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Chapter 1

Introduction

1.1 Foreword

This is a set of lecture notes for an MS-level class on Advanced Digital Communication
taught at EPFL (COM-510; Fall 2011, Fall 2012, Fall 2013, Fall 2014, Fall 2015) and at the
University of California, Berkeley (EE 224A; Fall 2010).

There are many excellent books on the topic, including [1, 2, 3, 4, 5], and these lecture
notes are in no way designed to replace any of these books.

The only reason these lecture notes got written is that I could not find a single book that
contained all that I wanted to cover in this class at the desired level of detail. Switching
between multiple books not only requires deep pockets on the part of the students, but poses
additional challenges concerning the harmonization of notation. Therefore, after confusing
students again and again with notational inconsistencies, ever so slight, I decided I needed
a more or less consistent set of lecture notes.

Most importantly, these lecture notes are not suitable outside of the class — they are
not self-contained and not meant to make sense without the lectures that go with them.
They mostly contain many of the necessary definitions, bent in such a way as to fit my
purpose in this class, as well as some of the more cumbersome derivations and proofs.

As a further apology, for the same reasons already mentioned, these notes contain es-
sentially no figures — not because I do not like figures (I think figures are of crucial
importance to the learning process!), but because those will be given during lecture, and it
will be much more instructive for the students to redraw them themselves.

As a final word of caution, I am confident that there are plenty of typos and errors left,
and I am immensely grateful if you can report them back to me.

M. C. Gastpar, Lausanne, Switzerland
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1.2 Acknowledgments

The author thanks France Faille, Lionel Martin, Lucas Maystre, Giel Op ’t Veld, Saeid
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1.3 Practical Information, Fall 2015, EPFL

Instructor:
Michael Gastpar, michael.gastpar@epfl.ch, Office: INR 130, Office Hours: TBA

Teaching Assistants:
Giel Op ’t Veld, giel.optveld@epfl.ch, Office: INR 031, Office Hrs: TBA
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Wednesdays, 13:15-15:00, INR 113 (Exercises)

Course Web Page:
We will use http://moodle.epfl.ch

Official Prerequisites:
Principles of Digital Communications (EPFL class COM-302). Contact the instructor if
you are in doubt whether you meet the prerequisite.

Grading:
Problem Sets (10%) (we only grade two of the Problem Sets, to be announced later),
Midterm November 4 (11:15-13:00) (40%), Final Exam (50%)

Homework:
There will be weekly problem sets with solutions. Two of the problem sets will be graded.

Exam Rules:
Both exams are closed-book and closed-notes; calculators, computing and communication
devices are not permitted. However, two handwritten and not photocopied double-sided
sheets of notes are allowed for the midterm exam, and an additional two for the final exam.
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1.4 Lecture Schedule, Fall 2015, EPFL

