ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 10	Statistical Physics for Communication and Computer Science
Homework 10	May 5, 2011, INR 113 - 9:15-11:00

Upper bounds for the SAT-UNSAT threshold, we call it α_s , are usually derived by counting arguments. The first exercise develops the simplest such argument. In the second exercise you will study a more subtle counting argument which leads to an important improvement¹. This method can be further refined and has led to better bounds.

An assignment is a tuple $\underline{x} = (x_1, \ldots, x_n)$ where $x_i = 0, 1$ of n variables. The total number of possible clauses with k variables is equal to $2^k \binom{n}{k}$. A random formula F is constructed by picking, with replacement, uniformly at random, m clauses. Thus there are $(2^k \binom{n}{k})^m$ possible formulas.

We set $m = \alpha n$ and think of n and m as tending to ∞ with α fixed. This is the regime displaying a SAT-UNSAT threshold.

It is useful to keep in mind that $\mathbb{P}[A] = \mathbb{E}[1(A)]$ where 1(A) is the indicator function of event A. In what follows probabilities and expectations are with respect to the random formulas F.

Problem 1 (Crude upper bound by counting all satisfying assignments). Let S(F) be the set of all assignments satisfying F and let |S(F)| be its cardinality. Since F is a random formula, |S(F)| is an integer valued random variable.

a) Show the Markov inequality $\mathbb{P}[F \text{ satisfiable}] \leq \mathbb{E}[|S(F)|].$

b) Fix an assignment \underline{x} . Show that $\mathbb{P}[\underline{x} \text{ satisfies } F] = (1 - 2^{-k})^m$. Then deduce that

$$\mathbb{E}[|S(F)|] = 2^n (1 - 2^{-k})^m.$$

c) Deduce the upper bound

$$\alpha_s < \frac{\ln 2}{|\ln(1-2^{-k})|}$$

For k = 3 this yields $\alpha_s < 5.191$.

Problem 2 (Bound by counting a restricted set of assignments). We define the set $S_m(F)$ of maximal satisfying assignments as follows. An assignment $\underline{x} \in S_m(F)$ iff:

- \underline{x} satisfies F,
- for all *i* such that $x_i = 0$ (in \underline{x}), the single flip $x_i \to 1$ yields an assignment call it \underline{x}^i that violates *F*.
- a) Show that if F is satisfiable then $S_m(F)$ is not empty. *Hint*: proceed by contradiction.
- **b)** Show as in the first exercise the Markov inequality $\mathbb{P}[F \text{ satisfiable}] \leq \mathbb{E}[|S_m(F)|]$
- c) Show that

$$\mathbb{E}[|S_m(F)|] = (1 - 2^{-k})^m \sum_{\underline{x}} \mathbb{P}[\bigcap_{i:x_i=0} (\underline{x}^i \text{ violates } F) \mid \underline{x} \text{ satisfies } F].$$

¹by Kirousis, Kranakis, Krizanc and Stamatiou, Approximating the Unsatisfiability Threshold of Random Formulas, in Random Struct and Algorithms (1998).

d) Fix \underline{x} . The events $E_i \equiv (\underline{x}^i \text{ violates } F)$ are negatively correlated, i.e.

$$\mathbb{P}[\bigcap_{i:x_i=0} E_i \mid \underline{x} \text{ satisfies } F] \le \prod_{i:x_i=0} \mathbb{P}[E_i \mid \underline{x} \text{ satisfies } F]$$

For the full proof which uses a correlation inequality (of FKG type) we refer to the reference given above. Here is a rough intuition for the inequality. First note that if $x_i = 0$ and \underline{x}^i violates F, there must be some set S_i of clauses (in F) that are satisfied only by this variable $x_i = 0$ (this set might contain only one clause). This restricts the possible formulas contributing to the event E_i . Second note that sets S_i , S_j corresponding to different such variables $x_i = 0$, $x_j = 0$ must be *disjoint*. This "repulsion" between the sets S_i and S_j puts even more restrictions on the possible formulas, compared to a hypothetical situation where the events (and thus the sets S_i and S_j) would have been independent.

e) Now show that

$$\mathbb{P}[E_i \mid \underline{x} \text{ satisfies } F] = 1 - \left(1 - \frac{\binom{n-1}{k-1}}{(2^k - 1)\binom{n}{k}}\right)^m.$$

Hint: note that in the event E_i there must be at least one clause containing $x_i = 0$ and containing other variables that do not satisfy it.

f) Deduce from the above results that $\lim_{n\to 0} \mathbb{P}[F \text{ satisfiable}] = 0$ as long as α satisfies

$$(1-2^{-k})^{\alpha}(2-e^{-\frac{\alpha k}{2^{k}-1}}) < 1.$$

The improvement compared with the first exercise resides in the factor $e^{-\frac{\alpha k}{2^k-1}}$. A numerical evaluation for k = 3 yields the bound $\alpha_s < 4.667$.