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Problem 1.
a) We look at the 104 factors that appear in 104! = 1-2....-104. Out of those, exactly

104 104
{5J = 20 are divisible by 5, of which {25 = 4 are divisible by 25. So 20 —4 = 16 factors

contribute with 5 and 4 contribute with 52. Thus 52 | 104! and 5% { 104!.

104
In a similar manner, we have that {2J = 52 > 24 factors are divisible by two, thus

224 | 104!,

Since 52* and 224 are coprime, their product 10?* also divides 104! and furthermore 1025 { 104!,
because 5%° § 104!. This means there are exactly 24 zeroes in the decimal representation of
104!.

Using Fermat’s Little Theorem (see last problem set), we have 253~ = 1 (mod 53). Since
3702298 = 2 (mod 52), there is m € N such that 3702298 = 52m + 2. We can then write

253702298 — 9552m+2 — 1. 952 = 42 (mod 53).
So the answer is 42.
False: 21 =1 (mod 4) but 7 =3 (mod 4) and 7 | 21.

True. Since p,q > 2, there are both odd, sop=¢=1 (mod 2). Thenp-q+1=1-1+1=
0 (mod 2). and so 2| (p-q+1). Since p- g+ 1 > 2, it is not prime.

Let p be one of the primes. Since p > 2 we have p =1 (mod 2). The other prime ¢ is either
p+1orp—1. However, we haveq=14+1=1—1=0 (mod 2). Then 2| ¢ and ¢ >2so ¢
is not prime. Contradiction!

Problem 2. The representation n = 2¥ +j with k € Nand j € {0,...,2* —1} is unique because
the binary representation of any natural number is unique. Alternatively, the uniqueness follows
from the uniqueness of quotient and remainder of the division of n by 2*. Hence,
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where the last inequality comes from the fact that j < 2*. Now,

201 1
DD g =g =t

k>1 j=0 k>1

As a result,



Problem 3.

a)

The cardinality of A,, and the number of terms on the left hand side of (1) is (n + 1)™. By
the uniqueness of the factorization, for each element m of A,, the term 1/m appears in the
expansion of the product on the left. Thus, the expansion of this product is a rearrangement
of the finite sum on the right.

Recall that for any a # 1,
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_ 1
1 P 1 ; 1
I+ Z o < T = Bo—14
pj Zop] —5 1=y pi—1 pj—1
Using (1), we obtain that In Z lnH Z —. Since In(+) is a monotonous function,
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using point b), we have that

mHZf <lnH<1+p_1) im( pi1_1>.
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Let us define f(x) =In(z +1) and g(z) = z. Then g(0) = f(0) =0 and ¢'(z) =1 > Tz
x
f'(x) for any x > 0. Consequently f(z) < g(z) for any > 0. As a result,
N |
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Putting all these results together, we obtain Z > In Z —
i= 1 mEAn

{1,...,n} C A, because for all j € {1,...,n}, the unique factorization of j contains only
primes from {p1,...,pn} as p, > n. Also the multiplicity of each prime needs to be at most

n, since pftt > 271 > p,
This proves that
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As concerns the left hand side, note that for j > 2,
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In addition, if j = 1, then
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e) We already know that Z — is unbounded as n — +oo and its logarithm too, so the left
m

m=1
n—1
hand side of (2) diverges. Hence, lim Z 1 +o0
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Problem 4.

a)

Base case: for n = 2, the equality trivially reduces to A1 N Ay = A3 N As.

Induction step: Assume A; N (A2U...UA,) =(A1NA)U(ANA3)U ... U(A1NA,), for
fixed n > 2. Thus, by the associative property of the union, and the distributive property of
union and intersection,

AiN(AU...UA1) =A1N((A2U...UA,) UA,41)
= (A1 N(A2U...UA))U(A1NA,11)
=(A1NA)UAINA)U...UAITNA)U (A NAsp1),

where in the last equality we have used the inductive hypothesis. In this way we are able to
prove the claim for the n + 1 sets Ay, Apy1.

Base case: for n =1, it is true that 13 | 17 — 4.
Induction step: Given n > 1, assume that 13 | 17" — 4. Then, there exists k such that
17" — 4™ = 13k. Consequently,

177 gt = 17 17 AT = 13 1T 41T - 4T = 1317 4 (17 — 47
=13-17"+4-13-k=13- (17" +4 - k).

Hence, 13 | 177+ — 47 +1,

Base cases: 32=3-9+5,33=2-94+3-5,34=945-5,35=7-5,36=9-4.

Induction step: Assume we already know how to pay k francs, 32 < k < n. If we want to
pay n + 1 francs, for n > 36, first pay n — 4 francs (we know how to do this by induction
hypothesis), and add a extra coin of 5 francs.
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Induction step: Assume Z (-2)' = o2+l

, then:
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Problem 5. The error lies in the fact that we proved a single base step. Indeed, the induction
step works for n > 2. In other words, we are able to infer that all sets of n 4+ 1 girls contain
elements of the same hair color using the fact that the same statement holds with n, only for



n > 2. We are not able to prove the case n = 2 from the case n = 1 simply because if we remove
g and then another random girl, we are left with the empty set! Consequently, we would need
to prove a second base step for n = 2, i.e., we should show that all pair of girls have the same
hair color. This last statement is equivalent to the statement of the “theorem” and is, obviously,
false.



