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Preface

Draft of course notes





Part I

Quantum Mechanics and
Quantum Bits





1 Experiments with light

At the beginning of the 20th century a major change of paradigm occured in

the laws of physics. This revolution was triggered by a host of experimental dis-

coveries which lead to a major revision of our concepts of particle, wave and

measurements of observables such as for example position, velocity, magnetic

moment. The quantum theory that emerged is today the best tested theory of

physical phenomena. The classical laws of physics are seen as a limiting case of

quantum laws, that are valid when quantum effects can be neglected. This is

the case for a wide range of phenomena which roughly speaking are macroscopic

phenomena of our everyday life for which Newton’s law of motion and Maxwell

equations are adequate. Relativistic effects also count as classical phenomena

even though it is not clear if they affect our everyday life (the GPS takes into

account relativistic effects). Quantum effects cannot be neglected when we want

to describe microscopic phenomena. But note that macroscopic quantum phe-

nomena also exist and the borderline between classical and quantum behaviors

is a deep, subtle and not totally solved problem. In any case, quantum theory

explains the chemical bond, is thus at the basis of chemistry, it explains the stuc-

ture of the atom and the periodic table of elements, and is the basis for nuclear,

particle and high energy physics. Quantum mechanics is also necessary to explain

many properties of condensed matter for example metals, semi-conductors, mag-

nets, superconductors, superfluids. Quantum mechanics is necessary to explain

the interaction of matter and light.

Quantum mechanics was largely discovered by studying (experimentally) the

interactions of matter with light. The early experiments of the 20th century,

and some of the late 19th century, forced physicist to revise completely their

views on the intimate nature of light and matter. It was gradually realized that

light has both particle-like and wave-like behaviors. Similarly particles (eg. the

electron) have both particle-like and wave-like behaviors. Today we view these

constituents of matter as entities called “quantum fields”. Wave and particle

behaviors are manifestations of the quantum fields.

The laws of physics are expressed in mathematical language. It is thus not so

surprising that these conceptual revolutions were couched in a mathematical for-

malism that departs quite radically from the one of classical physics. For example

Heisenberg was bold enough to represent observable and measurable quantities,

such as position and velocity of an electron orbiting an atom, by “matrices” or
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“linear operators”. From our modern perpective it is hard to appreciate why

this was so bold. Let us just point out here that matrices were not part of the

curriculum of physics students in the 1920’s and that Heisenberg constructed the

rule of matrix multiplication and other linear algebra facts by means of guessing

at the laws of physics. He was guided by experiment, was a genius, and guessed

right! The mathematical formalism of quantum mechanics has posed new inter-

esting problems in functional analysis, geometry, group theory (today quantum

information theory also offers new mathematical challenges).

The development of quantum mechanics in its modern form spans a period

of at least 25-30 years between 1900 and 1930’s. It is the achievement of many

experimental and theoretical physicists. This was a golden age of discovery in

physics full of surprising developments. It will not be possible to go through

and understand the historical development of quantum mechanics in this course.

Starting with chapter 2, the modern formalism of quantum mechanics is pre-

sented. This mathematical formalisation of the physical laws discovered by the

founding fathers, was first clearly spelled out by von Neumann around 1940, and

has remained for the main part unchanged since then.

Before proceeding directly to the mathematical formalism it is nevertheless

good to motivate it through some experiments that can be performed with

light. We will gradually introduce some of the basic ideas of quantum mechanics

through the discussion of these experiments. This is the goal of the chapter.

1.1 Electromagnetic waves

According to Maxwell (1862) and Hertz (1886), light is an electromagnetic wave

of electric E(x, t) and magnetic B(x, t) fields freely oscillating in vacuum. The

solutions of Maxwell equations in empty space are superpositions of monochro-

matic modes of frequency ω. A mode, or plane wave, propagating along the z

axis, is given by

E(x, t) = ReE0 e
i(kz−ωt), B(x, t) =

1

c
ẑ×E(x, t), ω = ck (1.1)

The amplitude vector E0 (thus E and B also) always belongs to the (x, y) ⊥ z

plane,

E0 = E0

cos θeiδx

sin θeiδy

0

 (1.2)