Date Topics Reading

Chapter 1

Sept 14 Introduction, History, Overview, Outlook

Chapter 2 Review of Basic Concepts

Sept 16 Fourier Transform, Random Variables&Processes Sections 2.1-2.4

Sept 23 Detection Theory; AWGN Detection Problem Section 2.5

Chapter 3 The AWGN Channel

Sept 28 Modulation; The vector equivalent Sections 3.1-3.3

Sept 30 Vector AWGN: basics and geometry Section 3.4

Oct 5 Vector AWGN: high-dimensional signaling Sections 3.5-3.7

Chapter 4 The Band-limited AWGN Channel

Oct 7 The discrete-time equivalent Sections 4.1-4.2

Oct 12 ML decoding in the presence of ISI (Viterbi) Section 4.3

Oct 14 How to avoid ISI at Tx and Rx; good or bad? Sections 4.4-4.5

Oct 19 Better Equalizers Section 4.5

Oct 21 Bandpass Signaling and complex-valued channels Section 4.6

Oct 26 OFDM; FFT-OFDM implementation Sections 4.7-4.8

Oct 28 OFDM: Allocation for parallel channels Section 4.9

Chapter 5 Wireless Communication

Nov 2 Wireless Channels: Physics Section 5.1

Nov 4 Midterm Exam Chapters 2-4

Nov 9 Wireless Channels: Statistics; Rayleigh fading Section 5.2-5.3

Nov 11 Diversity; Maximum ratio combining Section 5.4

Nov 16 Diversity; Alamouti scheme Section 5.5

Nov 18 Non-coherent detection; MIMO Sections 5.6-5.7

Nov 23 MIMO: V-BLAST and beyond Section 5.7

Nov 25 Wireless Multi-user Communication Section 5.8

Chapter 6 Coding

Nov 30 Binary Linear Block Codes Sections 6.1-6.2

Dec 2 Binary Linear Block Codes Section 6.2

Dec 7 Binary Codes on Noisy Channels Sections 6.3-6.4

Dec 9 Famous Binary Linear Codes Sections 6.5-6.6

Dec 14 LDPC Codes and Message-Passing Decoding Handout

Dec 16 Discussion, Extensions Handout
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Chapter 2

Deterministic and Stochastic Signals

2.1 Fourier Transform

2.1.1 Continuous-time Fourier Transform

For continuous-time signals x(t), we define the following transform:

X(f) =

∫ ∞
−∞

x(t)e−j2πftdt (2.1)

x(t) =

∫ ∞
−∞

X(f)ej2πftdf (2.2)

We note that the inverse transform only returns the original x(t) under additional assump-
tions on x(t). However, this discussion is beyond the scope of this class.

The Fourier transform has many desirable properties. We here mention only one, the
so-called Parseval theorem asserting that∫ ∞

−∞
x(t)y∗(t)dt =

∫ ∞
−∞

X(f)Y ∗(f)df, (2.3)

where ∗ denotes the complex conjugate.

2.1.2 Discrete-time Fourier Transform (DTFT)

For discrete-time signals x[n], we define the following transform:

X(f) =

∞∑
n=−∞

x[n]e−j2πfn (2.4)

x[n] =

∫ 1/2

−1/2
X(f)ej2πfndf (2.5)

We note that the inverse transform only returns the original x[n] under additional assump-
tions on x[n]. However, this discussion is beyond the scope of this class.

11
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2.1.3 The Z-transform

For discrete-time signals x[n], we define the following transform:

X(z) =

∞∑
n=−∞

x[n]z−n (2.6)

This transform also has an inverse, involving complex integration, but we will not discuss
this to any detail in this class. Nevertheless, we will find the Z-transform useful.

The Z-transform has many desirable properties. For example, we have:

y[n] = x[−n] ←→ Y (z) = X(1/z). (2.7)

2.1.4 Discrete Fourier Transform (DFT)

For discrete-time signals x[n] of length N (or simply, vectors of length N), we define the
following transform:

X[k] =
1√
N

N−1∑
n=0

x[n]e−j
2π
N
kn (2.8)

x[n] =
1√
N

N−1∑
k=0

X[k]ej
2π
N
kn (2.9)

We note that the inverse transform always returns the original x[n].

We also note that we have made a debatable choice here: Instead of placing a factor
1/N in the inverse transform, we have “split” the factor into two factors 1/

√
N. Our choice

of normalization factors leads to a representation by unitary matrices. We will see the
advantage of this choice when we study communication systems such as the FFT-OFDM
approach, but we note that Matlab, for example, makes a different choice of normalization
factors.

2.2 Random Variables

We will denote random variables by upper case letters such as X and their realizations by
lower case letters such as x. For continuous-valued (real or complex) random variables Y,
we will consider their probability density function (pdf) and denote it by

fY (y), (2.10)

and when it is clear from context, we will sometimes drop the subscript Y and simply
write f(y). For discrete-valued random variables H, we will consider their probability mass
function (pmf) and denote it by

pH(h), (2.11)
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and when it is clear from context, we will sometimes drop the subscript H and simply write
p(h).

