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Problem 1.

a) We look at the 104 factors that appear in 104! = 1 · 2 · . . . · 104. Out of those, exactly⌊
104

5

⌋
= 20 are divisible by 5, of which

⌊
104

25

⌋
= 4 are divisible by 25. So 20−4 = 16 factors

contribute with 5 and 4 contribute with 52. Thus 524 | 104! and 525 - 104!.

In a similar manner, we have that

⌊
104

2

⌋
= 52 > 24 factors are divisible by two, thus

224 | 104!.

Since 524 and 224 are coprime, their product 1024 also divides 104! and furthermore 1025 - 104!,
because 525 - 104!. This means there are exactly 24 zeroes in the decimal representation of
104!.

b) Using Fermat’s Little Theorem (see last problem set), we have 2553−1 ≡ 1 (mod 53). Since
3702298 ≡ 2 (mod 52), there is m ∈ N such that 3702298 = 52m + 2. We can then write

253702298 ≡ 2552m+2 ≡ 1 · 252 ≡ 42 (mod 53).

So the answer is 42.

c) False: 21 ≡ 1 (mod 4) but 7 ≡ 3 (mod 4) and 7 | 21.

d) True. Since p, q > 2, there are both odd, so p ≡ q ≡ 1 (mod 2). Then p · q + 1 ≡ 1 · 1 + 1 ≡
0 (mod 2). and so 2 | (p · q + 1). Since p · q + 1 > 2, it is not prime.

e) Let p be one of the primes. Since p > 2 we have p ≡ 1 (mod 2). The other prime q is either
p + 1 or p− 1. However, we have q ≡ 1 + 1 ≡ 1− 1 ≡ 0 (mod 2). Then 2 | q and q > 2 so q
is not prime. Contradiction!

Problem 2. The representation n = 2k +j with k ∈ N and j ∈ {0, . . . , 2k−1} is unique because
the binary representation of any natural number is unique. Alternatively, the uniqueness follows
from the uniqueness of quotient and remainder of the division of n by 2k. Hence,

∑
n≥1

1

n
=
∑
k≥1

2k−1∑
j=0

1

2k + j
≥
∑
k≥1

2k−1∑
j=0

1

2 · 2k

where the last inequality comes from the fact that j < 2k. Now,

∑
k≥1

2k−1∑
j=0

1

2 · 2k
=

1

2

∑
k≥1

1 = +∞

As a result, ∑
n≥1

1

n
= +∞.
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Problem 3.

a) The cardinality of An and the number of terms on the left hand side of (1) is (n + 1)n. By
the uniqueness of the factorization, for each element m of An, the term 1/m appears in the
expansion of the product on the left. Thus, the expansion of this product is a rearrangement
of the finite sum on the right.

b) Recall that for any a 6= 1,
n∑

i=0

ai =
1− an+1

1− a
.

Hence,

1 +
1

pj
+ . . . +

1

pnj
=

n∑
i=0

1

pij
=

1− 1
pn+1
j

1− 1
pj

≤ 1

1− 1
pj

=
pj

pj − 1
= 1 +

1

pj − 1

c) Using (1), we obtain that ln
∑

m∈An

1

m
= ln

n∏
i=1

n∑
j=0

1

pji
. Since ln(·) is a monotonous function,

using point b), we have that

ln

n∏
i=1

n∑
j=0

1

pnj
≤ ln

n∏
i=1

(
1 +

1

pi − 1

)
=

n∑
i=1

ln

(
1 +

1

pi − 1

)
.

Let us define f(x) = ln(x+ 1) and g(x) = x. Then g(0) = f(0) = 0 and g′(x) = 1 >
1

1 + x
=

f ′(x) for any x ≥ 0. Consequently f(x) ≤ g(x) for any x ≥ 0. As a result,

n∑
i=1

ln

(
1 +

1

pi − 1

)
≤

n∑
i=1

1

pi − 1

Putting all these results together, we obtain

n∑
i=1

1

pi − 1
≥ ln

∑
m∈An

1

m
.

d) {1, . . . , n} ⊆ An because for all j ∈ {1, . . . , n}, the unique factorization of j contains only
primes from {p1, . . . , pn} as pn ≥ n. Also the multiplicity of each prime needs to be at most
n, since pn+1

i ≥ 2n+1 > n.