The energy per unit time per unit surface that would be imparted to a material

object by the wave, is given by the norm of the Poynting vector

S = ε0c
2E×B (1.3)
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Figure 1.1 Preparation of beam polarized along θ

A convenient measure of the intensity I of the wave is given by the average of

this norm, over a period T = 2π
ω ,

I =
1

2
ε0c|E0|2 =

1

2
ε0cE

2
0 (1.4)

From (1.1), (1.2) it follows that the tip of the electric (and hence also magnetic)

field vector describes, as a function of time, an ellipse in the (x, y) plane. There

are two degenerate cases of special importance. Linear polarization corresponds

to δx − δy = mπ (m integer) and the tip of the field oscillates in the (x, y)

plane on a line making the angle θ with x (m even/odd). For θ = π
4 (so that

cos θ = sin θ = 1√
2
) and δx − δy = mπ

2 (m odd integer) the polarization is

left/right circular which means that the tip of the field rotates along a circle of

radius E0.

A light beam can be easily prepared in a state of linear polarization with the

help of a filter which transmits only the component of the electric field along

θ. All our subsequent discussion does not rely on a detailed explanation of the

phenomenon and we do not need to know more about it1. Such a device is called

a polarizer with axis θ (figure 1.1).

Analyzer-detector apparatus. Assume that a source of light has been pre-

pared in a state of linear polarization along θ as in figure 1.1.

Ein(x, t) = E0

cos θ

sin θ

0

Re ei(kz−ωt) (1.5)

The intensity of the prepared beam (1.5) is proportional to E2
0 . Suppose now that

this ray is transmitted through a second polarizer at an angle α. This second

polarizer is called the analyzer. The light is then collected by a detector2 and its

1 In fact so-called absorptive polarizers are made of sheets of anisotropic crystals allowing
electron motion preferentially in the θ⊥ direction. The θ⊥ component of the electric field

sets electrons into a state of oscillation which produces the emission of an emitted
anti-phase electromagnetic wave polarized along θ⊥. The later cancels the progressive θ⊥
component of the wave so that the net effect is to leave out a θ transmitted component

and a θ⊥ reflected component.
2 This can be a photoelectric cell which transforms the electromagnetic energy into a current.
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Figure 1.2 analyzer-detector measurement apparatus

intensity measured (see figure 1.2). The electric field of the final beam is obtained

by projecting the incoming electric field on the analyzer axis eα

Eout = (Ein · eα) eα = E0 cos(θ − α)

cosα

sinα

0

Re ei(kz−ωt) (1.6)

and the intensity received in D is proportional to E2
0 cos2(θ−α). To summarize,

when a beam polarized along θ is transmitted through an analyzer at an angle

α, the outgoing beam is polarized along α and the fraction of intensity collected

by the detector (average power per unit surface) is3

Iout
Iin

= cos2(θ − α) (1.7)

In particular if α − θ = 0, π all the light passes through the analyzer, while if

α−θ = ±π2 none of it is transmitted. The analyzer-detector system can be used as

a measurement apparatus to determine the polarization of a wave (assuming we

know a priori that it is linear) by adjusting the angle α such that the collected

intensity varies from 0 to its maximal value. Let us now describe two simple

experiments with electromagnetic waves.

Polarizing beam-splitter experiment. There exist prisms4 that have the

property of splitting a beam in two linearly polarized ones, one is polarized

perpendicular to the incidence plane while the other is polarized parallel to that

plane. In figure 1.3 the incidence plane is (x, z) so one ray has y polarization

while the other one has x polarization. Two detectors Dx and Dy measure the

outgoing intensities of each beam. Note that the polarization degree of freedom

is coupled to the orbital (path of ray) degree of freedom. Before the polarizing

beam-splitter the electric filed is given by (1.5) and has intensity proportional

3 Malus law.
4 These are made of quartz or calcite crystals whose refraction index are different for

polarization perpendicular to, versus into, the incidence plane. Such crystals are called

birefringent, one ray is called ordinary because the direction of refraction obeys the usual

Snell law, while the other ray is called extraordinary.
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Figure 1.3 polarizing beam-splitter experiment

to E2
0 . After the beam-splitter the x-polarized ray has an electric field

Ex = E0

cos θ

0

0

Re ei(kz−ωt) (1.8)

and the intensity detected at Dx is proportional to E2
0 cos2 θ, while the y-

polarized ray has a field

Ey = E0

 0

sin θ

0

Re ei(kz−ωt) (1.9)

and its intensity measured by Dy is proportional to E2
0 sin2 θ. Both detectors

collect a fraction of the intensity,

Iout,x
Iin

= cos2 θ,
Iout,y
Iin

= sin2 θ (1.10)

In this experiment absorption and reflection by the prism are negligible so that

the sum of the these two fractions equals 1.

