Statistical Physics for Communication and Computer Science 17/03/2011 Lecture Notes 4: Statistical Physics Reformulation of Coding
 Lecturer: Nicolas Macris
 Scribe: Marc Desgroseilliers

We reformulate the coding problem of lecture 1 in the language of statistical physics. As we will see the MAP decoder can be interpreted as a general spin system. Later in the course, we will come to the formulation of the Belief Propagation decoder and its relation to the MAP.

1 Generalization of the Ising Model

The Ising model can be generalized in various directions. Here we point out the structure of the most general models, keeping the same alphabet $\{-1,+1\}$. All the problems that will interest us in this course can be cast in this unified framework.

The most general function of N spin variables $s_{i} \in\{-1,+1\}$ is of the form

$$
\mathcal{H}(\underline{s})=-\sum_{A \subset\{1, \cdots, N\}} J_{A} \prod_{i \in A} s_{i}
$$

The constants J_{A} are "Fourier coefficients" of the expansion on the basis $\prod_{i \in A} s_{i}, A \subset$ $\{1, \cdots, N\}$ for functions of \underline{s}. There are 2^{N} basis functions. In order for \mathcal{H} to be a "reasonable" Hamiltonian (that leads to nice thermodynamic behavior) one asks that

- The system has a large number of degrees of freedom: N tends to infinity.
- Interactions are local. Each term in the sum couples a finite number of spins, so that $|A|=O(1)$. Each spin enters in a finite number of terms. In particular since there are N spins the total number of non zero Fourier coefficients is $O(N)$.

The Gibbs distribution for finite N is defined as usual

$$
\mu_{N}(\underline{s})=\frac{1}{Z_{N}} e^{-\beta \mathcal{H}(\underline{s})}=\frac{1}{Z_{N}} \prod_{A \subset\{1, \cdots, N\}} e^{\beta J_{A} \prod_{i \in A} s_{i}}
$$

where Z_{N} is the sum of the numerator over $\underline{s} \in\{-1,+1\}^{N}$. Locality implies that this measure factors into a product of terms with a small number of variables in each of them. Moreover each variable enters in a small number of factors.

For calculationnal purposes it is often useful to write the measure in the form

$$
\mu_{N}(\underline{s})=\frac{\prod_{A \subset\{1, \cdots, N\}}\left(1+\left(\tanh \beta J_{A}\right) \prod_{i \in A} s_{i}\right)}{\sum_{\underline{s}} \prod_{A \subset\{1, \cdots, N\}}\left(1+\left(\tanh \beta J_{A}\right) \prod_{i \in A} s_{i}\right)}
$$

Bipartite factor graphs (Tanner graphs) are a convenient way to summarize the factored structure of the measure. Attach N spin variables to variable nodes s_{1}, \cdots, s_{N}. Consider
the collection of subsets $A \subset\{1, \cdots, N\}$ for which $J_{A} \neq 0$. The number of such subsets is $O(N)$. For each subset A we have a function node with the weight

$$
\psi\left(s_{i}, i \in A\right)=1+\left(\tanh \beta J_{A}\right) \prod_{i \in A} s_{i}
$$

Edges of the bipartite graph connect A to the variables $i \in A$. Locality translates in the finiteness of the degrees of variable and function nodes.

Coding and SAT problems can be formulated in this language with the extra feature that the collection of subsets A and J_{A} are random chosen in an ensemble. As we will see hard constraints imply that some of the J_{A} 's are "infinite". This simply means that $\tanh \beta J_{A}=1$ in the expression of the measure above.

2 Coding: Notations and Preliminaries

We take a code \mathcal{C} from the Gallager Ensemble $\operatorname{LDPC}(l, r, n)$ with $l=$ degree of variable nodes, $r=$ degree of check nodes and $n=$ length of codewords. Consider a transmitted codeword $\underline{x}^{\text {input }}=\left(x_{1}^{0}, \ldots, x_{n}^{0}\right)$ through a binary, memoryless channel without feedback, with received word $y^{\text {input }}=\left(y_{1}, \ldots, y_{n}\right)$. We will always assume that the codeword is selected uniformly at random. We will use the spin variable notation for the codebits $s_{i}=(-1)^{x_{i}}$. The channel is described by the transition probabilities

$$
\begin{equation*}
P(\underline{y} \mid \underline{s})=\prod_{i=1}^{n} p\left(y_{i} \mid s_{i}\right) \tag{1}
\end{equation*}
$$

Two examples will be mainly kept in mind, the Binary Symmetric Channel (BSC) and the Binary Input Additive White Noise Channel (BIAWNC) $y_{i}=x_{i}+\sigma n_{i}$ with n_{i} standard Gaussian, σ^{2} the noise variance ($S N R=\sigma^{-2}$).