For the purpose of this class, one distribution plays a very special role: The normal or
Gaussian distribution, defined as

fY (y) =
1√

2πσ2
e−

(y−m)2

2σ2 . (2.12)

This is a valid distribution for all choices of m and σ > 0 since it is non-negative and
integrates to one. Moreover, it is easy to show that the mean of this distribution is m and
the variance is σ2.

For the purpose of our considerations, it will often be necessary to determine the proba-
bility that a Gaussian random variable lands in a certain range, say, between 3 and 5. This
probability is simply the integral of the Gaussian pdf from 3 to 5, but unfortunately, this
integral cannot be calculated explicitly. Therefore, it is useful to introduce the so-called
Q-function:

Q(x) =
1√
2π

∫ ∞
x

e−
y2

2 dy. (2.13)

2.3 Random Vectors

We will denote random vectors by bold-face letters Y = (Y1, Y2, . . . , Yn)T . The mean (vector)
m of the random vector Y is defined as

m = E [Y] =


E [Y1]
E [Y2]

...
E [Yn]

 , (2.14)

and the covariance matrix C of the random vector Y is defined as

C = E
[
(Y −m) (Y −m)H

]

=


E
[
|Y1|2

]
− |m1|2 E [Y1Y

∗
2 ]−m1m

∗
2 . . . E [Y1Y

∗
n ]−m1m

∗
n

E [Y2Y
∗

1 ]−m2m
∗
1 E

[
|Y2|2

]
− |m2|2 . . . E [Y2Y

∗
n ]−m2m

∗
n

...
...

. . .
...

E [YnY
∗

1 ]−mnm
∗
1 E [YnY

∗
2 ]−m1m

∗
2 . . . E

[
|Yn|2

]
− |mn|2

 , (2.15)

where H denotes the Hermitian transpose and ∗ denotes the complex conjugate. Covariance
matrices will play a key role in several considerations in this class. One of the most useful
properties in the context of digital communications is the fact that if we define the new
random vector Z = AY, for an arbitrary matrix A, then the covariance matrix of the
random vector Z is given by ACAH , where C is the covariance matrix of the random vector
Y.
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A (real-valued) random vector Y = (Y1, Y2, . . . , Yn)T is Gaussian if the joint pdf of its
components is of the form

fY(y) =
1

(2π)n/2
√

det(C)
e−

1
2

(y−m)TC−1(y−m), (2.16)

where C is a positive definite (symmetric) matrix. Again, this is a valid pdf since it is non-
negative and integrates to one. Moreover, it can be shown that the mean of the random
vector Y is given by the vector m, and the covariance matrix of the random vector Y is
given by the invertible matrix C.

2.4 Random Processes

2.4.1 Sequences of random variables

A (discrete-time) random process is a (generally infinite) sequence of random variables.
Specifying a random process fully means giving the full joint probability density (or mass)
function of all of the involved random variables. Let us denote a sequence of random
variables as

. . . , X[−2], X[−1], X[0], X[1], X[2], . . . (2.17)

The IID process

Perhaps the simplest sequence of random variables is to assume that all the random vari-
ables X[n] are independent and identically distributed (IID). These processes will be very
important for us in this class.

Stationary processes

The key to obtaining useful random processes is to introduce some degree of order into the
joint distribution of all the random variables. Perhaps the most important and successful
approach is the concept of stationarity.

Here, we select a positive integer K and then select an arbitrary set of K distinct
integers n1, n2, . . . , nK . Then, we select an arbitrary integer M and we consider the two
random vectors

(X[n1], X[n2], . . . , X[nK ]) (2.18)

(X[n1 +M ], X[n2 +M ], . . . , X[nK +M ]). (2.19)

If, for all choices of K,M and the tuple n1, n2, . . . , nK , these two random vectors have the
same probability density function (or probability mass function, if X is discrete-valued),
then we call the random process {X[n]}∞n=−∞ stationary.
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Wide-sense stationary processes

The following class of random processes is even more important for our course. We define
the following two quantities:

mX [n] = E[X[n]] (2.20)