Decomposition-recombination experiment. Once we have decomposed light

with a polarizing beam-splitter, we can recombine it with a symmetric prism.

We analyze the recombined beam with an analyzer-detector apparatus (see figure

1.4). Let us carefully review the situation. Before the first beam-splitter we have

one ray with electric field given by (1.5). The first beam-splitter splits the ray

in two parts with electric fields given by (1.8) and (1.9). After the second beam-

splitter the two rays interfere and the electric field of the recombined beam is

the sum of (1.8) and (1.9), which equals (1.5). The fraction of intensity collected

by the analyzer-detector system is

cos2(θ − α) (1.11)

a fact consistent with the first experiment.
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Figure 1.4 decomposition-recombination experiment

1.2 Photons

The works of Planck (1900) on the spectrum of black-body radiation, of Einstein

(1905) on the photoelectric effect and Bohr (1913) on the atomic structure (and

spectral lines), taught us that the interaction of light with matter occurs through

discrete quanta (quantities) of energy and momentum that are absorbed and

emitted. These quanta are called photons, and each photon carries an energy

~ω and momentum ~k (where ω = ck still holds). If we think of the beam

as a collection of independent photons, its intensity is ~ωcNV where N
V is the

number of photons per unit volume5. Identifying this quantity with (1.4) we find

a relation between the electric field and the number of photons associated to the

electromagnetic wave.

If we diminish sufficiently the intensity of the source we arrive at a situa-

tion where in principle photons are emitted one by one. We will repeat the

experiments with such a single photon source, that prepares them in a state of

polarization θ.

Analyzer-detector apparatus. Let us first discuss how the analyzer-detector

measurement apparatus works. We repeat the experiment of figure 1.2 and collect

photons at the detector D. When a photon hits the detector the later clicks (an

electric pulse is triggered) - we record this event as a 1, otherwise we record 0.

This experiment produces a sequence

1001111000101010011101... (1.12)

that looks random and where the empirical fraction of 1’s is cos2(θ − α). From

this experiment we infer

probability of detecting a photon = cos2(θ − α) (1.13)

In particular if α − θ = 0, π all photons are detected while if α − θ = ±π2 no

photon is detected.

This experiment suggests that photons behave as particles which carry a po-

larization degree of freedom. Indeed if they would behave as waves, then a part

5 cN
V

is the number of photons per unit time per unit surface that hit a detector.
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of the wave would be transmitted through the analyzer and some energy would

always be measured in the detector. However the event is discrete, the detec-

tor clicks or does not click. Moreover it seems impossible to predict the precise

polarization outcome for each individual photon: clicks are random. Note that

the statistics of the outcomes seems to satisfy a definite formula (1.13); and this

formula is the one found in the theory of electromagnetic waves (!).

The randomness of the outcome is a fundamental feature of the measurement

process for quantum systems and that it is not at all obvious to reconcile this

fact with our classical intuitions. One could attempt a classical interpretation6

by saying that the photon is a particle-like object that undergoes complicated

but otherwise deterministic collision processes within the analyzer, which result

in a probability cos2(θ − α) of being transmitted. Such attempts do not resist

the tests of other experiments.

Let us now repeat the two previous experiments with photons that are sent

one by one.

Polarizing beam-splitter experiment. Each single photon (polarized at an

angle θ) goes through the prism. We observe that either Dx clicks (the upper

detector register a 1 and the lower a 0) or Dy clicks (the upper detector registers

a 0 and the upper a 1); but they never click simultaneously. We record two

random complementary sequences with respective fractions of 1 equal to cos2 θ

and sin2 θ. Empirically,

prob detect photon at Dy = sin2 θ, prob detect photon at Dx = cos2 θ (1.14)

The sum is equal to one which means that the photon has certainly passed

through the beam-splitter.