Bit-MAP decoding. Let $\mathbb{P}(s \mid y)$ be the posterior probability distribution given the received word y. We take the hard estimate

$$
\begin{align*}
\hat{s}_{i}(\underline{y}) & =\operatorname{argmax} \mathbb{P}\left(s_{i} \mid \underline{y}\right) \\
& =\operatorname{sign}\left(\mathbb{P}\left(s_{i}=1 \mid \underline{y}\right)-\mathbb{P}\left(s_{i}=-1 \mid \underline{y}\right)\right) \\
& =\operatorname{sign}\left(\sum_{s_{i}} s_{i} \mathbb{P}\left(s_{i} \mid y\right)\right) \tag{2}
\end{align*}
$$

where $\mathbb{P}\left(s_{i} \mid y\right)$ is the marginal of $\mathbb{P}(s \mid y)$. The argument of the sgn function is sometimes called the soft estimate. The average bit-probability of error is

$$
\begin{align*}
P_{\text {error }} & =\frac{1}{n} \sum_{i=1}^{n} \mathbb{P}\left(\hat{s}_{i}(\underline{y}) \neq s_{i}^{0}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} \frac{1}{|\mathcal{C}|} \sum_{\underline{s}^{0} \in \mathcal{C}} \mathbb{E}_{\underline{Y} \mid s^{0}}\left[\mathbf{1}\left(\hat{s}_{i}(\underline{y}) \neq s_{i}^{0}\right)\right] \\
& =\frac{1}{n} \sum_{i=1}^{n} \frac{1}{|\mathcal{C}|} \sum_{\underline{s}^{0} \in \mathcal{C}} \mathbb{E}_{\underline{Y} \mid s^{0}}\left[\frac{1}{2}\left(1-s_{i}^{0} \operatorname{sign}\left\langle s_{i}\right\rangle\right)\right] \tag{3}
\end{align*}
$$

where $\mathbb{E}_{\underline{Y} \mid s^{0}}$ is the expectation over the channel realization when \underline{s}^{0} is sent.
Block-MAP decoding. The estimate of the block is

$$
\begin{equation*}
\underline{\hat{s}}(y)=\operatorname{argmax} \mathbb{P}(\underline{s} \mid \underline{y}) \tag{4}
\end{equation*}
$$

and the block error

$$
\begin{equation*}
P_{\text {error }}^{B}=\mathbb{P}\left(\underline{\hat{s}}(\underline{y}) \neq \underline{s}^{0}\right) \tag{5}
\end{equation*}
$$

As we will see below block decoding is equivalent to finding the ground states (minimum energy states) of a Hamiltonian.

3 MAP Decoding as a Spin Glass Problem

We show that the posterior distribution $\mathbb{P}(s \mid y)$ is a random Gibbs measure. Two preliminary observations are useful:

Observation 3.1. A code word \underline{x} has to satisfy all parity check constraints $\sum_{i \in c} x_{i}=0$. This is equivalent to $\prod_{i \in c} s_{i}=1$. Thus the prior distribution over codewords can be written as

$$
\begin{equation*}
\mathbb{P}(\underline{s})=\frac{1}{|\mathcal{C}|} \mathbb{I}(\underline{s})=\frac{1}{|\mathcal{C}|} \prod_{c \in \mathcal{C}} \mathbb{I}(\underline{s} \text { satisfies } c)=\frac{1}{|\mathcal{C}|} \prod_{c \in \mathcal{C}} \frac{1}{2}\left(1+\prod_{i \in c} s_{i}\right) \tag{6}
\end{equation*}
$$

Observation 3.2. Channel outputs can be expressed in terms of their half-loglikelihoods

$$
\begin{equation*}
h_{i}=\frac{1}{2} \ln \frac{\mathbb{P}\left(y_{i} \mid+1\right)}{\mathbb{P}\left(y_{i} \mid-1\right)} . \tag{7}
\end{equation*}
$$

One checks that

$$
\begin{equation*}
\mathbb{P}\left(y_{i} \mid s_{i}\right)=\mathbb{P}\left(y_{i} \mid s_{i}=+1\right) e^{-h_{i}} e^{h_{i} s_{i}} \tag{8}
\end{equation*}
$$

Notation 3.3. We will abusively interchange the arguments \underline{y} and \underline{h} when no confusion is possible.

