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Quantum Data Processing

Rudolf Ahlswede and Peter Löber

Abstract—We prove a data processing inequality for quantum communi-
cation channels, which states that processing a received quantum state may
never increase the mutual information between input and output states.

Index Terms—Data processing, quantum information.

I. INTRODUCTION

Our starting point was the question whether Holevo’s upper bound
could be viewed as a special case of a more general theorem, as a kind
of data processing inequality, which has been known for classical chan-
nels for a long time. This inequality is about mutual information

I(P ;W ) = H(PW )�H(PW jP )

with W a channel (a stochastic matrix) andP an input process (a
probability distribution on the channel’s domain). Here,H denotes the
(Shannon) entropy, respectively, conditional entropy (not to be con-
fused with relative entropy).1

It is one of those important theorems from classical information
theory that this purely algebraically defined mutual information gives
the capacity of the memoryless channel, just by taking the supremum
over all input processes [16]. One might interprete this number as the
information that is shared by the input processP and the output process
PW .

The concept of mutual information can easily be adapted for
quantum channels, which gives the “number” that is known as the
Holevo bound for classical communication over a quantum channel
[8], and the bound can be achieved [7], [9], [15].

It is important to notice that the quantum version of mutual informa-
tion does not use measurements at all (!). It is an algebraically defined
number that depends only on the quantum channel and an input state
(cf. Definition VI.2). If one interpretes this number again as the infor-
mation that is shared by an input stateA and the corresponding output
stateW�(A) of the quantum channelW�, our main theorem—the
quantum data processing inequality—may be formulated as follows.

Processing the channel’s output state by any physically allowed
transformationD� (one may interprete this as another quantum
channel, as well) can never increase the information that is shared by
the input and the output state

I(A;D� �W�) � I(A;W�):

We soon realized that a quantum data processing inequality is a
corollary of Uhlmann’s monotonicity theorem (see Section V) which
is a generalization of a theorem of Lieb (see [11] or [1]). Here, as in the
proof of the classical data processing inequality (which plays around
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1In Section VI we give concrete definitions for quantum channels, and they
will be exact replicates of those for classical channels.

with conditional mutual information2), convexity properties play a cen-
tral role.

Root functions(z 7! z�; 0 < � � 1) are Pick functions (cf. Section
II) and, therefore, operator monotone (cf. Section III). With the nota-
tion from Section IV we can use this fact to prove Uhlmann’s mono-
tonicity theorem (Section V). Finally (Section VI), we directly derive
the quantum data processing inequality for quantum mutual informa-
tion, and we present Holevo’s bound as its (important) corollary.

For the special but essential class of quantum operations (physical
maps) that are restrictions on physical subsystems Schumacher, West-
moreland, and Wootters established an inequality for aHolevo bound
functional[14]. This leads to the quantum data processing inequality,
too, because one gets quantum mutual information just by applying
this functional to the respective output states of the channel. Later,
Horodecki derived from this inequality for the Holevo bound func-
tional3 another bound for source coding (compression) of quantum in-
formation [10].

Indeed, we concentrated on the mutual information itself which is a
very general concept of information theory with its roots in classical
information theory. We refer the reader tocoherent informationwhich
was discussed by Schumacher and Nielsen for error correction [13] as
a very particular kind of quantum (!) information.

II. PICK FUNCTIONS

This section introduces the notion of Pick functions. We will see
in the next section that Pick functions are “operator monotone” (cf.
Corollary III.4 for a rigorous formulation), a fact that is very useful
because it is sometimes quite easy to decide whether a function is a
Pick function or not. The theory we introduce here is developed in great
detail (and with complete proofs) in [5] and [1].

Definition II.1: H� �
= fx+ iy 2 j y 0g denote the two half

spaces, respectively.P
�
= f' : H+!H+analyticg denotes the set of

Pick functions.

Remark II.2: P is a convex cone, and iff; g 2 P theng � f 2 P ,
too.

Example II.3: The function'(z)
�
= z� with 0 < � � 1 is in P . A

function

 (z)
�
= �z + � +

m

i=1

i

�i � z

with �; i > 0 and�; �i 2 is in P , too.