The fact that the detectors never click simultaneously suggest as above that the

photons behave as particles. Indeed, would they behave as waves, both detectors

would collect some energy.

One may attempt the same (wrong) classical interpretation as above. A photon

is a particle, which due to complicated but otherwise deterministic collisions with

the crystal, is deflected towards the lower path with probability sin2 θ or through

the upper path with probability cos2 θ. This turns out to be incompatible with

the next experiment.

Decomposition-recombination experiment. let us consider again the set-

ting of figure 1.4. When photons are sent one by one we again record a sequence

of random clicks, and we infer from this sequence

prob detect photon at D = cos2(θ − α) (1.15)

This should comes as a great surprise to the reader. Indeed this result is not

consistent with the particle-like picture of a photon, but rather with a wave-like

picture, as we now show.

6 in the spirit of statistical mechanics, say
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Theoretical prediction of the particle picture. If a photon takes the lower

path in figure 1.4 its polarization is horizontal before the second beam-splitter

and comes out of it in a horizontal state. Therefore the probability of transmis-

sion of such a lower-path photon through the analyzer is cos2(π2 − α) = sin2 α.

Therefore

prob(D clicks | lower path) = sin2 α (1.16)

If the photon takes the upper path its polarization is vertical just before the

second beam-splitter and comes out in a state of vertical polarization. Therefore

the probability of transmission of such an upper-path photon is cos2(0− α) and

prob(D clicks | upper path) = cos2 α (1.17)

Now, we have

prob(D clicks) =prob(D clicks | lower path)prob(lower path)

+ prob(D clicks | upper path)prob(upper path) (1.18)

Thus because of (1.14), (1.16), (1.17)

prob detect photon at D = sin2 θ sin2 α+ cos2 θ cos2 α (1.19)

This contradicts the experimental result (1.15) and is therefore plain wrong !

The term that is missing is precisely

2 cos θ cosα sin θ sinα (1.20)

which, in wave theory, appears because of the interference between the x and y

components of the electric field. This suggests that a single photon follows both

paths, just as a wave would do, and interferes with itself just as a wave would

do7.

Let us summarize. We face the following situation: the decomposition experi-

ment suggests that photons behaves in a particle-like manner, while he recombi-

nation experiment (1.4) suggests that photons behave in a wave-like fashion. As

for most dilemmas, the resolution offered by quantum theory teaches us that both

pictures are two faces of a more subtle reality that goes beyond this dichotomy.

One sometimes refers to this dual behavior of light, and all known forms of

matter, as the “particle-wave duality” or the “complementarity principle”.

7 The mathematical formulation of this picture leads to the Feynman formulation of

quantum mechanics in terms of path integrals (1948). In this course we will adopt the
Dirac and von Neumann formulation in terms of Hilbert spaces (1932). We stress that

these formulations have essentially nothing new to say about the measurement postulate

(formulated later).
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1.3 The quantum setting: first encounter

In fact all known forms of matter8 display this particle/wave duality. As we

will now see quantum mechanics offers us a picture which accommodates both

behaviors and supersedes the classical pictures of wave and particle9.

We will illustrate how the rules of quantum theory consistently explain the

three experiments. The situation will be modeled in the simplest possible way

which retains the basic essence of quantum mechanics.

The state of a photon is described by two degrees of freedom, an orbital degree

of freedom and a polarization degree of freedom. Let us first concentrate on po-

larization. The state of polarization is described by a unit vector e perpendicular

to the direction of motion. Following Dirac we call these state vectors kets and

denote them as |e〉. Since the polarization vector lies in the x, y plane it can

be described in a orthonormal basis | l〉, | ↔〉, corresponding to the two linear

states of polarization along x and y

|e〉 = λ| l〉+ µ| ↔〉, |λ|2 + |µ|2 = 1 (1.21)

Here λ and µ are complex numbers. thus a general polarization state is a nor-

malized two component vector belonging to C2. The space C2 is our first and

simplest example of a space of quantum states.

