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Problem 1. Since BubbleSort swaps neighboring elements starting from a1, if a1, a2, . . . , ak
are in decreasing order (i.e., a1 > a2 > . . . > ak) then we require the maximum number of
computations to sort them. In particular, the number of required operations is given by

k−1∑
i=1

i =
k(k − 1)

2
= O(k2).

Indeed, at the end of step i, the elements from position k−i+1 to position k are already sorted in
increasing order by definition of the algorithm. Hence, no more than k− i−1 swaps are possible

at step i + 1 and the total number of swaps is upper bounded by

k∑
i=1

(k − i) =
k−1∑
i=0

i =
k(k − 1)

2
.

The upper bound is achieved in the worst case scenario described above.

Problem 2.

a) Algorithm 1 always terminates. Algorithm 2 terminates if and only if m ≥ 0.

b) For Algorithm 1, the main loop runs exactly n times, with j = 1, . . . , n. For every j, the

internal loop runs m = 2j−1 times. Thus, the text gets printed

n∑
j=1

2j−1 = 2n − 1 times.

Concerning Algorithm 2, let us look at the evolution of lnm (natural logarithm of m).
Then, as long as m > 0 and if t is initialized to lnm, the algorithm is equivalent to the
following:

Algorithm 2 ’

Require: t: real number
1: while t > 1 do

2: t ← t− ln
3

2
3: print “Hello world”

The number of times that Algorithm 2’ prints “Hello world” is given by
⌈
t− 1

ln 3/2

⌉
if t > 1,

0 otherwise,

which yields for Algorithm 2 (i.e., for the initial problem)
⌈

lnm− 1

ln 3/2

⌉
if m > e,

0 if 0 ≤ m ≤ e,

∞ otherwise.
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Problem 3.

Lemma. Let p(n) = akn
k + · · · + a1n + a0 be a polynomial with real coefficients and ak 6= 0.

Then there are constants c1, c2 > 0 and n0 ∈ N such that for n ≥ n0, c1n
k ≤ |p(n)| ≤ c2n

k. In
other words, p(n) = Θ(nk).

Proof. Pick c2 =
∑k

j=0 |aj |. Then for n ≥ 1 we have

|p(n)| = |
k∑

j=0

ajn
j | ≤

k∑
j=0

|ajnj | ≤
k∑

j=0

|ajnk| =
k∑

j=0

|aj |nk = c2n
k.

Let b =
∑k−1

j=0 |aj |. Then for n ≥ 1 we have

|p(n)| = |
k∑

j=0

ajn
j | ≥ |aknk|−

∣∣∣∣∣∣
k−1∑
j=0

ajn
j

∣∣∣∣∣∣ ≥ |ak|nk−
k−1∑
j=0

|aj |nj ≥ |ak|nk−
k−1∑
j=0

|aj |nk−1 = |ak|nk−bnk−1.

Pick c1 =
|ak|
2

. Then for n ≥ 2b

|ak|
we have

|p(n)| ≥ |ak|nk − bnk−1 = |ak|nk − bnk

n
≥ |ak|nk − b|ak|nk

2b
= c1n

k.

a) n2. Indeed, f(n) =

n∑
i=0

3i + 1 = 3
n(n + 1)

2
+ n + 1 = Θ(n2) by the previous lemma.

b) n2. Indeed, g(n) =

n−1∑
i=0

2i + 1 = 2
n(n− 1)

2
+ n = Θ(n2) by the previous lemma.

c) n. Indeed, let p(n) = 3 − 2n4 − 4n and q(n) = 2n3 − 3n. By the above lemma there exist
positive constants c1, c2, c

′
1, c
′
2 and n0 such that for n > n0

c1n
4 ≤ |p(n)| ≤ c2n

4 and c′1n
3 ≤ |q(n)| ≤ c′2n

3.

Then
c1
c′2

n ≤
∣∣∣∣p(n)

q(n)

∣∣∣∣ ≤ c2
c′1

n.

d) n4. Indeed, h(n) =

n2∑
i=0

i =
n2(n2 + 1)

2
= Θ(n4) by the previous lemma.

e) n2. Indeed, dn + 2e ≤ n + 3 and dn/3e ≤ n/3 + 1.

f) n4. Indeed, 3n4 + log2 n
8 is upper bounded by 4n4 for all n ≥ 1.

Problem 4.
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Problem 5.
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a)

∣∣∣∣3n− 8− 4n3

2n− 1

∣∣∣∣ ≤ ∣∣∣∣3n3 + 8n3 + 4n3

2n− n

∣∣∣∣ = 15|n2|

b) 13 + 23 + · · ·+ n3 ≤ n3 + n3 + · · ·+ n3︸ ︷︷ ︸
n times

= n4

c) 4n + n · 2n ≤ 4n + 4n = 2 · 4n, because n ≤ 2n is true for all n.
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