The next theorem shows that the latter examples give essentially (i.e.,
up to closure) all Pick functions.

Theorem II.4: Every Pick function' 2 P has a (unique) represen-
tation

'(z)
�
= �z + � +

1

x � z
�

x

x2 + 1
d�(x) (1)

with � � 0, � 2 , and� a positive Borel measure on for which
(x2 + 1)�1d�(x) < 1.

This theorem is from [5, p. 20 ff]. Its proof transforms the Pick func-
tion with an appropriate Möbius transformation (and its inverse) to a
function with a positive real part that maps the unit disk into itself. Its
real part is a positive harmonic function.

2cf. [3, p. 55] or [2, p. 32].
3He proved it with Uhlmann’s monotonicity theorem, too!.
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Definition II.5: For an open interval(a; b) � let

(a; b)
�
= H+ [H� [ (a; b)

and

P (a; b)
�
= f': (a; b)! : 'jH 2 P ^ '(�) = '(�)g:

Remark II.6: P (a; b) is a convex cone. Moreover,' 2 P (a; b)
implies that'j(a;b) is a monotonically increasing real function. (As
� mapsH+ into H+ andH� into H� it has to be real on the
real axis. Let now' = u + iv and z = x + iy. By definition
(d=dy)v(x) � 0, and the Cauchy–Riemann differential equations
imply that(d=dx)u(x) � 0 as well.)

Example II.7: The function'(z)
�
= z� with 0 < � � 1 is in

P (0;1). A function

 (z)
�
= �z + � +

m

i=1

i
�i � z

with �; i > 0, � 2 , and�i 2 n(a; b) is also inP (a; b).

Remark II.8: Let' 2 P be a Pick function and� its corresponding
Borel measure (cf. (1)). Let(a; b) 2 be an interval. Then

' 2 P (a; b), �((a; b)) = 0:

This remark is again from [5, p. 26], as is the next example [5, p. 27].

Example II.9:
p
z =

1p
2
+

0

�1

1

x� z
� x

x2 + 1

p
x

�
dx:

III. OPERATORMONOTONICITY

The first part of this section introduces the notion of operator mono-
tonicity. The results are taken from [5, pp. 67 ff], and they also appear
in [1]. We show that Pick functions are operator-monotone. In the se-
quel, we consider operator convexity properties as was done in [6, pp.
230 ff]. It will be important for the next sections that root functions are
operator-concave (cf. Example III.10). Here, all Hilbert spaces (usually
denoted byH, etc.) are supposed to be finite-dimensional.

Definition III.1: Let H be a finite-dimensional (complex) Hilbert
space.

• L(H) denotes the algebra of linear operators onH.

• L(H)s:a: denotes the real vector space of self-adjoint operators
onH.

• An operatorA 2 L(H) is calledpositiveif hv jAvi � 0 for all
v 2 H.

• L(H)+ denotes the convex cone of positive operators onH. (Re-
call thatL(H)+ � L(H)s:a:.)

• For operatorsA;B 2 L(H)we writeA � B if B�A is positive.

Definition III.2: Let H be a finite-dimensional (complex) Hilbert
space,I � an interval,f : I ! a function, andA 2 L(H)s:a:

with all its eigenvalues inI .

• For A = n

i=1 aijaii haij, where(jaii)1�i�n denotes anON

basis ofH, we define

f(A)
�
=

n

i=1

f(ai) j aii haij:

(Clearly, this is independent of the chosen basis.) In matrix nota-
tion we have

A =

a1 0
. . .

0 an

f7! f(A) =

f(a1) 0

. . .

0 f(an)

• f is calledoperator monotone of ordern (“f 2 Pn(I)”) if

B � C =) f(B) � f(C); for all B;C 2 L( n)s:a::

• f is calledoperator monotoneif f 2 Pn(I) for all n 2 .

Lemma III.3:

• Pn(I) is a convex cone.

• If f 2 Pn(I), g 2 Pn(J) with im(f) � J theng � f 2 Pn(I).
• Pn(I) is closed (in the topology of pointwise convergence).