A state of linear polarization along θ corresponds to λ = cos θ and µ = sin θ,

so that (1.29) becomes

|θ〉 = cos θ| l〉+ sin θ| ↔〉 (1.22)

On the other hand for circular polarization the x and y components of the

polarization vector have a π
2 - phase difference. Two basis states with circular

polarization are,

|L/R〉 =
1√
2

(| l〉 ± i| ↔〉) (1.23)

Given a state vector |Φ〉 its adjoint (also called hermitian conjugate) is obtained

by taking the complex conjugate and transposing |Φ〉
T

. This is denoted as a bra

〈Φ| = |Φ〉
T

(1.24)

The usual inner product (defined over a complex vector space) is called the

bracket

〈Ψ|Φ〉 = (|Ψ〉
T

) · (|Φ〉) (1.25)

8 For example photons, electrons, nuclei and their constituents ...
9 According to modern physics, matter is described by relativistic quantum fields. There are

underlying quantum fields (e.g. the quantum electromagnetic field, the quantum electronic
field, the quark field etc...) which may manifest themselves in a wave-like or particle-like

fashion depending on the situation. We will not introduce field theoretical notions in this

course.
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As an example consider the inner product between two polarization state vectors.

First the conjugate of a linearly polarized state is

〈α| = 〈l | cosα+ 〈↔ | sinα (1.26)

The inner product with |θ〉 then is

〈α | θ〉 = (〈l | cosα+ 〈↔ | sinα) · (cos θ| l〉+ sin θ| ↔〉)
= cosα cos θ + sinα sin θ

= cos(θ − α) (1.27)

To obtain the second equality one expands the braces into four terms, uses lin-

earity of the bracket and the orthonormality condition,

〈p | p′〉 = δpp′ (1.28)

This trivial calculation has been done in the linear polarization orthonormal

basis {| ↔〉, | l〉}. It is instructive to check that the circularly polarized states

{|L〉, |R〉} form another orthonormal basis of the two dimensional complex vector

space.

Let us now introduce the orbital degree of freedom in the picture. For a freely

moving photon, i.e a photon that does not interact with a material object, the

orbital state is entirely described once we know its momentum k, which has a

direction and a norm k = ω
c . The state vector is now denoted as |k, e〉. This state

freely evolves with time and for a photon of frequency ω the time evolution simply

amounts to a multiplicative phase factor, which does not change the momentum

and the polarization. The photon state at time t is

|Ψk,e(t)〉 = e−iωt|k, e〉 (1.29)

An explanation is in order here about the kets indexed by two degrees of freedom.

We will see in the next chapter that the mathematical rule to combine degrees

of freedom is the tensor product; this means that |k, e〉 = |k〉 ⊗ |e〉 and that the

inner product is

〈k′, e′ | k, e〉 = 〈k′ | k〉 · 〈e′ | e〉 (1.30)

Finally the momentum vectors themselves form an orthonormal basis 〈k′ | k〉 =

δk′,k.

As we will see in the next chapter, in general, the time-evolution of isolated

systems is given by a unitary transformation. In (1.29) the unitary transforma-

tion is simply the multiplication by the phase factor. When the photon interacts

with matter (for example with the analyzer, the beam-splitter) one has in prin-

ciple to describe the unitary evolution of the total system (photon + analyzer

or photon + beam-splitter), which is then more complicated. Here we do not

have to discuss such issues as we consider only the in-going and out-going states

which are those of freely moving photons.

When we make a measurement on a system, the system that is observed can-

not be considered as isolated and the state is modified in a non-unitary way.
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Figure 1.5 measurement with initial state |Ψ〉 and outcome |Φ〉.

Explaining the measurement process is a subject that has been (and sometimes

is still) much debated since the early days of quantum mechanics. An operational

rule, to determine the outcome of a measurement is given by the so-called mea-

surement postulate (Born, heisenberg, Bohr 1924-1927) in the form advocated by

what has been named the Copenhagen School10 (figure 1.5). Here we give it in

a rough form, and will be more precise in the next chapter.

If a system is initially prepared in the state |Ψ〉 and the outcome of the measure-

ment is a state |Φ〉, the probability of the transition |Ψ〉 → |Φ〉 is

Prob(|Ψ〉 → |Φ〉) = |〈Φ | Ψ〉|2 (1.31)

One cannot predict the outcome of the transition but only its frequency of occur-

rence during repeated identical experiments with identical initial states.

