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Quantum Data Processing with conditional mutual informatic?), convexity properties play a cen-
tral role.
Rudolf Ahlswede and Peter Lober Root functiong z — z*;0 < p < 1) are Pick functions (cf. Section

I1) and, therefore, operator monotone (cf. Section Ill). With the nota-
o . . tion from Section IV we can use this fact to prove Uhlmann’s mono-
Abstract—We prove a data processing inequality for quantum communi- icitv th . inall . . | .
cation channels, which states that processing a received quantum state mayONiCity theorem (Section V). Finally (Section VI), we directly derive
never increase the mutual information between input and output states.  the quantum data processing inequality for quantum mutual informa-
tion, and we present Holevo's bound as its (important) corollary.
For the special but essential class of quantum operations (physical
maps) that are restrictions on physical subsystems Schumacher, West-
|. INTRODUCTION moreland, and Wootters established an inequality fAokevo bound
Our starting point was the question whether Holevo’s upper bour%ﬁctlonal [14]. This leads to the quantum_data processing mequall_ty,
00, because one gets quantum mutual information just by applying

could be viewed as a special case of a more general theorem, as a Bl]nd . .
P g is functional to the respective output states of the channel. Later,

of data processing inequality, which has been known for classical Chiipdrodecki derived from this inequality for the Holevo bound func-

nels for along time. This inequality is about mutual information tionaP another bound for source coding (compression) of quantum in-
I(P;W)=H(PW)—- H(PW|P) formation [10].

with T a channel (a stochastic matrix) aftian input process (a Indeed, we concentratt_ad on tht_a mutual info_rm:_;\tion itse!f which _is a

probability distribution on the channel’'s domain). Hefedenotes the very geﬁera' concept of information theory W'th. Its roots: n cllassmal

(Shannon) entropy, respectively, conditional entropy (not to be Coqu_form_atlon theory. We refer the reade_rdoherent mformatlorwhlch

fused with relative entropy. was discussed by Schumacher and Nielsen for error correction [13] as

It is one of those important theorems from classical informatiof V€Y particular kind of quantum () information.

theory that this purely algebraically defined mutual information gives

the capacity of the memoryless channel, just by taking the supremum Il. PICK FUNCTIONS

over all input processes [16]. One might interprete this number as therhjs section introduces the notion of Pick functions. We will see

information that is shared by the input procésand the output process i the next section that Pick functions are “operator monotone” (cf.

PW. Corollary 1114 for a rigorous formulation), a fact that is very useful
The concept of mutual information can easily be adapted fgpcause it is sometimes quite easy to decide whether a function is a

quantum channels, which gives the “number” that is known as tigck function or not. The theory we introduce here is developed in great
Holevo bound for classical communication over a quantum channgltai (and with complete proofs) in [5] and [1].

[8], and the bound can be achieved [7], [9], [15]. A
Itis important to notice that the quantum version of mutual informa- Definition Il.1: H* = {z+iy € C|y Z 0} denote the two half
tion does not use measurements at all (!). It is an algebraically defirguhces, respectively 2 {¢ : H* — H'analyti¢ denotes the set of
number that depends only on the quantum channel and an input sRitk functions
(cf. Definition VI.2). If one interpretes this number again as the infor- . .
mation that is shared by an input stateand the corresponding outputto:emark II.2: Pis a convex cone, and ff. g € P’ theng o f € P,
stateW.,(A) of the quantum channdlV.., our main theorem—the
quantum data processing inequality—may be formulated as follows. Example 11.3: The functiony(z) 2 .0 with 0 < p<lisinP.A
Processing the channel’s output state by any physically allow@ghction
transformation D. (one may interprete this as another quantum .
channel, as well) can never increase the information that is shared b A Vi
the input and thg output state ’ V(z) = ozt ; 6 — =

I(A; D. o W.) < I(A; W),

Index Terms—PData processing, quantum information.

with a,~v; > 0 andj,é; € Risin P, too.