Using first Bayes law, second the channel law, and lastly the two observations, we obtain:

$$
\begin{align*}
\mathbb{P}(\underline{s} \mid \underline{y}) & =\frac{P(\underline{y} \mid \underline{s}) \mathbb{P}(\underline{s})}{\sum_{\underline{s}} P(\underline{y} \mid \underline{\mid}) \mathbb{P}(\underline{s})}=\frac{\prod_{i=1}^{n} \mathbb{P}\left(y_{i} \mid s_{i}\right) \mathbb{P}(\underline{s})}{\sum_{\underline{s}} \prod \mathbb{P}\left(y_{i} \mid s_{i}\right) \mathbb{P}(\underline{s})} \\
& =\frac{1}{Z(\underline{h})} \prod_{c \in \mathcal{C}} \frac{1}{2}\left(1+\prod_{i \in c} s_{i}\right) \prod_{i=1}^{n} e^{h_{i} s_{i}} \tag{9}
\end{align*}
$$

To get the last equality we pulled out the $\mathbb{P}\left(y_{i} \mid+1\right) e^{-h_{i}}$ terms from both numerator and denominator (since they do not depend on s_{i}), and cancelled them. The denominator (partition function) is simply

$$
\begin{equation*}
Z(\underline{h})=\sum_{\underline{s}} \prod_{c \in \mathcal{C}} \frac{1}{2}\left(1+\prod_{i \in c} s_{i}\right) \prod_{i=1}^{n} e^{h_{i} s_{i}} \tag{10}
\end{equation*}
$$

This is a random Gibbs distribution. By this we mean that for each channel realization \underline{h} and each code \mathcal{C} from the Gallager ensemble we have a measure over the spins $\underline{s} \in\{-1,+1\}^{n}$. An important feature (of all Gibbs distributions) is that it is factored into a product of "local" terms, i.e terms which depend on a finite number of spins.

Let us point out a few physics terms that are commonly used. Another name for random Gibbs measures is "spin-glass". This refers to the fact that glass is an amorphous material (amorphous $=$ random ordering of atoms). There is no good theory for real glass, but random spin systems were initially invented as toy models to investigate properties of glass, hence the name spin-glass. The channel outputs and the code (or Tanner graph) are called "quenched" or "frozen" variables because they are fixed in the measure. The spins are called "annealed" variables because they adjust themselves in the environment of the quenched variables. These terms also refer to the vastly different dynamical time scales of the two type of degrees of freedom in amorphous materials like glass.

What is the Hamiltonian associated to the Gibbs measure of the MAP decoder ? One way to identify it is to write

$$
\begin{equation*}
\mathbb{P}(\underline{s} \mid \underline{y})=\lim _{K_{c} \rightarrow+\infty} \frac{\prod_{c \in \mathcal{C}}\left(1+\tanh K_{c} \prod_{i \in c} s_{i}\right) \prod_{i=1}^{n} e^{h_{i} s_{i}}}{\sum_{\underline{s}} \prod_{c \in \mathcal{C}}\left(1+\tanh K_{c} \prod_{i \in c} s_{i}\right) \prod_{i=1}^{n} e^{h_{i} s_{i}}} \tag{11}
\end{equation*}
$$

Using the identity (which is true because $\prod_{i \in c} s_{i}= \pm 1$)

$$
\begin{equation*}
e^{K_{c} \prod_{i \in c} s_{i}}=\cosh K_{c}+\sinh K_{c} \prod_{i \in c} s_{i}=\cosh K_{c}\left(1+\tanh K_{c} \prod_{i \in c} s_{i}\right) \tag{12}
\end{equation*}
$$

we get

$$
\begin{equation*}
\mathbb{P}(\underline{s} \mid \underline{y})=\lim _{K_{c} \rightarrow+\infty} \frac{e^{-\mathcal{H}_{\mathcal{C}}(\underline{s} \mid \underline{h})}}{\sum_{\underline{s}} e^{-\mathcal{H}_{\mathcal{C}}(\underline{s} \mid \underline{h})}} \tag{13}
\end{equation*}
$$

for the Hamiltonian

$$
\begin{equation*}
\mathcal{H}_{\mathcal{C}}(\underline{s} \mid \underline{y})=-\sum_{c \in \mathcal{C}} K_{c} \prod_{i \in c} s_{i}-\sum_{i=1}^{n} h_{i} s_{i} \tag{14}
\end{equation*}
$$

This is the hamiltonian of the spin system associated to the Tanner graph of \mathcal{C}. The parity check constraints appear as "infinite" coupling constants K_{c} and the channel outputs as magnetic fields h_{i}. The "temperature" in this spin system is $k_{B} T=1$ (more on this later). It is interesting to remark that it is not a good analogy to think of channel noise as temperature: channel noise measure the variance of the random magnetic field h_{i}.