RX [n,m] = E[X[n]X[m]]. (2.21)

Then, if the mean function mX [n] is constant (for the purpose of this course, we will
always have mX [n] = 0) and, more importantly, if RX [n,m] depends only on the difference
(m−n), then we call the random process {X[n]}∞n=−∞ wide-sense stationary, and we write
the autocorrelation function as

RX [k] = E[X[n]X[n+ k]]. (2.22)

In this case, we can also define the important concept of power spectral density:

SX(f) =
∞∑

k=−∞
RX [k]e−j2πfk, (2.23)

and it will also turn out useful to look at the power spectral density in the Z-transform
domain:

SX(z) =
∞∑

k=−∞
RX [k]z−k. (2.24)

In this class, we will also encounter complex-valued random processes. In the complex-valued
case, the autocorrelation function is customarily defined as

RX [k] = E[X∗[n]X[n+ k]], (2.25)

i.e., the first argument is complex-conjugated.

White noise

An important special case of a wide-sense stationary process is the so-called white noise (or
perhaps better, white process). It is a wide-sense stationary process for which

RX [k] = σ2
Xδ[k], (2.26)

where σ2
X is a constant. The reason we use the symbol σ2

X is because by definition, RX [0] =
E[(X[n])2], and if we assume a zero mean, then this is simply the variance of X[n]. For this
process, we find that

SX(f) = σ2
X , (2.27)

that is, a completely “flat” power spectral density.
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Wide-sense stationary processes and LTI systems; the whitening filter

Consider a stable linear time-invariant (LTI) system with frequency response G(f) (or, in z-
transform domain, G(z)). If the input to the system is a wide-sense stationary process X[n]
with power spectral density SX(f) (or, in z-transform domain, SX(z)), then the output
random process Y [n] is also wide-sense stationary and has power spectral density given by

SY (f) = |G(f)|2SX(f), (2.28)

SY (z) = G(z)G∗(1/z∗)SX(z). (2.29)

One important implication of this is that we can turn a wide-sense stationary random
process X[n] into a white process simply by passing it through an LTI system (a filter)
whose frequency response has magnitude

|G(f)| =
1√
SX(f)

, (2.30)

if a stable system with this frequency response exists. This is called the whitening filter.
To find the whitening filter, it is instructive to consider the power spectrum in the

z-domain. A fundamental theorem ensures that without essential loss of generality, it is
possible to write this power spectrum in the following shape:

SX(z) = σ2
0

(
B(z)

A(z)

)(
B∗(1/z∗)

A∗(1/z∗)

)
, (2.31)

where σ2
0 is a constant, B(z) is a monic polynomial B(z) = 1 + b1z

−1 + . . .+ bqz
−q with the

special property that all of the roots of this polynomial are inside the unit circle (i.e., have
magnitude smaller than 1), and A(z) is a monic polynomial A(z) = 1 + a1z

−1 + . . .+ apz
−p

also with the special property that all of the roots of this polynomial are inside the unit circle.
A method for finding the polynomials A(z) and B(z) will be discussed in the homework,
but it should be clear that if such a representation can be found, a whitening filter is given
simply by

G(z) =
A(z)

σ0B(z)
. (2.32)

Moreover, since the roots of both polynomials are inside the unit circle, we are guaranteed
that this G(z) represents a system that is both stable and causal.

The Central Limit Theorem

The Central Limit Theorem states that when we add up many independent random variables
and normalize the sum to have unit variance, then in the limit, the resulting random variable
behaves like a Gaussian. This is often used in Communications to justify the assumption
that noise processes behave like Gaussians since they tend to be the sum of the effects of
many “independent” electrons. Of course, the last statement is only approximate and would
need to be justified much more carefully, but we will not do this in our class.
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Formally, the Central Limit Theorem can be stated as follows: Let {Yk}nk=1 be a sequence
of independent and identically distributed (real-valued) random variables with mean m and
variance σ2. Let

Sn = Y1 + Y2 + · · ·+ Yn. (2.33)

Then, for every β,

lim
n→∞

P
(
Sn − nm
σ
√
n

< β

)
= 1−Q(β), (2.34)

where the Q(·)−function was defined in Equation (2.13).
We point out that more general Central Limit Theorems can be proved. In particular,

while the independence of the random variables Yk is rather important and can only be
relaxed slightly, these random variables do not need to all have the same distribution, as
long as they behave reasonably well (see e.g. [6, Section X.5]).

