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Lecture Notes 4: Statistical Physics Reformulation of Coding

Lecturer: Nicolas Macris Scribe: Marc Desgroseilliers

We reformulate the coding problem of lecture 1 in the language of statistical physics.
As we will see the MAP decoder can be interpreted as a general spin system. Later in the
course, we will come to the formulation of the Belief Propagation decoder and its relation
to the MAP.

1 Generalization of the Ising Model

The Ising model can be generalized in various directions. Here we point out the structure
of the most general models, keeping the same alphabet {−1,+1}. All the problems that
will interest us in this course can be cast in this unified framework.

The most general function of N spin variables si ∈ {−1,+1} is of the form

H(s) = −
∑

A⊂{1,··· ,N}

JA

∏
i∈A

si

The constants JA are ”Fourier coefficients” of the expansion on the basis
∏

i∈A si, A ⊂
{1, · · · , N} for functions of s. There are 2N basis functions. In order for H to be a
”reasonable” Hamiltonian (that leads to nice thermodynamic behavior) one asks that

• The system has a large number of degrees of freedom: N tends to infinity.

• Interactions are local. Each term in the sum couples a finite number of spins, so that
|A| = O(1). Each spin enters in a finite number of terms. In particular since there
are N spins the total number of non zero Fourier coefficients is O(N).

The Gibbs distribution for finite N is defined as usual

µN (s) =
1
ZN

e−βH(s) =
1
ZN

∏
A⊂{1,··· ,N}

eβJA
Q

i∈A si

where ZN is the sum of the numerator over s ∈ {−1,+1}N . Locality implies that this
measure factors into a product of terms with a small number of variables in each of them.
Moreover each variable enters in a small number of factors.

For calculationnal purposes it is often useful to write the measure in the form

µN (s) =

∏
A⊂{1,··· ,N}(1 + (tanhβJA)

∏
i∈A si)∑

s

∏
A⊂{1,··· ,N}(1 + (tanhβJA)

∏
i∈A si)

Bipartite factor graphs (Tanner graphs) are a convenient way to summarize the factored
structure of the measure. Attach N spin variables to variable nodes s1, · · · , sN . Consider
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the collection of subsets A ⊂ {1, · · · , N} for which JA 6= 0. The number of such subsets is
O(N). For each subset A we have a function node with the weight

ψ(si, i ∈ A) = 1 + (tanhβJA)
∏
i∈A

si

Edges of the bipartite graph connect A to the variables i ∈ A. Locality translates in the
finiteness of the degrees of variable and function nodes.

Coding and SAT problems can be formulated in this language with the extra feature
that the collection of subsets A and JA are random chosen in an ensemble. As we will
see hard constraints imply that some of the JA’s are ”infinite”. This simply means that
tanhβJA = 1 in the expression of the measure above.

2 Coding: Notations and Preliminaries

We take a code C from the Gallager Ensemble LDPC(l, r, n) with l = degree of variable
nodes, r =degree of check nodes and n = length of codewords. Consider a transmitted
codeword xinput = (x0

1, . . . , x
0
n) through a binary, memoryless channel without feedback,

with received word yinput = (y1, . . . , yn). We will always assume that the codeword is
selected uniformly at random. We will use the spin variable notation for the codebits
si = (−1)xi . The channel is described by the transition probabilities

P (y|s) =
n∏

i=1

p(yi|si) (1)

Two examples will be mainly kept in mind, the Binary Symmetric Channel (BSC) and the
Binary Input Additive White Noise Channel (BIAWNC) yi = xi + σni with ni standard
Gaussian, σ2 the noise variance (SNR = σ−2).

Bit-MAP decoding. Let P(s|y) be the posterior probability distribution given the re-
ceived word y. We take the hard estimate

ŝi(y) = argmax P(si|y)
= sign(P(si = 1|y)− P(si = −1|y))

= sign(
∑
si

siP(si|y)) (2)

where P(si|y) is the marginal of P(s|y). The argument of the sgn function is sometimes
called the soft estimate. The average bit-probability of error is

Perror =
1
n

n∑
i=1

P(ŝi(y) 6= s0i )

=
1
n

n∑
i=1

1
|C|

∑
s0∈C

EY |s0 [1(ŝi(y) 6= s0i )]

=
1
n

n∑
i=1

1
|C|

∑
s0∈C

EY |s0 [
1
2
(1− s0i sign〈si〉)] (3)
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where EY |s0 is the expectation over the channel realization when s0 is sent.

