ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 3	Statistical Physics for Communication and Computer Science
Homework 3	March 10, 2011, INR 113 - 9:15-11:00

Last time you proved that the Ising model in one dimension (d = 1) does not have a phase transition for any T > 0. On the grid \mathbb{Z}^d there is a non trivial phase diagram with first and second order phase transitions for any $d \ge 2$. This is also the case on the complete graph (as shown in the lectures) which morally corresponds to $d = +\infty$. Another graph that in a sense, corresponds to $d = +\infty$, is the q-ary tree. Indeed on \mathbb{Z}^d the number of lattice sites at distance less than n from the origin scales as n^d . On the q-ary tree it scales as $(q-1)^n$ which grows faster than n^d for any finite d.

The goal of the two exercises below is to solve for the Ising model on a q-ary tree and show that it displays first and second order phase transitions (with similar qualitative properties than on a complete graph).

Consider a finite rooted tree and call the root vertex o. All vertices have degree q, except for the leaf nodes that have degree 1. We suppose that the tree has n levels (the root being "level 0"). The thermodynamic limit corresponds to $n \to +\infty$. The Hamiltonian (multiplied by β) is

$$\beta \mathcal{H}_n = -K \sum_{(i,j)\in E_n} s_i s_j - h \sum_{i\in V_n} s_i \tag{1}$$

were K > 0, $h \in \mathbb{R}$, V_n is the set of vertices and E_n the set of edges. We are interested in the magnetization of the root node in the thermodynamic limit:

$$m(K,h) = \lim_{n \to +\infty} \langle s_o \rangle_n = \frac{\sum_{\{s_k, k \in V_n\}} s_o e^{-\beta \mathcal{H}_n}}{Z_n}$$
(2)

The formula $\tanh^{-1} y = \frac{1}{2} \ln \frac{1+y}{1-y}$ might be useful.

Problem 1 (Recursive equations). Perform the sums over the spins attached at the leaf nodes and show that

$$\langle s_o \rangle_n = \frac{\sum_{\{s_k, k \in V_{n-1}\}} s_o e^{-\beta \mathcal{H}'_{n-1}}}{Z'_{n-1}}$$
(3)

where E_{n-1} and V_{n-1} are the edge and vertex sets of a tree with with n-1 levels and the new Hamiltonian is

$$\beta \mathcal{H}'_n = -K \sum_{(i,j) \in E_{n-1}} s_i s_j - h \sum_{i \in V_{n-1}} s_i - (q-1) \tanh^{-1}(\tanh K \tanh h) \sum_{i \in \text{level } n-1} s_i \qquad (4)$$

Iterate this calculation and deduce

$$\langle s_o \rangle_n = \tanh(h + q \tanh^{-1}(\tanh K \tanh u_n))$$
 (5)

where

$$u_{k+1} = h + (q-1) \tanh^{-1}(\tanh K \tanh u_k), \qquad u_1 = h$$
 (6)

Check that for q = 2 you get back the recursion of homework 2.

Problem 2 (Analysis of the recursion). We want to analyze the fixed point equation for $q \geq 3$,

$$u = h + (q - 1) \tanh^{-1}(\tanh K \tanh u) \tag{7}$$

Plot the curves $u \to u - h$ and $u \to (q - 1) \tanh^{-1}(\tanh K \tanh u)$ and show that:

- for $K \leq K_c \equiv \frac{1}{2} \ln \frac{q}{q-2} = \tanh^{-1}(q-1)^{-1}$, (7) has a unique solution, and that the iterations (6) converge to this unique solution.
- for $K > K_c$:
 - for $|h| \ge h_s$, (7) has a unique solution (you do not needw3 to compute h_s explicitly although it is possible to find its analytical expression) and that the iterations (6) converge to this unique solution.
 - for $|h| < h_s$, (7) has three solutions $u_-(h) < u_0(h) < u_+(h)$. Check graphically that for h > 0 the iterations (6) with initial condition $u_1 = h$ converge to $u_+(h)$. Similarly for h < 0 they converge to $u_-(h)$. Check also graphically that the fixed point $u_0(h)$ is unstable whereas $u_{\pm}(h)$ are stable.

Problem 3 (Phase transitions). Now we want to discuss the consequences of the results in problem 2 for the phase diagram. In a nutshell: in the (K^{-1}, h) plane there is a first order phase transition line $(K^{-1} \in [0, K_c^{-1}], h = 0)$ terminated by a critical point K_c . Outside of this line m(K, h) is an analytic function of each variable.

We define the "spontaneous magnetization" as $m_{\pm}(K) = \lim_{h \to 0_{\pm}} m(K, h)$.

- Deduce from the analysis in problem 2 that for $K \leq K_c$, $m_+(K) = m_-(K) = 0$.
- Deduce that for $K > K_c$, $m_+(K) \neq m_-(K)$ (jump discontinuity or first order phase transition) and that for $K \to +\infty$ $m_{\pm} \to \pm 1$.
- Show that for $K \to K_c$ from above, $m_{\pm}(K) \sim (K K_c)^{1/2}$. So on the line h = 0, as a function of K, the spontaneous magnetization is continuous but not differentiable at K_c (second order phase transition).
- Now fix $K = K_c$ and show that $m(K_c, h) \sim |h|^{1/3}$. As a function of h the spontaneous magnetization is continuous but not differentiable at K_c (second order phase transition).

Hint: for the last two questions you can expand the fixed point equation to order u^3 .

Remark: Note that the exponents 1/2 and 1/3 are the same than for the model on a complete graph. This is also the case for all $d \ge 4$ and is not the case for d = 2, 3.