Bit-MAP decoding. Recall that the average over \underline{s} with respect to $\mathbb{P}(\underline{s} \mid \underline{y})$ are denoted by $\langle-\rangle$. The bit-MAP estimate (2) is now

$$
\begin{equation*}
\hat{s}_{i}(\underline{y})=\operatorname{sign}\left\langle s_{i}\right\rangle \tag{15}
\end{equation*}
$$

The soft bit estimate is nothing else than a magnetization. The average bit probability of error (16) becomes,

$$
\begin{equation*}
P_{\text {error }}=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{|C|} \sum_{\underline{s}^{0} \in C} \mathbb{E}_{\underline{\underline{h}} \mid s^{0}}\left(\frac{1}{2}\left(1-s_{i}^{0} \operatorname{sign}\left\langle s_{i}\right\rangle\right)\right) \tag{16}
\end{equation*}
$$

If the sign function was not here this would be an expected magnetization. The presence of the sign does not make this quantity very convenient to deal with, because it cannot be obtained as a derivative of a free energy ${ }^{1}$. We will see that derivatives of the free energy, which are more directly related to the magnetization, and are technically easier to deal with, are convenient performance measures. They have the same threshold as the probability of error.

Block-MAP decoding. The block estimate maximizes $\mathbb{P}(\underline{s} \mid y)$. Because of (??) this is equivalent to minimizing $\mathcal{H}_{\mathcal{C}}(\underline{s} \mid \underline{y})$.

$$
\begin{equation*}
\underline{\hat{s}}(\underline{y})=\operatorname{argmin} \mathcal{H}_{\mathcal{C}}(\underline{s} \mid \underline{h}) \tag{17}
\end{equation*}
$$

Therefore block decoding is equivalent to finding the lowest energy state of a Hamiltonian. This also means that block decoding is a "zero temperature" problem.

Finite temperature decoder. There is a small literature on the so-called finite temperature decoder based on the Gibbs measure ($k_{B} T=\beta^{-1}$)

$$
\begin{equation*}
\mathbb{P}_{\beta}(\underline{s} \mid \underline{y})=\lim _{K_{c} \rightarrow+\infty} \frac{e^{-\beta \mathcal{H}_{\mathcal{C}}(\underline{s} \underline{\mid})}}{\sum_{\underline{s}} e^{-\beta \mathcal{H}_{\mathcal{C}}(\underline{s} \mid \underline{h})}} \tag{18}
\end{equation*}
$$

This decoder interpolates between block and bit decoding. For $\beta=1$ one gets the bit decoder and for $\beta=+\infty$ one gets the block decoder.

4 Channel Symmetry and Gauge Transformations

For symmetric channels all formulas simplify and there are some remarkable identities that hold. Channel symmetry is a special case of "gauge symmetry" also called Nshimori symmetry in the spin glass context.
Definition 4.1. A channel is said to be output symmetric if $P\left(y_{i} \mid s_{1}\right)=P\left(-y_{i} \mid-s_{i}\right)$.
From now on we limit ourselves to this class of channels. The BSC, BEC, BIAWNGC belong to it.

Let $\underline{\tau}=\left(\tau_{1}, \ldots, \tau_{n}\right)$ be a codeword in \mathcal{C}. It is immediate to see that under the transformation (change of variable)

$$
\begin{gathered}
s_{i} \mapsto \tau_{i} s_{i} \\
h_{i} \mapsto \tau_{i} h_{i}
\end{gathered}
$$

$\mathbb{P}(\underline{s} \mid \underline{h})$ is invariant. Note that this works because τ is a codeword so that $\prod_{i \in c} \tau_{i}=1$ for all c. The set of such transformations form a group (because the codewords from a group) and the transformations are local (because each variable gets multiplied by a different sign). In physics transformations with these two properties are called "gauge transformations" and when they leave invariant a Hamiltonian one speaks of "gauge symmetry" ${ }^{2}$.

Let us now explore some consequences of this symmetry. We start with the simplest one.

[^0]
4.1 Independence of input codeword.

Under this change of variables

$$
\begin{equation*}
\left\langle s_{i}\right\rangle \rightarrow \tau_{i}\left\langle s_{i}\right\rangle \tag{19}
\end{equation*}
$$

where $\langle-\rangle$ is the same expectation on both sides (invariance of Gibbs measure). Therefore

$$
\begin{align*}
\mathbb{E}_{\underline{\underline{h} \mid \underline{s}^{0}}}\left(\operatorname{sgn}\left(\left\langle s_{i}\right\rangle\right)\right. & =\mathbb{E}_{\ldots \tau_{i} y_{i} \ldots \mid \underline{s}^{0}}\left(\tau_{i} \operatorname{sgn}\left(\left\langle s_{i}\right\rangle\right)\right. \\
& =s_{i}^{0} \tau_{i} \mathbb{E}_{\underline{Y} \mid \ldots \tau_{i} s_{i}^{0}}\left(\operatorname{sgn}\left(\left\langle s_{i}\right\rangle\right)\right. \tag{20}
\end{align*}
$$