Block-MAP decoding. The estimate of the block is

ŝ(y) = argmax P(s|y) (4)

and the block error
PB

error = P(ŝ(y) 6= s0) (5)

As we will see below block decoding is equivalent to finding the ground states (minimum
energy states) of a Hamiltonian.

3 MAP Decoding as a Spin Glass Problem

We show that the posterior distribution P(s|y) is a random Gibbs measure. Two preliminary
observations are useful:

Observation 3.1. A code word x has to satisfy all parity check constraints
∑

i∈c xi = 0.
This is equivalent to

∏
i∈c si = 1. Thus the prior distribution over codewords can be written

as
P(s) =

1
|C|

I(s) =
1
|C|

∏
c∈C

I(s satisfies c) =
1
|C|

∏
c∈C

1
2
(1 +

∏
i∈c

si) (6)

Observation 3.2. Channel outputs can be expressed in terms of their half-loglikelihoods

hi =
1
2

ln
P(yi|+ 1)
P(yi| − 1)

. (7)

One checks that
P(yi|si) = P(yi|si = +1)e−hiehisi (8)

Notation 3.3. We will abusively interchange the arguments y and h when no confusion is
possible.

Using first Bayes law, second the channel law, and lastly the two observations, we obtain:

P(s|y) =
P (y|s)P(s)∑
s P (y|s)P(s)

=
∏n

i=1 P(yi|si)P(s)∑
s

∏
P(yi|si)P(s)

=
1

Z(h)

∏
c∈C

1
2
(1 +

∏
i∈c

si)
n∏

i=1

ehisi (9)

To get the last equality we pulled out the P(yi| + 1)e−hi terms from both numerator and
denominator (since they do not depend on si), and cancelled them. The denominator
(partition function) is simply

Z(h) =
∑

s

∏
c∈C

1
2
(1 +

∏
i∈c

si)
n∏

i=1

ehisi (10)
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This is a random Gibbs distribution. By this we mean that for each channel realization h and
each code C from the Gallager ensemble we have a measure over the spins s ∈ {−1,+1}n.
An important feature (of all Gibbs distributions) is that it is factored into a product of
”local” terms, i.e terms which depend on a finite number of spins.

Let us point out a few physics terms that are commonly used. Another name for random
Gibbs measures is ”spin-glass”. This refers to the fact that glass is an amorphous material
(amorphous = random ordering of atoms). There is no good theory for real glass, but
random spin systems were initially invented as toy models to investigate properties of glass,
hence the name spin-glass. The channel outputs and the code (or Tanner graph) are called
”quenched” or ”frozen” variables because they are fixed in the measure. The spins are called
”annealed” variables because they adjust themselves in the environment of the quenched
variables. These terms also refer to the vastly different dynamical time scales of the two
type of degrees of freedom in amorphous materials like glass.

What is the Hamiltonian associated to the Gibbs measure of the MAP decoder ? One
way to identify it is to write

P(s|y) = lim
Kc→+∞

∏
c∈C(1 + tanhKc

∏
i∈c si)

∏n
i=1 e

hisi∑
s

∏
c∈C(1 + tanhKc

∏
i∈c si)

∏n
i=1 e

hisi
(11)

Using the identity (which is true because
∏

i∈c si = ±1)

eKc
Q

i∈c si = coshKc + sinhKc

∏
i∈c

si = coshKc(1 + tanhKc

∏
i∈c

si) (12)

we get

P(s|y) = lim
Kc→+∞

e−HC(s|h)∑
s e

−HC(s|h)
(13)

for the Hamiltonian

HC(s|y) = −
∑
c∈C

Kc

∏
i∈c

si −
n∑

i=1

hisi (14)

This is the hamiltonian of the spin system associated to the Tanner graph of C. The parity
check constraints appear as ”infinite” coupling constants Kc and the channel outputs as
magnetic fields hi. The ”temperature” in this spin system is kBT = 1 (more on this
later). It is interesting to remark that it is not a good analogy to think of channel noise as
temperature: channel noise measure the variance of the random magnetic field hi.