We soon realized that a quantum data processing inequality is a ) . )
corollary of Uhimann’s monotonicity theorem (see Section V) which The nexttheorem shows t.hatthe latter examples give essentially (i.e.,
is a generalization of a theorem of Lieb (see [11] or [1]). Here, as in th@ © closure) all Pick functions.

proof of the classical data processing inequality (which plays aroundTheorem I1.4: Every Pick functions € P has a (unique) represen-

tation
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Definition I1.5: For an open intervala, ) C R let « f is calledoperator monotone of order (“ f € P,(I)")if

Cla,b) = HTUH™ U (a.h) B<C= f(B)< f(C). forall B.C € L£(C")"™.

and ) A ) . « fis calledoperator monotond f € P,(I) foralln € N.
P(a,b) 2 {1 C(a.0) = C: plys € PAR() =20},

Lemma I11.3:
Remark 11.6: P(a,b) is a convex cone. Moreoveg € P(a,b)
implies thaty|(. .+ is @ monotonically increasing real function. (As o
6 mapsH* into H+ and H~ into H~ it has to be real on the * If f € Pu(l), g € Pu(J) withim(f) C J theng o f € Pu(I).
real axis. Let nowp = w 4+ iv andz = x + iy. By definition » P,(I) is closed (in the topology of pointwise convergence).
.(d/dy)v(m) > 0, and the Cauchy—Riemann differential equations P (I) C P.(I).
imply that(d/dz)u(z) > 0 as well.)

» P,(I) is a convex cone.

e Fora > 0, 8 € R, the functionz — «x + 3 is operator

Example 11.7: The functione(z) 2 2 with 0 < p < lisin monotone.
P(0,00). A function e x +— —(1/x) is operator monotone o), oc).
A PRI Proof. All assertions but the last are obvious. So, for
() S az+ 84> ro— A € L(H)T strictly positive ( is no eigenvalue) and, w € H we
=t have
with o, v; > 0, 3 € R, andé; € R\(a,b) is also inP(a,b). L L
] ) ) ) [(w]w)]® = (A" 20| AZw)]?
Remark 11.8: Lety € P be a Pick function ang its corresponding T | 1
Borel measure (cf. (1)). Let, b) € R be an interval. Then <{4 2”1| A7 zop{AZw| AT w)
¢ € P(a,b) & p((a.b)) = 0. = (v]A7 )| Aw)

This remark is again from [5, p. 26], as is the next example [5, p. 27)vith equality, e.g., forr = A~"v. (Thisis the Cauchy-Schwarz—Buni-
akowski inequality!) Therefore,

Example I1.9: (o | w)?
-0 . ; A Y = W
=g (e e AT =0 G
A/ - PN xr—z i m L. ) ) ) . .
and this immediately implies that fds, C' € L(H)*>*
I1l. OPERATORMONOTONICITY B<CeB '>C"'e-B'<-C". O

The first part of this section introduces the notion of operator mono- . ) ) : )
tonicity. The results are taken from [5, pp. 67 ff], and they also app%%ceorollary 4 Let € Pla,b). Then,z|,y) is operator mono
in [1]. We show that Pick functions are operator-monotone. In the se-
quel, we consider operator convexity properties as was done in [6, ppExample 111.5: f(z) 2 4 with0 < u < 1is operator-monotone.
230 ff]. It will be important for the next sections that root functions aréA direct proof of this fact appears also in [1, p. 115].) This is not (!)
operator-concave (cf. Example I11.10). Here, all Hilbert spaces (usuattye if 1 > 1. For, e.g.u = 2

denoted by, etc.) are supposed to be finite-dimensional. <2 2) < 1 _1> <3 1) <3_1 0 )

Definition 11l.1: Let H be a finite-dimensional (complex) Hilbert 2 2 -1 1 13 0 31
space. but <3 1)2 _ <10 6 )
» L('H) denotes the algebra of linear operatorson 13 ) 6 10
* L(H)>* denotes the real vector space of self-adjoint operators  gnd 31 0 = %61 0 .
onH. 0 3.1 0 9.61
» An operatord € L(H) is calledpositiveif (v | Av) > 0 for all Lemma lll.6: Leta € £(H),b € £(H)*™, andz > 0.
v € H. s
el a
» L(H)" denotes the convex cone of positive operatorétofRe- A, 2 <a* AL+ b)

call thatZ(H)t C L(H)*™.) i . ) )
o . . . . is a positive operator oi & H if A > 0 is large enough.
 Foroperatorst, B € L(H)wewriteA < B if B— A is positive. Proof: We have to prove tha’|4x[¢) > 0 for all normed (')
Definition 111.2: Let X be a finite-dimensional (complex) Hilbert v = v © v € H O H.
space] C R aninterval,f : I — R afunction, andd € L(H)5* Forv = 0 (andA = 0) we have(y|Ao|¢) = (u|Aolu) = = > 0.
with all its eigenvalues if. Therefore,(¢|Ao|y) > 0 for a neighborhoodV of the space with
v=_0,andforallA > 0, € N : (¢|Ax|¥) > 0.
So, we may assume thiit|| is larger than some positive constant
Let # € R be the smallest eigenvalue df,. We have