• Pn+1(I) � Pn(I).

• For � > 0; � 2 , the functionx 7! �x + � is operator
monotone.

• x 7! �(1=x) is operator monotone on(0;1).
Proof: All assertions but the last are obvious. So, for

A 2 L(H)+ strictly positive (0 is no eigenvalue) andv; w 2 H we
have

jhv jwij2 = jhA� v jA wij2

� hA� v jA� vihA w jA wi
= hv jA�1vihw jAwi

with equality, e.g., forw = A�1v. (This is the Cauchy–Schwarz–Buni-
akowski inequality!) Therefore,

hv jA�1vi = max
w 6=0

jhv jwij2
hw jAwi

and this immediately implies that forB;C 2 L(H)s:a:

B � C , B�1 � C�1 , �B�1 � �C�1:

Corollary III.4: Let ' 2 P (a; b). Then,'j(a;b) is operator mono-
tone.

Example III.5: f(z)
�
= z� with 0 � � � 1 is operator-monotone.

(A direct proof of this fact appears also in [1, p. 115].) This is not (!)
true if � > 1. For, e.g.,� = 2

2 2

2 2
+

1 �1
�1 1

=
3 1

1 3
� 3:1 0

0 3:1

but
3 1

1 3

2

=
10 6

6 10

and
3:1 0

0 3:1

2

=
9:61 0

0 9:61
:

Lemma III.6: Let a 2 L(H), b 2 L(H)s:a:, and" > 0.

A�
�
=

"1 a

a� �1+ b

is a positive operator onH�H if � > 0 is large enough.
Proof: We have to prove thath jA�j i � 0 for all normed (!)

 = u � v 2 H � H.
For v = 0 (and� = 0) we haveh jA0j i = hujA0jui = " > 0.

Therefore,h jA0j i > 0 for a neighborhoodN of the space with
v = 0, and for all� > 0;  2 N : h jA�j i > 0.

So, we may assume thatkvk is larger than some positive constant.
Let � 2 be the smallest eigenvalue ofA0. We have

h jA�j i = � � kvk2 + h jA0j i � �2 + �

and the proof is complete.
Theorem III.7: Let f � 0 be a continuous and operator-monotone

function on[0;1), and letx2L(H)+ anda2L(H) with kakop�1:
Then

f(a�xa) � a�f(x)a: (2)
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Proof: Let b
�
= (1� aa�)1=2 andc

�
= (1� a�a)1=2, and define

the operators

X
�
=

x 0

0 0
U

�
=

a b

c �a�

onH�H. Let " > 0, and let� be large enough so that

Y
�
=

a�xa + "1 0

0 �1
�

a�xa a�xb

bxa bxb
= U

�
XU:

) f(Y ) � f(U�
XU) = U

�
f(X)U

� U
� f(x) 0

0 0
U =

a�f(x)a a�f(x)b

bf(x)a bf(x)b
:

Therefore,f(a�xa+ "1) � a�f(x)a, and this implies the claim.
If we assumedhujf(a�xa+"1)�a�f(x)ajui < 0 for someu2H

and" = 0, this would be also true for some" > 0 (asf(a�xa + "1)
varies continuously with").

Remark III.8: We call functionsf that fulfil (2) operator concave.
Indeed, a nonnegative continuous function on[0;1) that is operator-
concave is also operator-monotone (cf. [6, p. 232], or [1, p. 120]). Fur-
thermore, operator-concave functionsf fulfil Jensen’s inequality. We
have

f(
i

a
�
i xiai) �

i

a
�
i f(xi)ai

for allx1; . . . ; xn2L(H)+ anda1; . . . ; an2L(H)with i a
�
i ai�1:

Proof: Define

X
�
=

x1 0
. . .