Bit-MAP decoding. Recall that the average over s with respect to P(s|y) are denoted
by 〈−〉. The bit-MAP estimate (2) is now

ŝi(y) = sign〈si〉 (15)

The soft bit estimate is nothing else than a magnetization. The average bit probability of
error (16) becomes,

Perror =
1
n

n∑
i=1

1
|C|

∑
s0∈C

Eh|s0(
1
2
(1− s0i sign〈si〉)) (16)
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If the sign function was not here this would be an expected magnetization. The presence
of the sign does not make this quantity very convenient to deal with, because it cannot be
obtained as a derivative of a free energy1. We will see that derivatives of the free energy,
which are more directly related to the magnetization, and are technically easier to deal with,
are convenient performance measures. They have the same threshold as the probability of
error.

Block-MAP decoding. The block estimate maximizes P(s|y). Because of (??) this is
equivalent to minimizing HC(s|y).

ŝ(y) = argminHC(s|h) (17)

Therefore block decoding is equivalent to finding the lowest energy state of a Hamiltonian.
This also means that block decoding is a ”zero temperature” problem.

Finite temperature decoder. There is a small literature on the so-called finite temper-
ature decoder based on the Gibbs measure (kBT = β−1)

Pβ(s|y) = lim
Kc→+∞

e−βHC(s|h)∑
s e

−βHC(s|h)
(18)

This decoder interpolates between block and bit decoding. For β = 1 one gets the bit
decoder and for β = +∞ one gets the block decoder.

4 Channel Symmetry and Gauge Transformations

For symmetric channels all formulas simplify and there are some remarkable identities that
hold. Channel symmetry is a special case of ”gauge symmetry” also called Nshimori sym-
metry in the spin glass context.

Definition 4.1. A channel is said to be output symmetric if P (yi|s1) = P (−yi| − si).

From now on we limit ourselves to this class of channels. The BSC, BEC, BIAWNGC
belong to it.

Let τ = (τ1, . . . , τn) be a codeword in C. It is immediate to see that under the transfor-
mation (change of variable)

si 7→ τisi

hi 7→ τihi

P(s|h) is invariant. Note that this works because τ is a codeword so that
∏

i∈c τi = 1 for all
c. The set of such transformations form a group (because the codewords from a group) and
the transformations are local (because each variable gets multiplied by a different sign). In
physics transformations with these two properties are called ”gauge transformations” and
when they leave invariant a Hamiltonian one speaks of ”gauge symmetry”2.

Let us now explore some consequences of this symmetry. We start with the simplest
one.

1As we will see shortly in this context the free energy is essentialy equivalent to the cnditional entropy
H(X|Y ).

2The prototype of gauge symmetry is the invariance of Maxwell equations under choice of potentials.
Gauge symmetry seems to be an underlying principle for all four fundamental forces.
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4.1 Independence of input codeword.

Under this change of variables
〈si〉 → τi〈si〉 (19)

where 〈−〉 is the same expectation on both sides (invariance of Gibbs measure). Therefore

Eh|s0(sgn(〈si〉) = E...τiyi...|s0(τisgn(〈si〉)
= s0i τiEY |...τis0

i
(sgn(〈si〉) (20)

Using τ = s0 for the gauge, we get

s0i Eh|s0(sgn(〈si〉) = Eh|+1(sgn(〈si〉)) (21)

and so Equation (16) simplifies to

Perror =
1
n

m∑
i=1

Eh|+1(
1
2
(1− sgn(〈si〉)) (22)

Thus, for symmetric channels we can assume without loss of generality that the input word
is the all +1 word (note that in the 0/1 language this is the all 0 codeword). From now on
we denote Eh|+1 as Eh. The distribution of hi is given by

c(hi)dhi = p(yi|+ 1)dyi (23)

We leave it as an exercise for the reader to check that,

Observation 4.2. For output symmetric channels, we have

c(−h) = c(h)e−2h (24)

Example 4.3. For the BSC(flip prob p) we have c(h) = (1−p)δ(h− ln 1−p
p )+pδ(h− ln p

1−p)