e ForA = 37 | aila:) (ai|, where(]a;))1<i<» denotes aroN

12

basis ofH, we define

FA) 2D Fa) [ as) ai]. (W1A0) = A (ol + (] Aol) > Ay + g
=1 .
(Clearly, this is independent of the chosen basis.) In matrix notﬁod the proof is complete. . -
tion we have Theorem II.7: Let f > 0 be a continuous and operator-monotone
a 0 F(ar) 0 function on[0, o), and letr € £(H)t anda € L(H) with ||a]lop < 1.
r Then
A= = f(A) =

0 an, 0 flan) fla*za) > a” f(x)a. 2)
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Proof: Leth = (1 —aa®)'/> ande £ (1 —a*a)'/?, and define  Definition IV.1: A finite quantum system is a finite-dimensional

the operators C™-algebra i.e., a self-adjoint subalgebra (with identity) of some
Afx 0 Afa b L(H), wheredim(H) < oc.
X= <0 0) v= <(, —a* ) A physical stateon a finite quantum systetd is an elementd €
: ] P

At 2 L(H)* 0 A for whichtr(4) = 1. If A € AT is a physical

on @ H. Lets > 0, and let be large enough so that state we caltr(A-) = tr(A"-) € A" aphysical stateas well.

y A <“‘*éw +e1 0 ) > <“*M “*wb) — U XU Remark IV.2: Let A C £(H) andA be a physical state ad. Then
0 AL/ = \ bxa  bxb (by abuse of notation)
= f(Y) > fU'XU) =U"f(X)U P 0
L TN A=
S flz) O r=(° f(x)a a*f(z)b ' .
- 0 0 bf(z)a bf(x)b 0 Pn
Therefore f(a*za + =1) > a* f(«)a, and this implies the claim. for_a_morx_l bqsis_oM-eigenvectorg, and may be interpreted as a prob-
If we assumedu| f(a*za-+e1)—a* f(z)alu) < 0 for someu € H ability distribution on these basis vectors.
ande = 0, this would be also true for some> 0 (asf(a"va + 1) pefinition IV.3: A C-linear mapn: B — A is positiveif a(51) C
varies continuously witf). LI AT, Itis calledcompletely positivé all maps of the form
Remark 111.8: We call functionsf that fulfil (2) operator concave a@l:BoC— AC
Indeed, a nonnegative continuous function[@nx) that is operator- Z bi @ i — albi) ® ¢

concave is also operator-monotone (cf. [6, p. 232], or [1, p. 120]). Fur-
thermore, operator-concave functighdulfil Jensen’s inequalityWe

are positive.
have
The Heisenberg picturdHP) of aphysical mapof finite quantum
FO diwia) > ai fwi)as systemsA, 3 is a completely positive and unity preservifiglinear
i i mapa: B — A.
forallzy,...,z, €L(H)" anday, ..., a, € L(H)With Y, afa; <1. Remark 1V.4: Physical maps ar8chwarz mapsThey fulfill, for all
Proof: Define x € B, the inequalitya(xz*x) > afx)*«(x). This can be deduced
0 from Stinespring’s theorem (see [4, p. 137] or [17] for a proof).
r a1
N ) A . Theorem IV.5: Leta: A — L(H) be a completely positive map of
xX=s . A2 -
: finite quantum systems. Then
0 Ln n *
! ! a(A)=Vp(A)V  (forall A € A)
e I { . e e .
2 aol ¢ for some representation A — L(K) with K a finite-dimensional
= A*X A= i . Hilbert space, and a linear m&p H — K. (p is an algebra homomor-
: 0 phism withp(A*) = p(A)* forall A € Aandp(1) = 1.)
0 Leta: B — A be aC-linear map of finite-dimensiondl'* -algebras
Theref (HP). Its adjoint is aC-linear map of the respective spaces of linear
erefore, forms on theC'"*-algebras
f(iaiwias) 0 - 0 a*: A" — B* 3)
0
. — )L(fl*XA) A— loa.
(‘) 0 We perform still another transformation, using the fact that
A .
Zi ajf(IL)al 0 --- 0 <A|A’>A:tr,4(fl A’)
. 0 defines an inner product on the finite-dimensiowal-algebra.A.
b\%) Af(X)A = : 0 - 0 (A, {(:]-).a) is a Hilbert space. Therefore, there is a natural transfor-
i (') mationA — A* by A — tr(A"-), and we may rewrite (3) as a map
ax 1+ A — B that fulfils
Corollary 11.9: Let f > 0 be a continuous and operator monotone a”(tra(A™)) = tre(ax(4)"). 4
function on[0, oc), and letx € E(H):r anda,:z-[’ — H a(linear) we will refer to the mapr. as theSchrodinger picturéSP). The map
contraction(||allo, < 1). We havef(a®za) > a” f(x)a. a. represents a physical map of finite quantum systems if it is com-
Example 11I.10: For0 < u < 1 we have(a*za)® > a*z"a (with ~PIEtEly positive and trace-preserving. , ,
notation from Corollary I11.9). These definitions demonstrate the formal relationship between the