0 xn

; A
�
=

a1
... 0

an

) A
�
XA =

i a
�
i xiai 0 � � � 0

0
... 0

0

:

Therefore,

f( i a
�
i xiai) 0 � � � 0

0
... 0

0

= f(A�XA)

�
by(2)

A
�
f(X)A =

i a
�
i f(xi)ai 0 � � � 0

0
... 0

0

:

Corollary III.9: Let f � 0 be a continuous and operator monotone
function on[0;1), and letx 2 L(H)+ anda:H0 ! H a (linear)
contraction(kakop � 1). We havef(a�xa) � a�f(x)a:

Example III.10: For0 � � � 1 we have(a�xa)� � a�x�a (with
notation from Corollary III.9).

IV. FINITE QUANTUM SYSTEMS AND PHYSICAL MAPS

In this section we introduce the notion of finite quantum systems
and the maps of such systems that are considered to be in accordance
with quantum physics’ laws. Toward this goal we will consider both
the Schrödinger and the Heisenberg pictures, starting with the latter
and transforming it into the former.

Definition IV.1: A finite quantum systemA is a finite-dimensional
C�-algebra, i.e., a self-adjoint subalgebra (with identity) of some
L(H), wheredim(H) < 1.

A physical stateon a finite quantum systemA is an elementA 2

A+ �
= L(H)+ \ A for which tr(A) = 1. If A 2 A+ is a physical

state we calltr(A�) = tr(A��) 2 A� a physical stateas well.

Remark IV.2: LetA � L(H) andA be a physical state onA. Then
(by abuse of notation)

A =

p1 0
. . .

0 pn

for anON basis ofA-eigenvectors, andA may be interpreted as a prob-
ability distribution on these basis vectors.

Definition IV.3: A -linear map�:B ! A is positiveif �(B+) �
A+. It is calledcompletely positiveif all maps of the form

�
 1:B 
 C ! A
 C

i

bi 
 ci 7! �(bi)
 ci

are positive.

The Heisenberg picture(HP) of aphysical mapof finite quantum
systemsA;B is a completely positive and unity preserving-linear
map�:B ! A.

Remark IV.4: Physical maps areSchwarz maps: They fulfill, for all
x 2 B, the inequality�(x�x) � �(x)��(x). This can be deduced
from Stinespring’s theorem (see [4, p. 137] or [17] for a proof).

Theorem IV.5: Let �:A ! L(H) be a completely positive map of
finite quantum systems. Then

�(A) = V
�
�(A)V (for all A 2 A)

for some representation�:A ! L(K) with K a finite-dimensional
Hilbert space, and a linear mapV :H ! K. (� is an algebra homomor-
phism with�(A�) = �(A)� for all A 2 A and�(1) = 1.)

Let�:B ! A be a -linear map of finite-dimensionalC�-algebras
(HP). Its adjoint is a -linear map of the respective spaces of linear
forms on theC�-algebras

�
�:A� ! B� (3)

� 7! � � �:

We perform still another transformation, using the fact that

hA jA0iA
�
= trA(A

�
A
0)

defines an inner product on the finite-dimensionalC�-algebraA.
(A; h�j � iA) is a Hilbert space. Therefore, there is a natural transfor-
mationA ! A� by A 7! tr(A��), and we may rewrite (3) as a map
�� : A ! B that fulfils

�
�(trA(A

��)) = trB(��(A)��): (4)

We will refer to the map�� as theSchrödinger picture(SP). The map
�� represents a physical map of finite quantum systems if it is com-
pletely positive and trace-preserving.

These definitions demonstrate the formal relationship between the
Schrödinger and the Heisenberg picture, but, of course, there is still a
more “practical” relationship between the two pictures. They lead to
the same predictions concerning results of measurements (which are
the relevant things in this context because they can be verified by an
experiment).

Let A 2 A+ be a physical state,�:B ! A a physical map
(HP) corresponding to some prolongation of the physical system,
and (Di)1�i�N � B a positive operator measurement (POM: a
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tuple of positive operators that sum up to unity). It is the idea of
the Schrödinger picture��:A ! B that ��(A) represents the
“outcome” (as a physical state inB) of the prolongation, and so the
probability that the result of the measurement will bei = 1; . . . ; N is
h��(A) jDiiB = trB(��(A)Di).

Using the Heisenberg picture�:B ! A of the physical map, we
can calculate these probabilities by applying� on theDi’s instead (!).

