ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 3

Homework 3
Statistical Physics for Communication and Computer Science

Last time you proved that the Ising model in one dimension $(d=1)$ does not have a phase transition for any $T>0$. On the grid \mathbb{Z}^{d} there is a non trivial phase diagram with first and second order phase transitions for any $d \geq 2$. This is also the case on the complete graph (as shown in the lectures) which morally corresponds to $d=+\infty$. Another graph that in a sense, corresponds to $d=+\infty$, is the q-ary tree. Indeed on \mathbb{Z}^{d} the number of lattice sites at distance less than n from the origin scales as n^{d}. On the q-ary tree it scales as $(q-1)^{n}$ which grows faster than n^{d} for any finite d.

The goal of the two exercises below is to solve for the Ising model on a q-ary tree and show that it displays first and second order phase transitions (with similar qualitative properties than on a complete graph).

Consider a finite rooted tree and call the root vertex o. All vertices have degree q, except for the leaf nodes that have degree 1 . We suppose that the tree has n levels (the root being "level 0 "). The thermodynamic limit corresponds to $n \rightarrow+\infty$. The Hamiltonian (multiplied by β) is

$$
\begin{equation*}
\beta \mathcal{H}_{n}=-K \sum_{(i, j) \in E_{n}} s_{i} s_{j}-h \sum_{i \in V_{n}} s_{i} \tag{1}
\end{equation*}
$$

were $K>0, h \in \mathbb{R}, V_{n}$ is the set of vertices and E_{n} the set of edges. We are interested in the magnetization of the root node in the thermodynamic limit:

$$
\begin{equation*}
m(K, h)=\lim _{n \rightarrow+\infty}<s_{o}>_{n}=\frac{\sum_{\left\{s_{k}, k \in V_{n}\right\}} s_{o} e^{-\beta \mathcal{H}_{n}}}{Z_{n}} \tag{2}
\end{equation*}
$$

The formula $\tanh ^{-1} y=\frac{1}{2} \ln \frac{1+y}{1-y}$ might be useful.

Problem 1 (Recursive equations). Perform the sums over the spins attached at the leaf nodes and show that

$$
\begin{equation*}
<s_{o}>_{n}=\frac{\sum_{\left\{s_{k}, k \in V_{n-1}\right\}} s_{o} e^{-\beta \mathcal{H}_{n-1}^{\prime}}}{Z_{n-1}^{\prime}} \tag{3}
\end{equation*}
$$

where E_{n-1} and V_{n-1} are the edge and vertex sets of a tree with with $n-1$ levels and the new Hamiltonian is

$$
\begin{equation*}
\beta \mathcal{H}_{n}^{\prime}=-K \sum_{(i, j) \in E_{n-1}} s_{i} s_{j}-h \sum_{i \in V_{n-1}} s_{i}-(q-1) \tanh ^{-1}(\tanh K \tanh h) \sum_{i \in \text { level } n-1} s_{i} \tag{4}
\end{equation*}
$$

Iterate this calculation and deduce

$$
\begin{equation*}
<s_{o}>_{n}=\tanh \left(h+q \tanh ^{-1}\left(\tanh K \tanh u_{n}\right)\right) \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
u_{k+1}=h+(q-1) \tanh ^{-1}\left(\tanh K \tanh u_{k}\right), \quad u_{1}=h \tag{6}
\end{equation*}
$$

Check that for $q=2$ you get back the recursion of homework 2 .

Problem 2 (Analysis of the recursion). We want to analyze the fixed point equation for $q \geq 3$,

$$
\begin{equation*}
u=h+(q-1) \tanh ^{-1}(\tanh K \tanh u) \tag{7}
\end{equation*}
$$

Plot the curves $u \rightarrow u-h$ and $u \rightarrow(q-1) \tanh ^{-1}(\tanh K \tanh u)$ and show that:

- for $K \leq K_{c} \equiv \frac{1}{2} \ln \frac{q}{q-2}=\tanh ^{-1}(q-1)^{-1},(7)$ has a unique solution, and that the iterations (6) converge to this unique solution.
- for $K>K_{c}$:
- for $|h| \geq h_{s}$, (7) has a unique solution (you do not needw3 to compute h_{s} explicitly although it is possible to find its analytical expression) and that the iterations (6) converge to this unique solution.
- for $|h|<h_{s},(7)$ has three solutions $u_{-}(h)<u_{0}(h)<u_{+}(h)$. Check graphically that for $h>0$ the iterations (6) with initial condition $u_{1}=h$ converge to $u_{+}(h)$. Similarly for $h<0$ they converge to $u_{-}(h)$. Check also graphically that the fixed point $u_{0}(h)$ is unstable whereas $u_{ \pm}(h)$ are stable.

Problem 3 (Phase transitions). Now we want to discuss the consequences of the results in problem 2 for the phase diagram. In a nutshell: in the $\left(K^{-1}, h\right)$ plane there is a first order phase transition line ($K^{-1} \in\left[0, K_{c}^{-1}[, h=0)\right.$ terminated by a critical point K_{c}. Outside of this line $m(K, h)$ is an analytic function of each variable.

We define the "spontaneous magnetization" as $m_{ \pm}(K)=\lim _{h \rightarrow 0_{ \pm}} m(K, h)$.

- Deduce from the analysis in problem 2 that for $K \leq K_{c}, m_{+}(K)=m_{-}(K)=0$.
- Deduce that for $K>K_{c}, m_{+}(K) \neq m_{-}(K)$ (jump discontinuity or first order phase transition) and that for $K \rightarrow+\infty m_{ \pm} \rightarrow \pm 1$.
- Show that for $K \rightarrow K_{c}$ from above, $m_{ \pm}(K) \sim\left(K-K_{c}\right)^{1 / 2}$. So on the line $h=0$, as a function of K, the spontaneous magnetization is continuous but not differentiable at K_{c} (second order phase transition).
- Now fix $K=K_{c}$ and show that $m\left(K_{c}, h\right) \sim|h|^{1 / 3}$. As a function of h the spontaneous magnetization is continuous but not differentiable at K_{c} (second order phase transition).

Hint: for the last two questions you can expand the fixed point equation to order u^{3}.
Remark: Note that the exponents $1 / 2$ and $1 / 3$ are the same than for the model on a complete graph. This is also the case for all $d \geq 4$ and is not the case for $d=2,3$.