The transition between the initial and final state is also called ”reduction” or

”collapse” of the state. In a more precise formulation of the measurement pos-

tulate, in the next chapter, we will see that the transition probabilities of all

possible outcomes sum to one.

The re-interpretation of the experiments in the next section should make this

rather abstract postulate a bit more “natural”.

1.4 Quantum interpretation of experiments.

Analyzer-detector apparatus. We assume that the source prepares single

photons in the linearly polarized, freely moving state

|Ψk,θ(t)〉 = e−iωt|k, θ〉 (1.32)

If the measurement apparatus is the analyzer-detector system of figure 1.2, the

measurement postulate tells us that the probability to find the photon in state

|k, α〉 is

|〈k, α | Ψk,θ(t)〉|2 = |〈α | θ〉|2 = cos2(θ − α) (1.33)

10 Einstein never agreed that this rule is the final story. In his words “I, at any rate, am

convinced that He (God) does not throw dice”. Bohr replied “Einstein, don’t tell God
what to do”. In any case, this rule has not been challenged by experiment so far, and there

is hardly any more satisfying theoretical framework to date. In this course we stick to this
rule !
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This is consistent with the experimentally measured frequency of clicks in D.

Polarizing beam-splitter experiment. Before the beam-splitter the photon

state is (1.32), which is equal to

e−iωt(cos θ|k, l〉+ sin θ|k,↔〉) (1.34)

After the beam-splitter it becomes

e−iωt(cos θ|ku, l〉+ sin θ|kl,↔〉) (1.35)

where ku and kl label the upper and lower paths11. Notice that contrary to (1.34),

in (1.35) we cannot separate the orbital and polarization degrees of freedom into

a tensor product: it can be shown that for (1.35) this is an intrinsic property that

does not depend on the basis. We say that the orbital and polarization degrees

of freedom have been entangled by the beam-splitter. Entangled states depart

fundamentally from the classical picture and retain quantum correlations that

are missing in the classical interpretation. As we will see in this course they play

a very important role in quantum information and computation because they

may offer resources that are non-classical.

Now we consider the two detectors as our measurement apparatus. The mea-

surement postulate tells us that the probability to observe the photon in state

|ku, l〉 is

|〈ku, l| e−iωt(cos θ|ku, l〉+ sin θ|kl,↔〉)|2 = cos2 θ (1.36)

Similarly the probability to observe it in the state |kl,↔〉 is

|〈kl,↔| e−iωt(cos θ|ku, l〉+ sin θ|kl,↔〉)|2 = sin2 θ (1.37)

This is consistent with the experimental fractions of clicks at Dx and Dy.

Recombination experiment. The second polarizing beam-splitter transforms

the entangled state (1.35) back to (1.32). The later state enters the measurement

apparatus constituted by the analyzer-detector system. Therefore the probability

of observing |k, α〉 is simply given by (1.33). This is the experimental frequency of

clicks at D ! The quantum interpretation does not loose track of the interference

term (1.20).

1.5 Notion of quantum bit

There exist many quantum systems in nature that can be described by state

vectors which belong to the vector space C2, the two dimensional complex vector

11 Here we may imagine that the paths are not quite in the same direction so that these two

labels are different. In principle one should make a more complete description of the
orbital part of the state that takes into account the finite width of the beams.
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space. If we call |0〉 and |1〉 two orthonormal basis states a general state vector

takes the form

|ψ〉 = λ|0〉+ µ|1〉, |λ|2 + |µ|2 = 1 (1.38)

It will often be convenient to identify

|0〉 =

[
1

0

]
(1.39)

and

|1〉 =

[
0

1

]
(1.40)

and in quantum information theory it is customary to call this canonical basis

the computational basis. Of course one can represent the quantum bit |ψ〉 in any

other basis, and one that we will often use one that is obtained by a standard

45 degree real rotation

|+〉 =
1√
2

(|0〉+ |1〉), |−〉 =
1√
2

(|0〉 − |1〉) (1.41)

This basis will be called the Hadamard basis. Since the vector space is complex

we can make more general unitary transformations. For example

|L〉 =
1√
2

(|0〉+ i|1〉), |R〉 =
1√
2

(|0〉 − i|1〉) (1.42)

