both odd, so $p \equiv q \equiv 1(\bmod 2)$. Then $p \cdot q+1 \equiv 1 \cdot 1+1 \equiv$ $0(\bmod 2)$. and so $2 \mid(p \cdot q+1)$. Since $p \cdot q+1>2$, it is not prime.
e) Let p be one of the primes. Since $p>2$ we have $p \equiv 1(\bmod 2)$. The other prime q is either $p+1$ or $p-1$. However, we have $q \equiv 1+1 \equiv 1-1 \equiv 0(\bmod 2)$. Then $2 \mid q$ and $q>2$ so q is not prime. Contradiction!

Problem 2. The representation $n=2^{k}+j$ with $k \in \mathbb{N}$ and $j \in\left\{0, \ldots, 2^{k}-1\right\}$ is unique because the binary representation of any natural number is unique. Alternatively, the uniqueness follows from the uniqueness of quotient and remainder of the division of n by 2^{k}. Hence,

$$
\sum_{n \geq 1} \frac{1}{n}=\sum_{k \geq 1} \sum_{j=0}^{2^{k}-1} \frac{1}{2^{k}+j} \geq \sum_{k \geq 1}^{2^{k}-1} \sum_{j=0} \frac{1}{2 \cdot 2^{k}}
$$

where the last inequality comes from the fact that $j<2^{k}$. Now,

$$
\sum_{k \geq 1} \sum_{j=0}^{2^{k}-1} \frac{1}{2 \cdot 2^{k}}=\frac{1}{2} \sum_{k \geq 1} 1=+\infty
$$

As a result,

$$
\sum_{n \geq 1} \frac{1}{n}=+\infty
$$

Problem 3.

a) The cardinality of \mathcal{A}_{n} and the number of terms on the left hand side of (1) is $(n+1)^{n}$. By the uniqueness of the factorization, for each element m of \mathcal{A}_{n}, the term $1 / m$ appears in the expansion of the product on the left. Thus, the expansion of this product is a rearrangement of the finite sum on the right.
b) Recall that for any $a \neq 1$,

$$
\sum_{i=0}^{n} a^{i}=\frac{1-a^{n+1}}{1-a}
$$

Hence,

$$
1+\frac{1}{p_{j}}+\ldots+\frac{1}{p_{j}^{n}}=\sum_{i=0}^{n} \frac{1}{p_{j}^{i}}=\frac{1-\frac{1}{p_{j}^{n+1}}}{1-\frac{1}{p_{j}}} \leq \frac{1}{1-\frac{1}{p_{j}}}=\frac{p_{j}}{p_{j}-1}=1+\frac{1}{p_{j}-1}
$$

c) Using (1), we obtain that $\ln \sum_{m \in \mathcal{A}_{n}} \frac{1}{m}=\ln \prod_{i=1}^{n} \sum_{j=0}^{n} \frac{1}{p_{i}^{j}}$. Since $\ln (\cdot)$ is a monotonous function, using point b), we have that

$$
\ln \prod_{i=1}^{n} \sum_{j=0}^{n} \frac{1}{p_{j}^{n}} \leq \ln \prod_{i=1}^{n}\left(1+\frac{1}{p_{i}-1}\right)=\sum_{i=1}^{n} \ln \left(1+\frac{1}{p_{i}-1}\right)
$$

Let us define $f(x)=\ln (x+1)$ and $g(x)=x$. Then $g(0)=f(0)=0$ and $g^{\prime}(x)=1>\frac{1}{1+x}=$ $f^{\prime}(x)$ for any $x \geq 0$. Consequently $f(x) \leq g(x)$ for any $x \geq 0$. As a result,

$$
\sum_{i=1}^{n} \ln \left(1+\frac{1}{p_{i}-1}\right) \leq \sum_{i=1}^{n} \frac{1}{p_{i}-1}
$$

Putting all these results together, we obtain $\sum_{i=1}^{n} \frac{1}{p_{i}-1} \geq \ln \sum_{m \in \mathcal{A}_{n}} \frac{1}{m}$.
d) $\{1, \ldots, n\} \subseteq \mathcal{A}_{n}$ because for all $j \in\{1, \ldots, n\}$, the unique factorization of j contains only primes from $\left\{p_{1}, \ldots, p_{n}\right\}$ as $p_{n} \geq n$. Also the multiplicity of each prime needs to be at most n, since $p_{i}^{n+1} \geq 2^{n+1}>n$.
This proves that

$$
\ln \sum_{m \in \mathcal{A}_{n}} \frac{1}{m} \geq \ln \sum_{m=1}^{n} \frac{1}{m}
$$

As concerns the left hand side, note that for $j \geq 2$,

$$
\frac{1}{p_{j}-1} \leq \frac{1}{p_{j-1}}
$$

In addition, if $j=1$, then

$$
\frac{1}{p_{1}-1}=\frac{1}{2-1}=1
$$

Hence $\sum_{j=1}^{n} \frac{1}{p_{j}-1} \leq 1+\sum_{j=2}^{n} \frac{1}{p_{j-1}}=1+\sum_{j=1}^{n-1} \frac{1}{p_{j}}$.
e) We already know that $\sum_{m=1}^{n} \frac{1}{m}$ is unbounded as $n \rightarrow+\infty$ and its logarithm too, so the left hand side of (2) diverges. Hence, $\lim _{n \rightarrow+\infty} \sum_{j=1}^{n-1} \frac{1}{p_{j}}=+\infty$.

