Solution to Problem Set 5

Date: 18.10.2013

Problem 1. Since BubbleSort swaps neighboring elements starting from a_{1}, if $a_{1}, a_{2}, \ldots, a_{k}$ are in decreasing order (i.e., $a_{1}>a_{2}>\ldots>a_{k}$) then we require the maximum number of computations to sort them. In particular, the number of required operations is given by

$$
\sum_{i=1}^{k-1} i=\frac{k(k-1)}{2}=O\left(k^{2}\right)
$$

Indeed, at the end of step i, the elements from position $k-i+1$ to position k are already sorted in increasing order by definition of the algorithm. Hence, no more than $k-i-1$ swaps are possible at step $i+1$ and the total number of swaps is upper bounded by $\sum_{i=1}^{k}(k-i)=\sum_{i=0}^{k-1} i=\frac{k(k-1)}{2}$. The upper bound is achieved in the worst case scenario described above.

Problem 2.

a) Algorithm 1 always terminates. Algorithm 2 terminates if and only if $m \geq 0$.
b) For Algorithm 1, the main loop runs exactly n times, with $j=1, \ldots, n$. For every j, the internal loop runs $m=2^{j-1}$ times. Thus, the text gets printed $\sum_{j=1}^{n} 2^{j-1}=2^{n}-1$ times.
Concerning Algorithm 2, let us look at the evolution of $\ln m$ (natural logarithm of m). Then, as long as $m>0$ and if t is initialized to $\ln m$, the algorithm is equivalent to the following:

```
Algorithm 2,
Require: \(t\) : real number
    while \(t>1\) do
        \(t \leftarrow t-\ln \frac{3}{2}\)
        print "Hello world"
```

The number of times that Algorithm 2' prints "Hello world" is given by

$$
\begin{cases}\left\lceil\frac{t-1}{\ln 3 / 2}\right\rceil & \text { if } t>1 \\ 0 & \text { otherwise }\end{cases}
$$

which yields for Algorithm 2 (i.e., for the initial problem)

$$
\begin{cases}\left\lceil\frac{\ln m-1}{\ln 3 / 2}\right\rceil & \text { if } m>e \\ 0 & \text { if } 0 \leq m \leq e \\ \infty & \text { otherwise }\end{cases}
$$

Problem 3.

Lemma. Let $p(n)=a_{k} n^{k}+\cdots+a_{1} n+a_{0}$ be a polynomial with real coefficients and $a_{k} \neq 0$. Then there are constants $c_{1}, c_{2}>0$ and $n_{0} \in \mathbb{N}$ such that for $n \geq n_{0}, c_{1} n^{k} \leq|p(n)| \leq c_{2} n^{k}$. In other words, $p(n)=\Theta\left(n^{k}\right)$.

Proof. Pick $c_{2}=\sum_{j=0}^{k}\left|a_{j}\right|$. Then for $n \geq 1$ we have

$$
|p(n)|=\left|\sum_{j=0}^{k} a_{j} n^{j}\right| \leq \sum_{j=0}^{k}\left|a_{j} n^{j}\right| \leq \sum_{j=0}^{k}\left|a_{j} n^{k}\right|=\sum_{j=0}^{k}\left|a_{j}\right| n^{k}=c_{2} n^{k}
$$

Let $b=\sum_{j=0}^{k-1}\left|a_{j}\right|$. Then for $n \geq 1$ we have
$|p(n)|=\left|\sum_{j=0}^{k} a_{j} n^{j}\right| \geq\left|a_{k} n^{k}\right|-\left|\sum_{j=0}^{k-1} a_{j} n^{j}\right| \geq\left|a_{k}\right| n^{k}-\sum_{j=0}^{k-1}\left|a_{j}\right| n^{j} \geq\left|a_{k}\right| n^{k}-\sum_{j=0}^{k-1}\left|a_{j}\right| n^{k-1}=\left|a_{k}\right| n^{k}-b n^{k-1}$.
Pick $c_{1}=\frac{\left|a_{k}\right|}{2}$. Then for $n \geq \frac{2 b}{\left|a_{k}\right|}$ we have

$$
|p(n)| \geq\left|a_{k}\right| n^{k}-b n^{k-1}=\left|a_{k}\right| n^{k}-\frac{b n^{k}}{n} \geq\left|a_{k}\right| n^{k}-\frac{b\left|a_{k}\right| n^{k}}{2 b}=c_{1} n^{k}
$$

a) n^{2}. Indeed, $f(n)=\sum_{i=0}^{n} 3 i+1=3 \frac{n(n+1)}{2}+n+1=\Theta\left(n^{2}\right)$ by the previous lemma.
b) n^{2}. Indeed, $g(n)=\sum_{i=0}^{n-1} 2 i+1=2 \frac{n(n-1)}{2}+n=\Theta\left(n^{2}\right)$ by the previous lemma.
c) n. Indeed, let $p(n)=3-2 n^{4}-4 n$ and $q(n)=2 n^{3}-3 n$. By the above lemma there exist positive constants $c_{1}, c_{2}, c_{1}^{\prime}, c_{2}^{\prime}$ and n_{0} such that for $n>n_{0}$

$$
c_{1} n^{4} \leq|p(n)| \leq c_{2} n^{4} \quad \text { and } \quad c_{1}^{\prime} n^{3} \leq|q(n)| \leq c_{2}^{\prime} n^{3}
$$

Then

$$
\frac{c_{1}}{c_{2}^{\prime}} n \leq\left|\frac{p(n)}{q(n)}\right| \leq \frac{c_{2}}{c_{1}^{\prime}} n
$$

d) n^{4}. Indeed, $h(n)=\sum_{i=0}^{n^{2}} i=\frac{n^{2}\left(n^{2}+1\right)}{2}=\Theta\left(n^{4}\right)$ by the previous lemma.
e) n^{2}. Indeed, $\lceil n+2\rceil \leq n+3$ and $\lceil n / 3\rceil \leq n / 3+1$.
f) n^{4}. Indeed, $3 n^{4}+\log _{2} n^{8}$ is upper bounded by $4 n^{4}$ for all $n \geq 1$.

Problem 4.

$\frac{1}{n^{n}}$	$0,0097^{n}$	$\left(-\frac{1}{2}\right)^{n}$	$n^{-e^{4}}$	$-\frac{1}{\sqrt{n}}$	42
n	$n \cdot \log \log n$	$n \cdot \log n$	n^{2013}	$n^{\log n}$	$e^{\sqrt{n}}$
$n \cdot 2^{n}$	2.0001^{n}	e^{n}	$(-3)^{n}$	$e^{2 n}$	$n!$

Problem 5.

а) $\left|\frac{3 n-8-4 n^{3}}{2 n-1}\right| \leq\left|\frac{3 n^{3}+8 n^{3}+4 n^{3}}{2 n-n}\right|=15\left|n^{2}\right|$
b) $1^{3}+2^{3}+\cdots+n^{3} \leq \underbrace{n^{3}+n^{3}+\cdots+n^{3}}_{n \text { times }}=n^{4}$
c) $4^{n}+n \cdot 2^{n} \leq 4^{n}+4^{n}=2 \cdot 4^{n}$, because $n \leq 2^{n}$ is true for all n.