Example 4.4. For the BIAWGNC we have c(h) = 1√
2πσ−2

e−(h− 1
σ2 )2/ 2

σ2

4.2 Nishimori identities

Let us state a general proposition:

Proposition 4.5 (Nishimori identities for general spin systems). Consider the general spin
system with Hamiltonian,

H(s) = −
∑
A

JA

∏
i∈A

si

and random i.i.d coupling constants satisfying

P(−JA) = P(JA)e−2JA

We have ∀m1 . . .ml integers, the general identity

EJ [〈SX1〉m1〈SX2〉m2 . . . 〈SXl
〉ml ] = EJ [〈Sm1

X1
Sm2

X2
. . . Sml

Xl
〉〈SX1〉m1〈SX2〉m2 . . . 〈SXl

〉ml ]

where SX =
∏

i∈X si.
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Remark 4.6. These identities are valid for 〈−〉 associated to the Gibbs measure µ(s) = eH(s)

Z
with β = 1. In the space of all possible parameters of the Hamiltonian the line β = 1 plays
a special role because of these identities and is called the “Nishimori line”.

We do not give the proof of this general proposition, since we only need special cases of
it. Here we only prove the simplest possible such identity valid for the Gibbs distribution
associated to a symmetric channel and any linear code.

Proposition 4.7 (Simplest Nishimori Identity for Coding). For a binary input, output
symmetric, memoryless without feedback channel,

Eh(〈si〉) = Eh(〈si〉2)

Proof. For convenience we use the slightly abusive notation: τh for the vector (τjhj)j=1···n.
Using a gauge transformation, sj → τjsj , hj → τjhj for τ ∈ C, together with channel
symmetry, we have,

Eh(〈si〉) = Eτh(τi〈si〉)

= Eh[
n∏

i=1

ehjτj−hjτi〈si〉] (25)

Now, summing over all the codewords τ ∈ C

Eh(〈si〉) =
1
|C|

Eh[
∑
τ∈C

[
n∏

j=1

ehjτjehj ]〈si〉]

=
1
|C|

Eh[Z
n∏

j=1

e−hj 〈τi〉〈si〉]

=
1
|C|

∑
η∈C

Eh[
n∏

j=1

ehjηj

n∏
j=1

e−hj 〈τi〉〈si〉] (26)

For each term in the sum over η, we do a gauge transformation sj → ηjsj , τj → ηjτj ,
hj → ηjhj . The sum last becomes:

=
1
|C|

∑
η∈C

Eηh[
n∏

j=1

ehjη2
j

n∏
j=1

e−hjηj 〈τj〉〈si〉η2
j

n∏
j=1

ehjηj−hj ]

=
1
|C|

∑
η∈C

Eh[〈τi〉〈si〉]

= Eh[〈si〉2] (27)

To get the second equality we use channel symmetry. The last one is trivial because τ and
s are dummy variables (so 〈τ〉 = 〈s〉).
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5 Relation Between Conditional Entropy and Free Energy

Often, in the large size limit n→∞ the free energy 1
n lnZ(h) concentrates. It is therefore

relevant to consider the average free energy over channel realizations:

Eh[
1
n

lnZ(h)] (28)

When the performance of the ensemble of codes has to be assessed one also consider a
further averaging over the Gallager ensemble. The following result makes the connection
with information theory:

Proposition 5.1. We have the following relation

H(X|Y ) = Eh[lnZ(h]− n

∫
dhhc(h) (29)

The last term depends only on the underlying channel: thus one may say that the
average over channel outputs of the free energy and Shannon’s conditional entropy are the
same thing.

Proof in the case of a Gaussian channel. There are various ways to prove this relation.
Here we show one that is valid for the BIAWGNC not because it is the simplest, but
because it illustrates a nice use of Nishimori identities. The proof for general channels can
be found in the literature.

First note that for the BIAWGNC the last term is equal to σ−2.

H(X|Y ) = −EY [
∑

s

P(s|y) ln P(s|y)]

= EY [lnZ(y)]− EY [
∑

s

P(s|y) ln
∏
c∈C

1
2
(1 +

∏
i∈c

si)]− EY [
∑

s

P(s|y)(
n∑

i=1

hisi)]

= EY [lnZ(y)]− 0−
n∑

i=1

EY [hi〈si〉] (30)

So it remains to show EY [hi〈si〉] = σ−2, an identity that does not seems trivial at first sight.
The trick is to use integration by parts and a Nishimori identity. Let us first consider the
expectation over hi.