We have already seen a physical realization of a quantum bit, namely the pho-

ton polarization. If we identify the computational basis with horizontal/vertical

polarized photon states, then the Hadamard basis corresponds to polarized states

at 45 degree angle, and the last basis obtained by a unitary transformation is

physically realized by circularly left/right polarized photons. A physically mean-

ingful parametrization of general polarization state is

|ψ〉 = eiδx cos θ| l〉+ eiδy sin θ| ↔〉 (1.43)

If we rotate our reference frame (around z) by angle β, then the state vector is

obtained from the above expression by θ → θ − β. In particular if the reference

frame is rotated by 2π we recover the same state vector. These states form

ratgher trivial representations of the group of two-dimensional rotations (about

the z-axis say).

Another very common but physically different quantum bit is the spin 1
2 . The

most famous elementary particle (of obvious importance in our everyday life

since it transports electricity, interacts with sunlight ...) that has spin 1
2 is the

electron12. There exist also many composite systems, such as nuclei or atoms

that carry a total spin of 1
2 . A very rough intuitive way of thinking about spin

is to view the particle (the electron say) as having intrinsic spinning motion. If

12 Constituents of nuclei, protons and neutrons also have spin 1
2

. In particular the interaction

of the nuclear spins with magnetic fields is at the basis of Nuclear Magnetic Resonance,
used for example in medical imaging.
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Figure 1.6 Bloch sphere. Computational (z), Hadamard (x), circular (y) basis states

the particle spins about the z axis, its spin is (pointing) | ↑〉 or | ↓〉 according

to its direction of rotation. These two states form a basis and the most general

spin state is

|ψ〉 = λ| ↑〉+ µ| ↓〉, |λ|2 + |µ|2 = 1 (1.44)

Spin 1
2 states are two dimensional (complex) representations of the group of

rotations in three dimensions. A meaningful parametrization of the states is

|ψ〉 = ei
φ
2 cos

θ

2
| ↑〉+ e−i

φ
2 sin

θ

2
| ↓〉 (1.45)

These states can be represented by the tip of a vector on the Bloch sphere

(figure 1.6) with the usual spherical coordinates (θ, φ). We have the following

correspondence (up to phase factors):

θ = 0, π | ↑〉, | ↓〉, particle spin along z (1.46)

θ =
π

2
, φ = 0, π | ↑〉 ± | ↓〉, particle spin along x (1.47)

θ =
π

2
, φ = ±π

2
| ↑〉 ± i| ↓〉, particle spin along y (1.48)

The polarization and spin 1
2 quantum bits are different representations of the

rotation group in quantum mechanics (ultimately coming from the representation

of the Lorentz group of relativity).

There exist also other realizations of the quantum bit that have nothing to do

with the representations of the rotation group in quantum physics. An example

is given by the benzene molecule C6H6 that can be in the two states that differ

in the arrangement of single and double electronic bonds (figure 1.7). But the
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Figure 1.7 possible arrangements of chemical bonds

molecule can also be found in a resonating state such as

|ψ〉 =
1√
2

(|1〉+ |2〉) (1.49)

What is the difference between a classical bit and a quantum bit ? A classical

bit is an abstraction of a physical quantity that can be reasonably well described

by a two valued quantity. Examples are the charge in a capacitor, a voltage dif-

ference, or the magnetization of a Weiss domain. Classical information theory is

sufficiently universal so that it does not have to account for the detailed physical

properties of the classical bits. The only underlying assumption is that these

exist in two definite values 0 or 1 (let us pretend that noise is absent). Suppose a

classical bit is given to you and that you have no information whatsoever about

its value. To gain information about its value you can observe it (measure the

charge, the voltage difference) and its value is then discovered. By discovered

we mean that it already had the observed value before the measurement, and

that the measurement has not destroyed it. In this sense the information that

we gain, or the uncertainty that is removed, is by definition 1 bit.

A quantum bit is also an abstraction of physical quantities as the above ex-

amples have shown. It is well described by a two dimensional complex vector.