Using $\underline{\tau}=\underline{s}^{0}$ for the gauge, we get

$$
\begin{equation*}
s_{i}^{0} \mathbb{E}_{\underline{\underline{h}} \mid s^{0}}\left(\operatorname{sgn}\left(\left\langle s_{i}\right\rangle\right)=\mathbb{E}_{\underline{\underline{h}} \mid+1}\left(\operatorname{sgn}\left(\left\langle s_{i}\right\rangle\right)\right)\right. \tag{21}
\end{equation*}
$$

and so Equation (16) simplifies to

$$
\begin{equation*}
P_{\text {error }}=\frac{1}{n} \sum_{i=1}^{m} \mathbb{E}_{\underline{\underline{l}} \mid+1}\left(\frac{1}{2}\left(1-\operatorname{sgn}\left(\left\langle s_{i}\right\rangle\right)\right)\right. \tag{22}
\end{equation*}
$$

Thus, for symmetric channels we can assume without loss of generality that the input word is the all +1 word (note that in the $0 / 1$ language this is the all 0 codeword). From now on we denote $\mathbb{E}_{\underline{\underline{\mid} \mid+1}}$ as $\mathbb{E}_{\underline{\underline{h}}}$. The distribution of h_{i} is given by

$$
\begin{equation*}
c\left(h_{i}\right) d h_{i}=p\left(y_{i} \mid+1\right) d y_{i} \tag{23}
\end{equation*}
$$

We leave it as an exercise for the reader to check that,
Observation 4.2. For output symmetric channels, we have

$$
\begin{equation*}
c(-h)=c(h) e^{-2 h} \tag{24}
\end{equation*}
$$

Example 4.3. For the $\operatorname{BSC}($ flip prob $p)$ we have $c(h)=(1-p) \delta\left(h-\ln \frac{1-p}{p}\right)+p \delta\left(h-\ln \frac{p}{1-p}\right)$
Example 4.4. For the BIAWGNC we have $c(h)=\frac{1}{\sqrt{2 \pi \sigma^{-2}}} e^{-\left(h-\frac{1}{\sigma^{2}}\right)^{2} / \frac{2}{\sigma^{2}}}$

4.2 Nishimori identities

Let us state a general proposition:
Proposition 4.5 (Nishimori identities for general spin systems). Consider the general spin system with Hamiltonian,

$$
\mathcal{H}(\underline{s})=-\sum_{A} J_{A} \prod_{i \in A} s_{i}
$$

and random i.i.d coupling constants satisfying

$$
\mathbb{P}\left(-J_{A}\right)=\mathbb{P}\left(J_{A}\right) e^{-2 J_{A}}
$$

We have $\forall m_{1} \ldots m_{l}$ integers, the general identity

$$
\mathbb{E}_{J}\left[\left\langle S_{X_{1}}\right\rangle^{m_{1}}\left\langle S_{X_{2}}\right\rangle^{m_{2}} \ldots\left\langle S_{X_{l}}\right\rangle^{m_{l}}\right]=\mathbb{E}_{J}\left[\left\langle S_{X_{1}}^{m_{1}} S_{X_{2}}^{m_{2}} \ldots S_{X_{l}}^{m_{l}}\right\rangle\left\langle S_{X_{1}}\right\rangle^{m_{1}}\left\langle S_{X_{2}}\right\rangle^{m_{2}} \ldots\left\langle S_{X_{l}}\right\rangle^{m_{l}}\right]
$$

where $S_{X}=\prod_{i \in X} s_{i}$.

Remark 4.6. These identities are valid for $\langle-\rangle$ associated to the Gibbs measure $\mu(s)=\frac{e^{\mathrm{H}(s)}}{Z}$ with $\beta=1$. In the space of all possible parameters of the Hamiltonian the line $\beta=1$ plays a special role because of these identities and is called the "Nishimori line".

We do not give the proof of this general proposition, since we only need special cases of it. Here we only prove the simplest possible such identity valid for the Gibbs distribution associated to a symmetric channel and any linear code.