Schrédinger and the Heisenberg picture, but, of course, there is still a

more “practical” relationship between the two pictures. They lead to

the same predictions concerning results of measurements (which are
In this section we introduce the notion of finite quantum systentke relevant things in this context because they can be verified by an

and the maps of such systems that are considered to be in accordaxperiment).

with quantum physics’ laws. Toward this goal we will consider both Let A € AT be a physical statey: 3 — A a physical map

the Schrddinger and the Heisenberg pictures, starting with the latfelP) corresponding to some prolongation of the physical system,

and transforming it into the former. and (D;)1<i<ny C B a positive operator measurement (POM: a

IV. FINITE QUANTUM SYSTEMS AND PHYSICAL MAPS
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tuple of positive operators that sum up to unity). It is the idea @o? V*ALV < (V*A,V)! < Al and

the Schrodinger picturev.: A — B that a.(A) represents the L L L L

“outcome” (as a physical state i) of the prolongation, and so the tr <Tf a'(x)*Sfa'(x)Tf_f> = <$Tf VALY wT2§>

probability that the result of the measurement willibe 1,..., N is ) ) ) )

(a(A) | Di)s = trs(a.(4)D;). < <fo A} ;an> =tr <Tfm*5§;ch"') . D
Using the Heisenberg picture 3 — A of the physical map, we

can calculate these probabilities by applyingn theD;’s instead (!). e )
Definition V.3: Let A € AT be a physical state. Itsupport

Proposition IV.6: LetA € AT beaphysicalstatéD;)i<i<x C B (suppA) is the projector on the space spanned by the eigenvectors
a POM,OL’I B — ./4 the Heisenberg piCture Of a physical map, aneorresponding to nonzero eigenva|ues_

ax: A — B its Schrédinger picture. Then
(as(A)Di)s = (Ala(Di)) 4,

Proof:

foralli=1,...,N.

tre (o (A)D,) . ??) o (tl‘A(A*-))(D,')

= tra(A"a(Dy)).

by (4)

V. UHLMANN'S MONOTONICITY THEOREM

Two physical statest, B € A* havedivergence
tr(A(log A — log B)), if suppA < suppB

D(4||B) 2 :
S {xv otherwise

Physical states' = tr(A-), ¢ = tr(B-) € A" havedivergence
A
D(wlle) 2 D(A

B).

Note that divergence is often calleglative entropytoo.
We present Uhlmann’s monotonicity theorem [18].

Theorem V.4:Leta: A, — A, be aphysical map of finite quantum

Uhlmann’s Monotonicity Theorem is our key tool to prove thesystems (HP) and, ¢ € A7 physical states. Then

quantum version of a data processing inequality. Its proof (the proof of
the following lemma) uses the operator concavity of the root functions

D(woallpoa) < D(w|e).

(see Example 111.10). In this section we closely followed [12, p. 18 ff].  Proof: Let w = tr(Si-), ¢ = tr(Th+), woa = tr(S2-), and

Lemma V.1: Leta: A2 — A; be a physical map of finite quantum
systems (HP)S,, T\ € A} andS., T € AJ with T; invertible (i =

1.2). Ifforall « € A}
tr(Sia(a)) < tr(S2a) and tr(Tia(a)) < tr(Tza)
then we have, foral) < ¢ < 1 andz € A
tr (a(e)" Sta(n)T] ™) < tr (2" 55273 ).