Problem 4.

a) Base case: for $n=2$, the equality trivially reduces to $A_{1} \cap A_{2}=A_{1} \cap A_{2}$.

Induction step: Assume $A_{1} \cap\left(A_{2} \cup \ldots \cup A_{n}\right)=\left(A_{1} \cap A_{2}\right) \cup\left(A_{1} \cap A_{3}\right) \cup \ldots \cup\left(A_{1} \cap A_{n}\right)$, for fixed $n \geq 2$. Thus, by the associative property of the union, and the distributive property of union and intersection,

$$
\begin{aligned}
A_{1} \cap\left(A_{2} \cup \ldots \cup A_{n+1}\right) & =A_{1} \cap\left(\left(A_{2} \cup \ldots \cup A_{n}\right) \cup A_{n+1}\right) \\
& =\left(A_{1} \cap\left(A_{2} \cup \ldots \cup A_{n}\right)\right) \cup\left(A_{1} \cap A_{n+1}\right) \\
& =\left(A_{1} \cap A_{2}\right) \cup\left(A_{1} \cap A_{2}\right) \cup \ldots \cup\left(A_{1} \cap A_{n}\right) \cup\left(A_{1} \cap A_{n+1}\right),
\end{aligned}
$$

where in the last equality we have used the inductive hypothesis. In this way we are able to prove the claim for the $n+1$ sets $A_{1}, \cdots A_{n+1}$.
b) Base case: for $n=1$, it is true that $13 \mid 17-4$.

Induction step: Given $n \geq 1$, assume that $13 \mid 17^{n}-4^{n}$. Then, there exists k such that $17^{n}-4^{n}=13 k$. Consequently,

$$
\begin{aligned}
17^{n+1}-4^{n+1} & =17 \cdot 17^{n}-4^{n+1}=13 \cdot 17^{n}+4 \cdot 17^{n}-4^{n+1}=13 \cdot 17^{n}+4 \cdot\left(17^{n}-4^{n}\right) \\
& =13 \cdot 17^{n}+4 \cdot 13 \cdot k=13 \cdot\left(17^{n}+4 \cdot k\right)
\end{aligned}
$$

Hence, $13 \mid 17^{n+1}-4^{n+1}$.
c) Base cases: $32=3 \cdot 9+5,33=2 \cdot 9+3 \cdot 5,34=9+5 \cdot 5,35=7 \cdot 5,36=9 \cdot 4$.

Induction step: Assume we already know how to pay k francs, $32 \leq k \leq n$. If we want to pay $n+1$ francs, for $n \geq 36$, first pay $n-4$ francs (we know how to do this by induction hypothesis), and add a extra coin of 5 francs.
d) Base case: $\sum_{i=0}^{0}(-2)^{i}=1=\frac{(-1)^{0} \cdot 2+1}{3}$.

Induction step: Assume $\sum_{i=0}^{n}(-2)^{i}=\frac{(-1)^{n} \cdot 2^{n+1}+1}{3}$, then:

$$
\begin{aligned}
\sum_{i=0}^{n+1}(-2)^{i} & =\sum_{i=0}^{n}(-2)^{i}+(-2)^{n+1}=\frac{(-1)^{n} \cdot 2^{n+1}+1}{3}+(-2)^{n+1} \\
& =\frac{(-1)^{n} \cdot 2^{n+1}+1+3 \cdot(-2)^{n+1}}{3}=\frac{(-1)^{n} \cdot 2^{n+1}+3 \cdot(-1) \cdot(-1)^{n} \cdot 2^{n+1}+1}{3} \\
& =\frac{(-1)^{n} \cdot 2^{n+1}(1-3)+1}{3}=\frac{(-1)^{n} \cdot 2^{n+1}(-2)+1}{3} \\
& =\frac{(-1)^{n+1} \cdot 2^{n+2}+1}{3} .
\end{aligned}
$$

Problem 5. The error lies in the fact that we proved a single base step. Indeed, the induction step works for $n \geq 2$. In other words, we are able to infer that all sets of $n+1$ girls contain elements of the same hair color using the fact that the same statement holds with n, only for
$n \geq 2$. We are not able to prove the case $n=2$ from the case $n=1$ simply because if we remove g and then another random girl, we are left with the empty set! Consequently, we would need to prove a second base step for $n=2$, i.e., we should show that all pair of girls have the same hair color. This last statement is equivalent to the statement of the "theorem" and is, obviously, false.