Proposition 4.7 (Simplest Nishimori Identity for Coding). For a binary input, output symmetric, memoryless without feedback channel,

$$
\mathbb{E}_{\underline{\underline{h}}}\left(\left\langle s_{i}\right\rangle\right)=\mathbb{E}_{\underline{h}}\left(\left\langle s_{i}\right\rangle^{2}\right)
$$

Proof. For convenience we use the slightly abusive notation: $\underline{\tau h}$ for the vector $\left(\tau_{j} h_{j}\right)_{j=1 \cdots n}$. Using a gauge transformation, $s_{j} \rightarrow \tau_{j} s_{j}, h_{j} \rightarrow \tau_{j} h_{j}$ for $\tau \in \mathcal{C}$, together with channel symmetry, we have,

$$
\begin{align*}
\mathbb{E}_{\underline{\underline{h}}}\left(\left\langle s_{i}\right\rangle\right) & =\mathbb{E}_{\underline{\underline{\tau}} \underline{ }}\left(\tau_{i}\left\langle s_{i}\right\rangle\right) \\
& \left.=\mathbb{E}_{\underline{\underline{h}}} \prod_{i=1}^{n} e^{h_{j} \tau_{j}-h_{j}} \tau_{i}\left\langle s_{i}\right\rangle\right] \tag{25}
\end{align*}
$$

Now, summing over all the codewords $\underline{\tau} \in \mathcal{C}$

$$
\begin{align*}
\mathbb{E}_{\underline{\underline{h}}}\left(\left\langle s_{i}\right\rangle\right) & =\frac{1}{|\mathcal{C}|} \mathbb{E}_{\underline{\underline{h}}}\left[\sum_{\underline{\tau} \in \mathcal{C}}\left[\prod_{j=1}^{n} e^{h_{j} \tau_{j}} e^{h_{j}}\right]\left\langle s_{i}\right\rangle\right] \\
& =\frac{1}{|\mathcal{C}|} \mathbb{E}_{\underline{\underline{h}}}\left[Z \prod_{j=1}^{n} e^{-h_{j}}\left\langle\tau_{i}\right\rangle\left\langle s_{i}\right\rangle\right] \\
& =\frac{1}{|\mathcal{C}|} \sum_{\underline{\eta} \in \mathcal{C}} \mathbb{E}_{\underline{\underline{h}}}\left[\prod_{j=1}^{n} e^{h_{j} \eta_{j}} \prod_{j=1}^{n} e^{-h_{j}}\left\langle\tau_{i}\right\rangle\left\langle s_{i}\right\rangle\right] \tag{26}
\end{align*}
$$

For each term in the sum over $\underline{\eta}$, we do a gauge transformation $s_{j} \rightarrow \eta_{j} s_{j}, \tau_{j} \rightarrow \eta_{j} \tau_{j}$, $h_{j} \rightarrow \eta_{j} h_{j}$. The sum last becomes:

$$
\begin{align*}
& =\frac{1}{|\mathcal{C}|} \sum_{\underline{\eta} \in \mathcal{C}} \mathbb{E}_{\underline{\underline{h}}}\left[\prod_{j=1}^{n} e^{h_{j} \eta_{j}^{2}} \prod_{j=1}^{n} e^{-h_{j} \eta_{j}}\left\langle\tau_{j}\right\rangle\left\langle s_{i}\right\rangle \eta_{j}^{2} \prod_{j=1}^{n} e^{h_{j} \eta_{j}-h_{j}}\right] \\
& =\frac{1}{|\mathcal{C}|} \sum_{\underline{\eta} \in \mathcal{C}} \mathbb{E}_{\underline{\underline{h}}}\left[\left\langle\tau_{i}\right\rangle\left\langle s_{i}\right\rangle\right] \\
& =\mathbb{E}_{\underline{\underline{h}}}\left[\left\langle s_{i}\right\rangle^{2}\right] \tag{27}
\end{align*}
$$

To get the second equality we use channel symmetry. The last one is trivial because τ and s are dummy variables (so $\langle\tau\rangle=\langle s\rangle$).

5 Relation Between Conditional Entropy and Free Energy

Often, in the large size limit $n \rightarrow \infty$ the free energy $\frac{1}{n} \ln Z(\underline{h})$ concentrates. It is therefore relevant to consider the average free energy over channel realizations:

$$
\begin{equation*}
\mathbb{E}_{\underline{\underline{h}}}\left[\frac{1}{n} \ln Z(\underline{\underline{h}})\right] \tag{28}
\end{equation*}
$$

When the performance of the ensemble of codes has to be assessed one also consider a further averaging over the Gallager ensemble. The following result makes the connection with information theory:

Proposition 5.1. We have the following relation

$$
\begin{equation*}
H(\underline{X} \mid \underline{Y})=\mathbb{E}_{\underline{\underline{h}}}\left[\ln Z(\underline{\underline{h}}]-n \int d h h c(h)\right. \tag{29}
\end{equation*}
$$

The last term depends only on the underlying channel: thus one may say that the average over channel outputs of the free energy and Shannon's conditional entropy are the same thing.