In the same spirit than in the classical case, quantum information theory is suf-

ficiently universal so that many of its aspects are independent of the concrete

physical realization. However the point is that it takes into account the general

underlying laws of quantum mechanics. This means in particular that extracting

information from quantum bits is quite different than in the classical case. Sup-

pose that a quantum bit is given to you in some state |ψ〉 on which you do not

have any information whatsoever. In order to determine |ψ〉, we have to observe

it (agree ?). To perform a measurement we have to select an apparatus, in other

words an orthonormal basis {|b1〉, |b2〉}. The measurement process then reduces

the quantum bit to |b1〉 or to |b2〉. So we have lost the original state (forever)

and have not gained any information because the final state depends on our

own choice of basis. We will see later in this course, that the quantum analog

of Shannon entropy, the von Neumann entropy, associated to a state like |ψ〉 is

zero. Note however that if we are given many copies of |ψ〉 we can measure all of

them in the same basis and get a hold of the probabilities |〈b1 | ψ〉|2, |〈b2 | ψ〉|2.
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1.6 A random number generator

At this point the reader may well wonder if quantum laws offer any useful re-

source in order to process information. In this course we will see that this is

so. Here we illustrate this with a very simplified model for a random number

generator.

A source sends a beam of photons on a semi-transparent mirror (figure 1.8).

The later splits the beam in two parts, the transmitted and reflected beams. If

the source is classical we observe that the two detectors each collect a fraction of

the incoming intensity of the beam. Assuming that the semi-transparent mirror

is perfect each detector collects half of the intensity.

When the intensity of our source is lowered sufficiently so that it becomes a sin-

gle photon source. Photons go through the mirror one at a time, we observe that

either DH or DV clicks, never the two at the same time. We obtain a sequence of

clicks 01000111010101000110111100 that looks Bernoulli with parameter p = 1
2 .

The interpretation of this experimental setup, in the framework of quantum

mechanics, is as follows. We drop the polarization index as it plays no role here.

A single photon is incoming in the semi-transparent mirror and the state of the

photon after the mirror is,

eiωt
1√
2

(|kH〉+ |kV 〉) (1.50)

This state is a superposition. The outcome of the measurement by the detectors

cannot be predicted. The probability that the photon is observed in state |kH〉
is

|〈kH | eiωt
1√
2

(|kH〉+ |kV 〉)|2 =
1

2
(1.51)

and similarly the probability that it is observed in state kV is

|〈kV | eiωt
1√
2

(|kH〉+ |kV 〉)|2 =
1

2
(1.52)
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Figure 1.9 Hadamard gate as a model for a semi-transparent mirror

So the measurement process produces a perfectly random sequence.

What do we mean by ”perfectly random sequence”? Of course, the sequence is

perfectly random only in principle, because in the real experiment there are im-

perfections, for example, the source is only approximately a single photon source

and the semi-transparent mirror has a small bias etc.... But the point here is

that, according to the standard interpretation of quantum mechanics, the mea-

surement process produces ”true randomness” and not ”pseudo-randomness”:

the clicks are not the result of some underlying deterministic process. This point

has been much debated by the founding fathers of 20-th century physics and no-

tably by Einstein and Bohr. According to Einstein ”God does not play dice”, a

view that Bohr dismissed. Until today, no other theoretical framework has, suc-

cessfully described as many phenomena as quantum theory does, and we have so

far no experiment that forces us to abandon the standard quantum framework.

It is in this sense that we declare the sequence perfectly random.

A slightly more abstract representation in quantum information theory lan-

guage of this experiment is depicted on figure 1.9. We prepare and measure states

in the computational basis |0〉, |1〉. The initial state |0〉 goes through a Hadamard

gate

H =
1√
2

[
1 1

1 −1

]
(1.53)

which produces the state

H|0〉 =
1√
2

(|0〉+ |1〉) (1.54)

When we perform a measurement on (1.54) the outcome is |0〉 with probability

|〈0|H|0〉|2 =
1

2
(1.55)

or |1〉 with probability

|〈1|H|0〉|2 =
1

2
(1.56)

We note that quantum random number generators based on these principles have

been realized and are even commercialized. See for example http://www.idquantique.com/true-

random-number-generator/products-overview.html





Part II

Quantum Information Theory





Part III

Quantum Computation





Notes