2.4.2 Continuous-time Random Processes

The extension of the above concepts to continuous time is at once trivial and technically
rather challenging. That is, if we ignore potential technicalities, we can directly extend the
above definitions to continuous time. However, to deal in full generality with continuous-
time random processes would require a much more sophisticated mathematical machinery.
For the purpose of this class, we will only deal with a single continuous-time random process,
namely, the white Gaussian noise, in Section 3.2, and we will skip most of the technicalities.
The interested reader may find a treatment e.g. in [5, Chapter 25].

2.5 Detection

2.5.1 Basic Concepts

A detection problem1 has two basic components: An underlying discrete random variable,
which we will call H, and an arbitrary random variable (or vector, or continuous-time signal)
Y representing the observations made. You could think of H as representing the transmitted
bit stream, and Y as representing the noisy output of our communication channel.

The main object of interest is the joint distribution of these two random variables.
Since H is discrete-valued and Y is often continuous-valued (certainly for the purpose of
this course), it is convenient to write this (without loss of generality) as

fY |H(y|h)pH(h). (2.35)

The probability mass function pH(h) is referred to as the priors.

1In our view of the detection problem, we assume that a full probabilistic model is defined. This is often
referred to as Bayesian detection, and is the most relevant model for communication systems. For signal
processing, there is also an alternative formulation where only the observations Y are modeled as random
variables.
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The goal of detection theory is to find good detectors. A detector is simply a function
that takes as its input the noisy observation Y, and provides an estimate Ĥ(Y ) of the data
H. How should we judge the quality of a detector? In this class, we will exclusively consider
the error probability, namely, the probability that the estimate Ĥ(Y ) is not equal to the
data H :

Pe = P(Ĥ(Y ) 6= H). (2.36)

The quest is to find the best detector, namely, the one that leads to the smallest error
probability.

It turns out to be simple to give a general formula for the best detector. It is often
called the maximum a posteriori (MAP) estimator and is given by the formula

ĤMAP(Y = y) = arg max
h

pH|Y (h|y). (2.37)

This could be the end of the story. But we want to gain some further insight. From Bayes’
rule, we can write

pH|Y (h|y) =
fY |H(y|h)pH(h)

fY (y)
=

fY |H(y|h)pH(h)∑
h̃ fY |H(y|h̃)pH(h̃)

. (2.38)

Note that for every pair (h, y), it is in principle a simple matter to calculate this.

We want to make a few interesting observations about the MAP estimator. First of all,
we can observe that

ĤMAP(Y = y) = arg max
h

fY |H(y|h)pH(h). (2.39)

This is because the denominator in Equation (2.38) does not depend on h, and thus has no
influence on the maximization.

Second, in the special case where all realizations h of the data H are equally likely,
we note that we can further simplify the MAP estimator. This simplified version is often
referred to as the maximum likelihood (ML) estimator, and can be written as

ĤML(Y = y) = arg max
h

fY |H(y|h). (2.40)

2.5.2 The Likelihood Ratio

In general, there is not much we can say about the MAP maximization problem in Equa-
tion (2.39); it all depends on the specific structure of the probability distributions. One
intermediate formalization that turns out to be useful in many applications is the so-called
likelihood ratio. To understand this concept, we think of the case where H has only two
possible values: h ∈ {1, 2}. In this case, the MAP rule from Equation (2.39) will decide
Ĥ(y) = 1 for those y that satisfy

fY |H(y|h = 1)pH(h = 1) ≥ fY |H(y|h = 2)pH(h = 2). (2.41)
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Now, define the likelihood ratio to be

