# ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE 

School of Computer and Communication Sciences
Handout 4
Homework 4
Statistical Physics for Communication and Computer Science
March 17, 2011, INR 113-9:15-11:00
Problem 1 (Stat phys formulation for the BEC channel). We recall that the Binary Erasure Channel (BEC) is a memoryless channel with binary input alphabet $\{0,1\}$ and output alphabet $\{0,1, e\}$ where $e$ is an erasure symbol. The channel transition probability is $p(0 \mid 0)=1-\epsilon, p(e \mid 0)=\epsilon, p(1 \mid 1)=1-\epsilon$ and $p(e \mid 1)=\epsilon$. Here you will specialize the formalism of last lecture to this case. Use the spin formulation for the bits $s_{i}=(-1)^{x_{i}}$ (i.e $s_{i}=+1$ when $x_{i}=0$ and $s_{i}=-1$ when $x_{i}=1$ ).
a) Show that the the channel distribution, expressed in terms of the likehood variables $h_{i}=\frac{1}{2} \ln \frac{p\left(y_{i} \mid+1\right)}{p\left(y_{i} \mid-1\right)}$, takes the form $c\left(h_{i}\right)=\epsilon \delta\left(h_{i}\right)+(1-\epsilon) \Delta_{\infty}(h)$. Here $\Delta_{\infty}(h)$ represents a unit mass at infinity.
b) Consider a general Gibbs distribution with hamiltonian

$$
\mathcal{H}(\vec{s})=-\sum_{C} J_{C} \prod_{i \in C} s_{i}, \quad C \subset\{1, \ldots, n\}, \quad J_{C} \geq 0
$$

Show that for such ferromagnetic systems (meaning $J_{C} \geq 0$ ) one always has

$$
\left\langle s_{i}\right\rangle \geq 0
$$

Hint: only the numerator of $\left\langle s_{i}\right\rangle$ might have a negative sign; show that in fact, this cannot the case by expanding the exponential. This is the simplest form of so-called Griffith inequalities for ferromagnetic systems.
c) Now we apply this general result to the BEC channel. Using the Nishimori identity $\mathbf{E}_{\vec{h}}\left[\left\langle s_{i}\right\rangle\right]=\mathbf{E}_{\vec{h}}\left[\left\langle s_{i}\right\rangle^{2}\right]$ proved in class (why is it true here ?), deduce that $\left\langle s_{i}\right\rangle$ is a random variable that takes values 0 or 1 . Interpret this result in simple terms.
d) Condider now the EXIT function defined by $\frac{d}{d \epsilon} H\left(X^{n} \mid Y^{n}\right)$. Specialize the general formula given in class, namely

$$
\frac{d}{d \epsilon} H\left(X^{n} \mid Y^{n}\right)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{\vec{h} \backslash h_{i}} \int d h_{i} \frac{d c\left(h_{i}\right)}{d \epsilon} \ln \left(\frac{1+\left\langle s_{i}\right\rangle_{h_{i}=0} \tanh h_{i}}{1+\tanh h_{i}}\right),
$$

to the the BEC. In particular show that

$$
\begin{equation*}
\frac{d}{d \epsilon} H\left(X^{n} \mid Y^{n}\right)=\ln 2 \frac{1}{n} \sum_{i=1}^{n}\left(1-\mathbb{E}_{\vec{h} \backslash h_{i}}\left[\left\langle s_{i}\right\rangle_{h_{i}=0}\right]\right)=\epsilon^{-1} \ln 2 \frac{1}{n} \sum_{i=1}^{n}\left(1-\mathbb{E}_{\vec{h}}\left[\left\langle s_{i}\right\rangle\right]\right) \tag{1}
\end{equation*}
$$

Show that these quantities are directly related to the bit-MAP probability of error.
Problem 2. Consider the BIAWNC with noise variance $\sigma^{2}$ and the (binary) input normalized so that the $S N R=\sigma^{-2}$. In the last lecture we showed that

$$
\frac{d}{d\left(\sigma^{-2}\right)} \frac{1}{n} H\left(X^{n} \mid Y^{n}\right)=\frac{1}{2 n} \sum_{i=1}^{n}\left(\mathbb{E}_{\vec{h}}\left[\left\langle s_{i}\right\rangle\right]-1\right)
$$

Use the same method to prove that

$$
\frac{d^{2}}{d\left(\sigma^{-2}\right)^{2}} \frac{1}{n} H\left(X^{n} \mid Y^{n}\right)=\frac{1}{n} \sum_{i, j=1}^{n}\left(\mathbb{E}_{\vec{h}}\left[\left(\left\langle s_{i} s_{j}\right\rangle-\left\langle s_{i}\right\rangle\left\langle s_{j}\right\rangle\right)^{2}\right]\right)
$$

Hint: you will have to use general Nishimori identities discussed in class.