Ehi
[hi〈si〉] =

∫
c(hi)hi〈si〉dhi =

1
σ2

∫ (
− ∂

∂hi
c(hi) + c(hi)

)
〈si〉dhi

=
1
σ2

∫
c(hi)

∂

∂hi
〈si〉dhi +

1
σ2

∫
c(hi)〈si〉dhi

=
1
σ2

Ehi
[
∂

∂hi
〈si〉+ 〈si〉]

=
1
σ2

Ehi
[〈s2i 〉 − 〈si〉2 + 〈si〉]

=
1
σ2

Ehi
[1− 〈si〉2 + 〈si〉] = σ−2 (31)

4 - 8



Averaging over all other hj ’s we find

Eh[hi〈si〉] = σ−2 (32)

6 Performance Curves - Generalized MAP Exit function)

As seen in previous lectures, for usual spin systems, derivatives of the free energy with
respect to magnetic fields or other sources yield the magnetization or other averages. First
phase transitions are then identified as jump discontinuities (first order) of these averages.
Second order phase transitions are identified as jump discontinuities in their derivatives
(but these seem to be less relevant in coding (?)).

Here the control parameter is the noise intensity, call it ε, and it is a fruitful idea to look
at derivatives of the conditional entropy/average free energy with respect to this parameter.

Proposition 6.1 (Generalized EXIT curve of a symetric channel).

∂

∂ε

1
n
H(X|Y ) = − 1

n

n∑
i=1

Eh\hi

∫
dhi

∂

∂ε
{c(hi)} ln

(
1− 〈si〉 tanhhi

1− tanhhi

)

=
1
n

n∑
i=1

Eh\hi

∫
dhi

∂

∂ε
{c(hi)} ln

(
1 + 〈si〉hi=0 tanhhi

1 + tanhhi

)
dhi

When a phase transition between a decodable phase (small noise ε) and undecodable
phase (large noise ε) is present it turns out that this function has a jump at the same
threshold than the error probability. The proof will be done only for the BIAWGNC were
everything becomes simpler. We refer to the literature fior the general case.

Remark 6.2. The first formula involves the soft bit estimate. In the coding theory litera-
ture it is often expressed in terms of the likelihood

Hi =
1
2
ln

P(si = +1|y)
P(si = −1|y)

, tanhHi = 〈si〉

The second formula involves the so-called extrinsic soft bit estimate (because hi = 0). This
is often expressed in terms of the extrinsic likelihood

H0
i =

1
2
ln

P(si = +1|y\yi)
P(si = −1|y\yi)

, tanhH0
i = 〈si〉hi=0

For the BIAWGNC the formulas become much simpler and the Generalized EXIT curve
is really an average magnetization. This is also essentialy the case for the BEC (see exer-
cises).

Proposition 6.3. For a BIAWGNC the above formula can be simplified to

∂

∂(1/σ2)
H(Xn|Y n) =

1
2n

n∑
i=1

(Eh[〈si〉]− 1) (33)
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Proof. The proof is again a nice application of integration by parts and Nishimori identities.
For a BIAWGNC check the identity,

∂

∂σ−2
c(h) = (− ∂

∂h
+

1
2
∂2

∂h2
)c(h) (34)

Then proceeding similarly to beforehand intergartion by parts yields,

∂

∂σ−2
Eh(lnZ) =

n∑
i=1

Eh[(+
∂

∂hi
+

1
2
∂2

∂h2
i

)lnZ] (35)

Consequently,

∂

∂σ−2
Eh(lnZ) =

n∑
i=1

Eh[〈si〉+
1
2
(〈s2i 〉 − 〈si〉2]

=
1
2

n∑
i=1

Eh(1 + 〈si〉) (36)

because of the Nishimori identity. Finaly use the relation between conditional entropy and
average free energy to conclude.

Second derivatives of H(X|Y ) are related to correlation functions (covariances) 〈sisj〉−
〈si〉〈sj〉. We do not mention them at this point but they may turn out to be useful later in
the course.
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