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Problem 1. Since BubbleSort swaps neighboring elements starting from a4, if a1, aq, ..., ag
are in decreasing order (i.e., a; > as > ... > aj) then we require the maximum number of

computations to sort them. In particular, the number of required operations is given by
k—1
kE(k—1
> i= ME—1) 5 ) — o).
i=1

Indeed, at the end of step 7, the elements from position k—i+1 to position k are already sorted in
increasing order by definition of the algorithm. Hence, no more than k& —4 — 1 swaps are possible

k k—1
k(k—1
at step ¢ + 1 and the total number of swaps is upper bounded by Z(k —1i) = Zz = %

i=1 i=0
The upper bound is achieved in the worst case scenario described above.

Problem 2.
a) Algorithm 1 always terminates. Algorithm 2 terminates if and only if m > 0.

b) For Algorithm 1, the main loop runs exactly n times, with j = 1,...,n. For every j, the

n
internal loop runs m = 277! times. Thus, the text gets printed Z 27=1 = 9" _ 1 times.

j=1
Concerning Algorithm 2, let us look at the evolution of Inm (natural logarithm of m).
Then, as long as m > 0 and if ¢ is initialized to Inm, the algorithm is equivalent to the
following:

Algorithm 2°
Require: t: real number
1: while ¢t > 1 do

3
2: t<«t—In—-

3: print “Hello world”

The number of times that Algorithm 2’ prints “Hello world” is given by

t—1
il it > 1
Lng/J =t

0 otherwise,

which yields for Algorithm 2 (i.e., for the initial problem)

lmm =1} .
In3/2 ’
0 if0<m<e,
00 otherwise.



Problem 3.

Lemma. Let p(n) = agn® + -+ a1n + ap be a polynomial with real coefficients and aj, # 0.
Then there are constants cy,ca > 0 and ng € N such that for n > ng, cin® < |p(n)| < can®. In
other words, p(n) = O(n").

Proof. Pick co = Z?:o la;|. Then for n > 1 we have

k k k k
) =1 a;n| < an?| <> lan®| = |ain® = con
j=0 j=0 j=0 j=0

Let b= Z?;& |a;|. Then for n > 1 we have

k k-1 k-1 k-1
lp(n)| = |Zajnj\ > [agn|— zajnj > |ak|nk*2 la|n’ > |ak|”k*2 laj|n*~" = |ag|n®—bn*1.
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Pick ¢; = M. Then for n > — we have
2 |(lk|

_ bnk blag |n*
p(0)] > Jauln® — b1 = Jafnt — 7 > fay b — AT

= 1
a) n?. Indeed, f(n) = Z Ji+1= 3@ +n+ 1= 0(n?) by the previous lemma.
i=0

n—1
—1
b) n?. Indeed, g(n) = Z 2i+1= 2% +n = O(n?) by the previous lemma.
i=0

c¢) n. Indeed, let p(n) = 3 — 2n* — 4n and ¢(n) = 2n3 — 3n. By the above lemma there exist
positive constants ¢y, ca, ¢, ¢ and ng such that for n > ng

cint < |p(n)| < eon? and  dn® <|q(n)| < chns.
Then
°, < ‘p( )| < e,
c q(n c}
n’ 20,2 1
d) n*. Indeed, h(n) =Y i= n(nf—l—) = O(n*) by the previous lemma.
i=0
e) n?. Indeed, [n+2] <n+3 and [n/3] <n/3+1.
f) n*. Indeed, 3n* + log, n® is upper bounded by 4n* for all n > 1.
Problem 4.
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3n3 + 8n2 4 4n?
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a) = 15|n?|

<

b) 12 +2° - 40 <p’ 40+ 40’ =n

n times

c) 4"+ mn-2" < 4" 44" =2 4" because n < 2" is true for all n.



