ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 10
Homework 10
Statistical Physics for Communication and Computer Science
May 5, 2011, INR 113-9:15-11:00
Upper bounds for the SAT-UNSAT threshold, we call it α_{s}, are usually derived by counting arguments. The first exercise develops the simplest such argument. In the second exercise you will study a more subtle counting argument which leads to an important improvement ${ }^{1}$. This method can be further refined and has led to better bounds.

An assignment is a tuple $\underline{x}=\left(x_{1}, \ldots, x_{n}\right)$ where $x_{i}=0,1$ of n variables. The total number of possible clauses with k variables is equal to $2^{k}\binom{n}{k}$. A random formula F is constructed by picking, with replacement, uniformly at random, m clauses. Thus there are $\left(2^{k}\binom{n}{k}\right)^{m}$ possible formulas.

We set $m=\alpha n$ and think of n and m as tending to ∞ with α fixed. This is the regime displaying a SAT-UNSAT threshold.

It is useful to keep in mind that $\mathbb{P}[A]=\mathbb{E}[1(A)]$ where $1(A)$ is the indicator function of event A. In what follows probabilities and expectations are with respect to the random formulas F.

Problem 1 (Crude upper bound by counting all satisfying assignments). Let $S(F)$ be the set of all assignments satisfying F and let $|S(F)|$ be its cardinality. Since F is a random formula, $|S(F)|$ is an integer valued random variable.
a) Show the Markov inequality $\mathbb{P}[F$ satisfiable $] \leq \mathbb{E}[|S(F)|]$.
b) Fix an assignement \underline{x}. Show that $\mathbb{P}[\underline{x}$ satisfies $F]=\left(1-2^{-k}\right)^{m}$. Then deduce that

$$
\mathbb{E}[|S(F)|]=2^{n}\left(1-2^{-k}\right)^{m} .
$$

c) Deduce the upper bound

$$
\alpha_{s}<\frac{\ln 2}{\left|\ln \left(1-2^{-k}\right)\right|}
$$

For $k=3$ this yields $\alpha_{s}<5.191$.
Problem 2 (Bound by counting a restricted set of assignments). We define the set $S_{\mathrm{m}}(F)$ of maximal satisfying assignments as follows. An assignment $\underline{x} \in S_{\mathrm{m}}(F)$ iff:

- \underline{x} satisfies F,
- for all i such that $x_{i}=0(\operatorname{in} \underline{x})$, the single fip $x_{i} \rightarrow 1$ yields an assignment - call it \underline{x}^{i} - that violates F.
a) Show that if F is satisfiable then $S_{m}(F)$ is not empty. Hint: proceed by contradiction.
b) Show as in the first exercise the Markov inequality $\mathbb{P}[F$ satisfiable $] \leq \mathbb{E}\left[\left|S_{m}(F)\right|\right]$
c) Show that

$$
\mathbb{E}\left[\left|S_{m}(F)\right|\right]=\left(1-2^{-k}\right)^{m} \sum_{\underline{x}} \mathbb{P}\left[\cap_{i: x_{i}=0}\left(\underline{x}^{i} \text { violates } F\right) \mid \underline{x} \text { satisfies } F\right] .
$$

[^0]d) Fix \underline{x}. The events $E_{i} \equiv\left(\underline{x}^{i}\right.$ violates $\left.F\right)$ are negatively correlated, i.e
$$
\mathbb{P}\left[\cap_{i: x_{i}=0} E_{i} \mid \underline{x} \text { satisfies } F\right] \leq \prod_{i: x_{i}=0} \mathbb{P}\left[E_{i} \mid \underline{x} \text { satisfies } F\right]
$$

For the full proof which uses a correlation inequality (of FKG type) we refer to the reference given above. Here is a rough intuition for the inequality. First note that if $x_{i}=0$ and \underline{x}^{i} violates F, there must be some set S_{i} of clauses (in F) that are satisfied only by this variable $x_{i}=0$ (this set might contain only one clause). This restricts the possible formulas contributing to the event E_{i}. Second note that sets S_{i}, S_{j} corresponding to different such variables $x_{i}=0, x_{j}=0$ must be disjoint. This "repulsion" between the sets S_{i} and S_{j} puts even more restrictions on the possible formulas, compared to a hypothetical situation where the events (and thus the sets S_{i} and S_{j}) would have been independent.
e) Now show that

$$
\mathbb{P}\left[E_{i} \mid \underline{x} \text { satisfies } F\right]=1-\left(1-\frac{\binom{n-1}{k-1}}{\left(2^{k}-1\right)\binom{n}{k}}\right)^{m}
$$

Hint: note that in the event E_{i} there must be at least one clause containing $x_{i}=0$ and containing other variables that do not satisfy it.
f) Deduce from the above results that $\lim _{n \rightarrow 0} \mathbb{P}[F$ satisfiable $]=0$ as long as α satisfies

$$
\left(1-2^{-k}\right)^{\alpha}\left(2-e^{-\frac{\alpha k}{2^{k}-1}}\right)<1
$$

The improvement compared with the first exercise resides in the factor $e^{-\frac{\alpha k}{2^{k}-1}}$. A numerical evaluation for $k=3$ yields the bound $\alpha_{s}<4.667$.

[^0]: ${ }^{1}$ by Kirousis, Kranakis, Krizanc and Stamatiou, Approximating the Unsatisfiability Threshold of Random Formulas, in Random Struct and Algorithms (1998).