Proposition IV.6: LetA 2 A+ be a physical state,(Di)1�i�N � B
a POM,�:B ! A the Heisenberg picture of a physical map, and
��:A ! B its Schrödinger picture. Then

h��(A)jDiiB = hAj�(Di)iA; for all i = 1; . . . ; N:

Proof:

trB(��(A)Di) =
by(3)

��(trA(A
��))(Di)

=
by(4)

trA(A
��(Di)):

V. UHLMANN’S MONOTONICITY THEOREM

Uhlmann’s Monotonicity Theorem is our key tool to prove the
quantum version of a data processing inequality. Its proof (the proof of
the following lemma) uses the operator concavity of the root functions
(see Example III.10). In this section we closely followed [12, p. 18 ff].

Lemma V.1: Let �:A2 ! A1 be a physical map of finite quantum
systems (HP),S1; T1 2 A+

1 andS2; T2 2 A+
2 with Ti invertible(i =

1; 2). If for all a 2 A+
2

tr(S1�(a)) � tr(S2a) and tr(T1�(a)) � tr(T2a)

then we have, for all0 � t � 1 andx 2 A2

tr �(x)�St1�(x)T
1�t
1 � tr x�St2xT

1�t
2 :

Example V.2:

tr St1T
1�t
1 � tr St2T

1�t
2 :

Proof: Fora 2 A2 define a linear mapV :A2 ! A1 by

aT
1=2
2 7! �(a)T

1=2
1 :

The mapV is a contraction. In fact,

�(a)T1

2

= tr(T1�(a)
��(a)) � tr(T1�(a

�a))

� tr(T2a
�a) = aT2

2

:

Define�i 2 L(Ai)
+ by

�i(aT
1=2
i )

�
= SiaT

�1=2
i

for i = 1; 2 anda 2 Ai. (It is positive becausehaT 1=2
i j�ijaT

1=2
i i =

haT
1=2
i jSiaT

�1=2
i i = tr(T

1=2
i a�SiaT

�1=2
i ) = tr(a�Sia) � 0.) We

have

�t
i(aT

1=2
i ) = StiaT

1=2�t
i (t � 0)

andV ��1V � �2

aT2 V ��1V aT2 = �(a)T1 �1 �(a)T1

= �(a)T1 S1�(a)T
�

1 = tr(�(a)�S1�(a))

� tr(S1�(aa
�)) � tr(S2aa

�) = aT2 �2 aT2 :

So,4 V ��t
1V � (V ��1V )t � �t

2, and

tr T1 �(x)
�St1�(x)T

�t

1 = xT2 V ��t
1V xT2

� xT2 �t
2 xT2 = tr T2 x

�St2xT
�t

2 :

Definition V.3: Let A 2 A+ be a physical state. Itssupport
(suppA) is the projector on the space spanned by the eigenvectors
corresponding to nonzero eigenvalues.

Two physical statesA;B 2 A+ havedivergence

D(A kB)
�
=

tr(A(logA� logB)); if suppA � suppB

1; otherwise:

Physical states! = tr(A�); ' = tr(B�) 2 A� havedivergence

D(!k')
�
= D(AkB):

Note that divergence is often calledrelative entropy, too.
We present Uhlmann’s monotonicity theorem [18].

Theorem V.4:Let�:A2 ! A1 be a physical map of finite quantum
systems (HP) and!;' 2 A�1 physical states. Then

D(! � �k' � �) � D(!k'):

Proof: Let ! = tr(S1�), ' = tr(T1�), ! �� = tr(S2�), and
'��=tr(T2�), where without loss of generalitysuppT1=1:

As

tr(S1�(�)) = ! � � = tr(S2�)

and

tr(T1�(�)) = ' � � = tr(T2�)

Lemma V.1 implies that

tr S�1 T
1��
1 � tr S�2 T

1��
2 ; for all 0 � � � 1:

Consequently,

(1� tr(S�1 T
1��
1 ))=(1� �) � (1� tr(S�2 T

1��
2 ))=(1� �)

and by the limit� ! 1

D(! k') = tr S�1 T
1��
1

0

�!1

� tr S�2 T
1��
2

0

�!1
= D(! � � k' � �):

VI. THE QUANTUM DATA PROCESSINGINEQUALITY

In this final section we derive the quantum data processing inequality
from Uhlmann’s monotonicity theorem. We start with the formulation
of the latter in the Schrödinger picture.