Proof in the case of a Gaussian channel. There are various ways to prove this relation. Here we show one that is valid for the BIAWGNC not because it is the simplest, but because it illustrates a nice use of Nishimori identities. The proof for general channels can be found in the literature.

First note that for the BIAWGNC the last term is equal to σ^{-2}.

$$
\begin{align*}
H(\underline{X} \mid \underline{Y}) & =-\mathbb{E}_{\underline{Y}}\left[\sum_{\underline{s}} \mathbb{P}(\underline{s} \mid \underline{y}) \ln \mathbb{P}(\underline{s} \mid \underline{y})\right] \\
& =\mathbb{E}_{\underline{Y}}[\ln Z(\underline{y})]-\mathbb{E}_{\underline{Y}}\left[\sum_{\underline{s}} \mathbb{P}(\underline{s} \mid \underline{y}) \ln \prod_{c \in \mathcal{C}} \frac{1}{2}\left(1+\prod_{i \in c} s_{i}\right)\right]-\mathbb{E}_{\underline{Y}}\left[\sum_{\underline{s}} \mathbb{P}(\underline{s} \mid \underline{y})\left(\sum_{i=1}^{n} h_{i} s_{i}\right)\right] \\
& =\mathbb{E}_{\underline{Y}}[\ln Z(\underline{y})]-0-\sum_{i=1}^{n} \mathbb{E}_{\underline{Y}}\left[h_{i}\left\langle s_{i}\right\rangle\right] \tag{30}
\end{align*}
$$

So it remains to show $\mathbb{E}_{\underline{Y}}\left[h_{i}\left\langle s_{i}\right\rangle\right]=\sigma^{-2}$, an identity that does not seems trivial at first sight. The trick is to use integration by parts and a Nishimori identity. Let us first consider the expectation over h_{i}.

$$
\begin{align*}
\mathbb{E}_{{\underline{h_{i}}}}\left[h_{i}\left\langle s_{i}\right\rangle\right] & =\int c\left(h_{i}\right) h_{i}\left\langle s_{i}\right\rangle d h_{i}=\frac{1}{\sigma^{2}} \int\left(-\frac{\partial}{\partial h_{i}} c\left(h_{i}\right)+c\left(h_{i}\right)\right)\left\langle s_{i}\right\rangle d h_{i} \\
& =\frac{1}{\sigma^{2}} \int c\left(h_{i}\right) \frac{\partial}{\partial h_{i}}\left\langle s_{i}\right\rangle d h_{i}+\frac{1}{\sigma^{2}} \int c\left(h_{i}\right)\left\langle s_{i}\right\rangle d h_{i} \\
& =\frac{1}{\sigma^{2}} \mathbb{E}_{h_{i}}\left[\frac{\partial}{\partial h_{i}}\left\langle s_{i}\right\rangle+\left\langle s_{i}\right\rangle\right] \\
& =\frac{1}{\sigma^{2}} \mathbb{E}_{h_{i}}\left[\left\langle s_{i}^{2}\right\rangle-\left\langle s_{i}\right\rangle^{2}+\left\langle s_{i}\right\rangle\right] \\
& =\frac{1}{\sigma^{2}} \mathbb{E}_{h_{i}}\left[1-\left\langle s_{i}\right\rangle^{2}+\left\langle s_{i}\right\rangle\right]=\sigma^{-2} \tag{31}
\end{align*}
$$

Averaging over all other h_{j} 's we find

$$
\begin{equation*}
\mathbb{E}_{\underline{\boldsymbol{h}}}\left[h_{i}\left\langle s_{i}\right\rangle\right]=\sigma^{-2} \tag{32}
\end{equation*}
$$

6 Performance Curves - Generalized MAP Exit function)

As seen in previous lectures, for usual spin systems, derivatives of the free energy with respect to magnetic fields or other sources yield the magnetization or other averages. First phase transitions are then identified as jump discontinuities (first order) of these averages. Second order phase transitions are identified as jump discontinuities in their derivatives (but these seem to be less relevant in coding (?)).

Here the control parameter is the noise intensity, call it ϵ, and it is a fruitful idea to look at derivatives of the conditional entropy/average free energy with respect to this parameter.

