Solution to Graded Problem Set 4

Date: 11.10.2013
Due date: 18.10.2013

Problem 1.

(a) Let a_{n} be the salary in year n. The following relation holds:

$$
a_{n+1}=a_{n}\left(1+\frac{3}{100}\right),
$$

with initial condition $a_{0}=40000$.
Hence, $a_{n}=a_{0}\left(1+\frac{3}{100}\right)^{n}=40000 \cdot(1.03)^{n}$.
(b) In a similar manner, $a_{n}=a_{0} \cdot\left(1+\frac{5}{100}\right)^{n}=40000 \cdot(1.05)^{n}$.
(c) If there was no 1000 CHF raise, the final amount would be $a_{0} \cdot\left(1+\frac{2}{100}\right)^{n}$ exactly as in the previous cases. The extra 1000 CHF obtained in the first year gives $1000 \cdot\left(1+\frac{2}{100}\right)^{n-1}$ at the n-th year, since it will be raised $n-1$ times by 2%. Likewise, the extra 1000 CHF obtained in the k-th year will become $1000 \cdot\left(1+\frac{2}{100}\right)^{n-k}$ at the end.
Adding all these contributions we obtain:

$$
\begin{aligned}
a_{n} & =a_{0}\left(1+\frac{2}{100}\right)^{n}+\sum_{k=1}^{n} 1000 \cdot\left(1+\frac{2}{100}\right)^{n-k} \\
& =a_{0}\left(1+\frac{2}{100}\right)^{n}+1000 \cdot \sum_{j=0}^{n-1}\left(1+\frac{2}{100}\right)^{j} \\
& =a_{0}\left(1+\frac{2}{100}\right)^{n}+1000 \cdot \frac{\left(1+\frac{2}{100}\right)^{n}-1}{1+\frac{2}{100}-1} \\
& =40000 \cdot(1,02)^{n}+1000 \cdot \frac{(1.02)^{n}-1}{\frac{2}{100}}
\end{aligned}
$$

Problem 2. After n years the population of the island, according to the predictions of the model is given by

$$
\begin{gathered}
10000+\sum_{i=98}^{98+n-1} i=10000+\sum_{i=1}^{97+n} i-\sum_{i=1}^{97} i \\
=10000+\frac{(98+n)(97+n)}{2}-\frac{97 \cdot 98}{2}=\frac{n^{2}}{2}+\frac{195}{2} n+10000 .
\end{gathered}
$$

Hence, the population exceeds 20000 units after n years, if and only if the following condition is satisfied

$$
10000+\frac{n^{2}}{2}+\frac{195}{2} n>20000 \Longleftrightarrow n^{2}+195 n-20000>0
$$

The associated equation is $n^{2}+195 n-20000=0$, which has the solutions :

$$
n_{1,2}=\frac{-195 \pm \sqrt{195^{2}+4 \times 20000}}{2}
$$

Then, we need

$$
n>\frac{\sqrt{195^{2}+4 \times 20000}-195}{2} \simeq 74.27
$$

In conclusion, in $n=75$ years, the population is going to exceed the value of 20000 units.
Problem 3. Consider the function $f: \mathbb{N} \rightarrow A$ defined as

$$
\begin{aligned}
& f(0)=e \\
& f(1)=e^{e} \\
& f(2)=e^{e^{e}} \\
& f(3)=e^{e^{e}} \\
& f(n)=n-4, \quad \text { for } n \geq 4 .
\end{aligned}
$$

It is easy to check that f is bijective. Hence $|A|=|\mathbb{N}|$.

Problem 4.

(a) Consider $f: \mathbb{R} \rightarrow(-1,1)$, defined as

$$
f(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}
$$

As showed in Problem 6 of the previous exercise session, f is bijective.
(b) Define $A=\{1 / n: n \in \mathbb{Z}, n \geq 1\}$ and $B=(0,1) \backslash A$. Note that $(0,1)=A \cup B \backslash\{1\}$ and $(0,1]=A \cup B$. Consider the function $f:(0,1) \rightarrow(0,1]$, defined as

$$
\begin{cases}f(x)=x, & \text { if } x \in B \\ f\left(\frac{1}{n}\right)=\frac{1}{n-1}, & \text { for } n \in \mathbb{Z}, n \geq 2\end{cases}
$$

Then, f is bijective, which implies the thesis.

Problem 5. Observe that $|\mathcal{P}(\emptyset)|=1$, so we need to show that there exists a unique strictly increasing function $f: \Delta \rightarrow \Delta$ with $\Delta=\left\{\delta_{1}, \ldots, \delta_{2013}\right\}$. Without loss of generality we can assume that $\delta_{1} \leq \delta_{2} \leq \ldots \leq \delta_{2013}$.

Clearly, $f(x)=x$ satisfies the constraints, so we need to show that there exists no other strictly increasing function from Δ to Δ. Suppose by contradiction that there exists a function g such that $g\left(\delta_{i}\right)=\delta_{j}$ with $j \neq i$.

Case I: $j>i$.

There are $2013-i$ elements of the domain that have to be sent to $2013-j$ elements of codomain, since $\delta_{k}>\delta_{i} \Rightarrow g\left(\delta_{k}\right)>g\left(\delta_{i}\right)$. As $2013-i>2013-j$, by pigeonhole, two of those elements will be mapped in the same element of the codomain. Hence, g cannot be injective and, therefore, strictly increasing. We reach a contradiction.

Case II: $j<i$.

There are $i-1$ elements of the domain that have to be mapped in $j-1$ elements of the codomain, because g is strictly increasing. As $i-1>j-1$, by pigeonhole, g cannot be injective and, therefore, we reach a contradiction.

As a result, $f(x)=x$ is the only strictly increasing function from Δ to Δ and $|C|=1$.

Problem 6. Clearly, $|\mathcal{F}| \geq|\mathcal{G}|$, since all the functions from \mathbb{N} to $\{0,1\}$ can be seen as functions from \mathbb{N} to \mathbb{N}. Hence, in order to show that equality holds, it is enough to prove that $|\mathcal{F}| \leq|\mathcal{G}|$. To show that $|\mathcal{F}| \leq|\mathcal{G}|$, first observe that the elements of \mathcal{F} can be seen as infinite sequences of natural numbers (or, more formally, can be put in bijection with the infinite sequences of natural numbers). Analogously, the elements of \mathcal{G} can be seen as infinite binary strings. Consider a function $f: \mathcal{F} \rightarrow \mathcal{G}$ as follows. For every sequence of natural numbers $\left\{a_{n}\right\}_{n=0}^{\infty}$ define $f\left(\left\{a_{n}\right\}\right)$ as the binary string

Then, the function f is the desired injection from \mathcal{F} to \mathcal{G}.