Corollary VI.1: Let ��:A ! B be a physical map of finite
quantum systems (SP) andA1; A2 2 A+ physical states. Then

D(��(A1) k��(A2)) � D(A1 kA2):

Proof:

D(A1 kA2) = D(tr(A1�)k tr(A2�));

D(��(A1)k��(A2)) = D(tr(��(A1)�)k tr(��(A2)�));

we havetr(��(Ai)�) = tr(Ai�(�)) (cf. the proof of Proposition IV.6),
and the claim reduces to Theorem V.4.

Definition VI.2: LetW�:A ! B be a quantum channel, i.e., a phys-
ical map of finite quantum systems (SP). LetA 2 A+ be a physical

4We use Example III.10 (as we promised above).
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state withA = n

a=1
pajai haj its spectral decomposition, and let

B
�
= W�(A) be the corresponding output (physical) state. Further-

more, let

(A;B)
�
=

n

a=1

pajai haj 
W�(jai haj)

be the “joint state.” Themutual informationis given by

I(A;W�)
�
= H(A) +H(B)�H(A;B)

whereH(X)
�
= �tr(X logX) denotes the Shannon–von Neumann

entropy.

Remark VI.3: Let

H(Bja)
�
= H(W�(jai haj))

be the entropy of the output state for the input statejai haj and

H(BjA)
�
=

n

a=1

paH(B j a)

its expectation. We haveH(BjA) = H(A;B) � H(A), and mutual
information may be written in the form

I(A;W�)
�
= H(B)�H(B jA)

which is known as Holevo’s bound.
Proof: Provided that the logarithm respects eigenspaces we get

H(A;B)�H(A)

= �tr

n

a=1

pajai haj 
W�(jai haj)

log

n

a =1

p
0
aja

0i ha0j 
W�(ja
0i ha0j)

+ tr

n

a=1

pajai haj log

n

a =1

p
0
aja

0i ha0j

= �

n

a=1

patr2(W�(jai haj) log(paW�(jai haj)))

+

n

a=1

pa log pa

= �

n

a=1

patr2(W�(jai haj) logW�(jai haj))

= H(B jA):

The quantum data processing inequality.

Corollary VI.4: LetW�:A1 ! A2 andD�:A2 ! A3 be physical
maps of finite quantum systems (SP) andA 2 A+

1 a physical state.
Then

I(A;D� �W�) � I(A;W�):

Proof: We have

D((A;B)kA
B)=tr((A;B)(log(A;B)�log(A
B)))

=tr((A;B) log(A;B))�tr((A;B) log(A
B))

=�H(A;B)�tr((A;B) log(A
 1))

�tr((A;B) log(1
B))

=�H(A;B)+H(A)+H(B)=I(A;W�)

and the claim follows from

D((1
D�)(A;B) k (1
D�)(A
B)) � D((A;B) kA
B):

As a special case, we getHolevo’s upper boundfor classical
communication over quantum channels [8]. We interprete a POM
(Di)1�i�N � A2 (see Section IV) as a physical mapD� into the
(commutativeC�-algebra) diagonal ofL( N ), with

D�(X)
�
= diag(tr(D1X); . . . ; tr(DNX)):

Corollary VI.5: LetW�:A1 ! A2 be a quantum channel andD�

a measurement on its output space, i.e., a physical map fromA2 into
some commutativeC�-algebraA3. ThenI(A;D��W�) � I(A;W�).

We remind the reader that Holevo’s result is from 1973 whereas
Uhlmann’s monotonicity theorem is from 1977. Both use analytical
considerations for the proofs.

There is a proof of Holevo’s upper bound by H. P. Yuen and M.
Ozawa deriving it directly from Uhlmann’s monotonicity theorem [20],
and another one by A. Winter using only information-theoretical con-
siderations [19].
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