Example V.2:
b (SITE ) < tr (4T3 1)
Proof: Fora € A, define alinear map™: A> — A, by
(1T21/2 — a(a)Tll/Z.
The mapV is a contraction. In fact,

2

= tr(Tia(a) a(a)) < tr(Tia(a*a))

1
2

ala)Ty

12
< tr(Twa*a) = ||aT,?

DefineA; € £(A;)" by
Ai(aT}?) 2 SiaT 1

fori = 1,2 anda € A;. (Itis positive becaus&iT,'/?| A, |aT,/?) =
(aT,;l/2 |S,-<LZTI/Z) = tl'(Tl/Za*Sianl/z) = tr(a"Sia) > 0.) We

i

have

AlaT!?y = StaT)*~" (> 0)

a,'T2%> = <(}z(a,)T1%

Sla(a,)Tf%> = tr(a(a)"Si1a(a))

1
all? > .

andV* AV < A,

1
<(1,T22

= <a:((1,)T1%

VAV A

a'(a)'T1%>

< tr(S1a(aa™)) < tr(Syaa™) = <(1T2% Ay

poa=tr(T5-), where without loss of generalitnpp7i =1.
As

tr(Sia(-) = woa = tr(Sy)
and
tr(Tia(s)) = poa = tr(Te-)
Lemma V.1 implies that
tr (SPT) ") <t (SET,™"),  forallo <pu<1.

Consequently,

(1= te(SITI ")/ (L= ) > (1= te(SETE ") /(1= )
and by the limity — 1

D(w| ) =tr (S¢13 ")

p—1

> tr (S;’T;_“)I =D(woalpoa). O
1

n—

VI. THE QUANTUM DATA PROCESSINGINEQUALITY

In this final section we derive the quantum data processing inequality
from Uhlmann’s monotonicity theorem. We start with the formulation
of the latter in the Schrédinger picture.

Corollary VI.1: Let a.: A — B be a physical map of finite
quantum systems (SP) ard, A> € A™ physical states. Then

D(O(*(fh) || Od*(Az)) S D(A41 Az).

Proof:

D(A41 Az) = D(t1‘<A1 ) || T]l‘(AQ'))7
D(as(Ar) || ax(A2)) = D(tr(as(Ar)-) || tr(ax(A2)-)),

we havetr(a (4;)-) = tr(A4;a(-)) (cf. the proof of Proposition IV.6),
and the claim reduces to Theorem V.4. O

Definition VI.2: LetW,: A — B be aquantumchannel,i.e.,aphys-
ical map of finite quantum systems (SP). L&tc A" be a physical

“We use Example 111.10 (as we promised above).
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state withA = >"_, pala) (a| its spectral decomposition, and let As a special case, we géfolevo’s upper boundor classical

B 2 W.(A) be the corresponding output (physical) state. Furthefommunication over quantum channels [8]. We interprete a POM

more, let (Di)1<i<n C As (see Section IV) as a physical mdp. into the
(commutativeC'*-algebra) diagonal of (CY), with

2 Y 1) (a| @ Wi(|a) {c
(A,B) 2 ;pam (a] © Wi(la) (al) D.(X) 2 diag(tx(DrX ). ., tr(Dy X)),

be the “joint state.” Thenutual informations given by
Corollary VI.5: Let W.: A; — A, be a quantum channel adel

I(A;W.) 2 H(A)+ H(B) — H(A, B) a measurement on its output space, i.e., a physical map.froito

p H Y A . ‘* < A //'*\_
where H(X) 2 —tr(X log X') denotes the Shannon—-von Neumanfo e commutative”-algebrads. Thens (4; D.oW.) < I(A4; W)

entropy. We remind the reader that Holevo’s result is from 1973 whereas
Remark VI.3: Let Uhlm_ann’s_ monotonicity theorem is from 1977. Both use analytical
considerations for the proofs.
H(Bl|a) 2 H(W.(|a){a])) There is a proof of Holevo's upper bound by H. P. Yuen and M.
Ozawa deriving it directly from Uhlmann’s monotonicity theorem [20],
and another one by A. Winter using only information-theoretical con-
siderations [19].

be the entropy of the output state for the input staj€«| and

H(BIA)2 Y paH(B]a)
a=1
its expectation. We havB (B|A) = H(A, B) — H(A), and mutual ACKNOWLEDGMENT
information may be written in the form The authors wish to thank Andreas Winter for fruitful discussions
(AW, 2 H(B) - H(B|A) about quantum information theory.
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