This proves that

ln
∑

m∈An

1

m
≥ ln

n∑
m=1

1

m
.

As concerns the left hand side, note that for j ≥ 2,

1

pj − 1
≤ 1

pj−1
.

In addition, if j = 1, then
1

p1 − 1
=

1

2− 1
= 1.

Hence

n∑
j=1

1

pj − 1
≤ 1 +

n∑
j=2

1

pj−1
= 1 +

n−1∑
j=1

1

pj
.
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e) We already know that

n∑
m=1

1

m
is unbounded as n → +∞ and its logarithm too, so the left

hand side of (2) diverges. Hence, lim
n→+∞

n−1∑
j=1

1

pj
= +∞.

Problem 4.

a) Base case: for n = 2, the equality trivially reduces to A1 ∩A2 = A1 ∩A2.
Induction step: Assume A1 ∩ (A2 ∪ . . .∪An) = (A1 ∩A2)∪ (A1 ∩A3)∪ . . . ∪ (A1 ∩An), for
fixed n ≥ 2. Thus, by the associative property of the union, and the distributive property of
union and intersection,

A1 ∩ (A2 ∪ . . . ∪An+1) = A1 ∩ ((A2 ∪ . . . ∪An) ∪An+1)

= (A1 ∩ (A2 ∪ . . . ∪An)) ∪ (A1 ∩An+1)

= (A1 ∩A2) ∪ (A1 ∩A2) ∪ . . . ∪ (A1 ∩An) ∪ (A1 ∩An+1),

where in the last equality we have used the inductive hypothesis. In this way we are able to
prove the claim for the n + 1 sets A1, · · ·An+1.

b) Base case: for n = 1, it is true that 13 | 17− 4.
Induction step: Given n ≥ 1, assume that 13 | 17n − 4n. Then, there exists k such that
17n − 4n = 13k. Consequently,

17n+1 − 4n+1 = 17 · 17n − 4n+1 = 13 · 17n + 4 · 17n − 4n+1 = 13 · 17n + 4 · (17n − 4n)

= 13 · 17n + 4 · 13 · k = 13 · (17n + 4 · k).

Hence, 13 | 17n+1 − 4n+1.

c) Base cases: 32 = 3 · 9 + 5, 33 = 2 · 9 + 3 · 5, 34 = 9 + 5 · 5, 35 = 7 · 5, 36 = 9 · 4.
Induction step: Assume we already know how to pay k francs, 32 ≤ k ≤ n. If we want to
pay n + 1 francs, for n ≥ 36, first pay n − 4 francs (we know how to do this by induction
hypothesis), and add a extra coin of 5 francs.

d) Base case:

0∑
i=0

(−2)i = 1 =
(−1)0 · 2 + 1

3
.

Induction step: Assume

n∑
i=0

(−2)i =
(−1)n · 2n+1 + 1

3
, then:

n+1∑
i=0

(−2)i =

n∑
i=0

(−2)i + (−2)n+1 =
(−1)n · 2n+1 + 1

3
+ (−2)n+1

=
(−1)n · 2n+1 + 1 + 3 · (−2)n+1

3
=

(−1)n · 2n+1 + 3 · (−1) · (−1)n · 2n+1 + 1

3

=
(−1)n · 2n+1(1− 3) + 1

3
=

(−1)n · 2n+1(−2) + 1

3

=
(−1)n+1 · 2n+2 + 1

3
.

Problem 5. The error lies in the fact that we proved a single base step. Indeed, the induction
step works for n ≥ 2. In other words, we are able to infer that all sets of n + 1 girls contain
elements of the same hair color using the fact that the same statement holds with n, only for
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n ≥ 2. We are not able to prove the case n = 2 from the case n = 1 simply because if we remove
g and then another random girl, we are left with the empty set! Consequently, we would need
to prove a second base step for n = 2, i.e., we should show that all pair of girls have the same
hair color. This last statement is equivalent to the statement of the “theorem” and is, obviously,
false.
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