Proposition 6.1 (Generalized EXIT curve of a symetric channel).

$$
\begin{aligned}
\frac{\partial}{\partial \epsilon} \frac{1}{n} H(\underline{X} \mid \underline{Y}) & =-\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{\underline{\underline{h} \backslash h_{i}}} \int d h_{i} \frac{\partial}{\partial \epsilon}\left\{c\left(h_{i}\right)\right\} \ln \left(\frac{1-\left\langle s_{i}\right\rangle \tanh h_{i}}{1-\tanh h_{i}}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{\underline{h} \backslash h_{i}} \int d h_{i} \frac{\partial}{\partial \epsilon}\left\{c\left(h_{i}\right)\right\} \ln \left(\frac{1+\left\langle s_{i}\right\rangle_{h_{i}=0} \tanh h_{i}}{1+\tanh h_{i}}\right) d h_{i}
\end{aligned}
$$

When a phase transition between a decodable phase (small noise ϵ) and undecodable phase (large noise ϵ) is present it turns out that this function has a jump at the same threshold than the error probability. The proof will be done only for the BIAWGNC were everything becomes simpler. We refer to the literature fior the general case.
Remark 6.2. The first formula involves the soft bit estimate. In the coding theory literature it is often expressed in terms of the likelihood

$$
H_{i}=\frac{1}{2} \ln \frac{\mathbb{P}\left(s_{i}=+1 \mid \underline{y}\right)}{\mathbb{P}\left(s_{i}=-1 \mid \underline{y}\right)}, \quad \tanh H_{i}=\left\langle s_{i}\right\rangle
$$

The second formula involves the so-called extrinsic soft bit estimate (because $h_{i}=0$). This is often expressed in terms of the extrinsic likelihood

$$
H_{i}^{0}=\frac{1}{2} \ln \frac{\mathbb{P}\left(s_{i}=+1 \mid \underline{y} \backslash y_{i}\right)}{\mathbb{P}\left(s_{i}=-1 \mid \underline{y} \backslash y_{i}\right)}, \quad \tanh H_{i}^{0}=\left\langle s_{i}\right\rangle_{h_{i}=0}
$$

For the BIAWGNC the formulas become much simpler and the Generalized EXIT curve is really an average magnetization. This is also essentialy the case for the BEC (see exercises).
Proposition 6.3. For a BIAWGNC the above formula can be simplified to

$$
\begin{equation*}
\frac{\partial}{\partial\left(1 / \sigma^{2}\right)} H\left(X^{n} \mid Y^{n}\right)=\frac{1}{2 n} \sum_{i=1}^{n}\left(\mathbb{E}_{h}\left[\left\langle s_{i}\right\rangle\right]-1\right) \tag{33}
\end{equation*}
$$

Proof. The proof is again a nice application of integration by parts and Nishimori identities. For a BIAWGNC check the identity,

$$
\begin{equation*}
\frac{\partial}{\partial \sigma^{-2}} c(h)=\left(-\frac{\partial}{\partial h}+\frac{1}{2} \frac{\partial^{2}}{\partial h^{2}}\right) c(h) \tag{34}
\end{equation*}
$$

Then proceeding similarly to beforehand intergartion by parts yields,

$$
\begin{equation*}
\frac{\partial}{\partial \sigma^{-2}} \mathbb{E}_{h}(\ln Z)=\sum_{i=1}^{n} \mathbb{E}_{\underline{\underline{h}}}\left[\left(+\frac{\partial}{\partial h_{i}}+\frac{1}{2} \frac{\partial^{2}}{\partial h_{i}^{2}}\right) \ln Z\right] \tag{35}
\end{equation*}
$$

Consequently,

$$
\begin{align*}
\frac{\partial}{\partial \sigma^{-2}} \mathbb{E}_{h}(\ln Z) & =\sum_{i=1}^{n} \mathbb{E}_{\underline{\underline{h}}}\left[\left\langle s_{i}\right\rangle+\frac{1}{2}\left(\left\langle s_{i}^{2}\right\rangle-\left\langle s_{i}\right\rangle^{2}\right]\right. \\
& =\frac{1}{2} \sum_{i=1}^{n} \mathbb{E}_{h}\left(1+\left\langle s_{i}\right\rangle\right) \tag{36}
\end{align*}
$$

because of the Nishimori identity. Finaly use the relation between conditional entropy and average free energy to conclude.

Second derivatives of $H(\underline{X} \mid \underline{Y})$ are related to correlation functions (covariances) $\left\langle s_{i} s_{j}\right\rangle-$ $\left\langle s_{i}\right\rangle\left\langle s_{j}\right\rangle$. We do not mention them at this point but they may turn out to be useful later in the course.

[^0]: ${ }^{1}$ As we will see shortly in this context the free energy is essentialy equivalent to the cnditional entropy $H(\underline{X} \mid \underline{Y})$.
 ${ }^{2}$ The prototype of gauge symmetry is the invariance of Maxwell equations under choice of potentials. Gauge symmetry seems to be an underlying principle for all four fundamental forces.