Λ12(Y = y) =
fY |H(y|h = 1)

fY |H(y|h = 2)
. (2.42)

Then, we can observe that the MAP rule will decide Ĥ(y) = 1 for those y that satisfy

Λ12(Y = y) ≥ pH(h = 2)

pH(h = 1)
. (2.43)

In the important special case where pH(h = 1) = pH(h = 2) = 1/2, the likelihood ratio test
thus becomes Λ12(Y = y) ≥ 1. Moreover, since in many interesting probabilistic models,
fY |H(y|h) are from exponential families (such as Gaussian distributions), it is often good
to take (natural) logarithms and consider instead the so-called log-likelihood ratio:

LLR12(Y = y) = log

(
fY |H(y|h = 1)

fY |H(y|h = 2)

)
. (2.44)

Then, we can observe that the MAP rule will decide Ĥ(y) = 1 for those y that satisfy

LLR12(Y = y) ≥ log pH(h=2)
pH(h=1) . In the important special case where pH(h = 1) = pH(h =

2) = 1/2, the log-likelihood ratio test thus becomes LLR12(Y = y) ≥ 0.

2.5.3 Calculation of the Error Probability

For a fixed detector Ĥ0(Y = y), defined for every possible realization y, we would like to
calculate the associated error probability:

Pe = P(Ĥ0(Y ) 6= H). (2.45)

Conceptually, this is a straightforward exercise, but we want to make a few remarks. First,
it is often convenient to consider the error probability for a particular realization h:

Pe,h = P(Ĥ0(Y ) 6= h|H = h). (2.46)

Second, it is also convenient to introduce the decoding regions for each value h, that is, those
values of y for which our detector decides for h. Formally:

Dh = {y : Ĥ0(Y ) = h}, (2.47)

and we will also use the complement of this set, denoted by

Dch = {y : Ĥ0(Y ) 6= h}, (2.48)

which is the set of all y that do not map back to h. Then, we can write

Pe,h =

∫
y∈Dch

fY |H(y|h)dy. (2.49)

Thus, we can express the total error probability as

Pe =
∑
h

pH(h)

∫
y∈Dch

fY |H(y|h)dy. (2.50)
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2.5.4 Detection in Gaussian Probabilistic Models

In a Gaussian model, the conditional probability density functions fY |H(y|h) are assumed
to be Gaussian (for each value of h). For the scalar case, this can be expressed in full
generality as:

fY |H(y|h) =
1√

2πσ2
h

e
− 1

2σ2
h

(y−xh)2

, (2.51)

where the mean xh and the variance σ2
h may depend on the value of h.

It is useful to observe that we can write this same model also in an algebraic form as

Y = xh + Zh, (2.52)

where Zh is a Gaussian random variable of mean zero and variance σ2
h.

In most communication applications, the noise variance will be constant σ2
h ≡ σ2 (the

variance of the background additive noise), and in this case, the ML detector takes an
intuitively pleasing form:

ĤML(Y = y) = arg max
h

1√
2πσ2

e−
1

2σ2
(y−xh)2 (2.53)

= arg min
h

(y − xh)2. (2.54)

We will call this the minimum distance detector: The ML estimate is simply the one “signal
point” xh that is closest to the received signal y.

2.5.5 The example you should know by heart...

Consider H ∈ {1, 2}, pH(1) = pH(2) = 1/2 (uniform priors), and

fY |H(y|h) =
1√

2πσ2
e−

1
2σ2

(y−xh)2 . (2.55)

As we have just seen, in this case, the optimum decoder is the minimum distance decoder,
which means we simply slice halfway between x1 and x2. Assuming that x1 < x2, we can
write this explicitly as

ĤML(Y = y) =

{
1, if y ≤ (x1 + x2)/2,
2, if y > (x1 + x2)/2.

(2.56)

That is, we can write the corresponding decoding regions as

Dh=1 = {y : y ≤ (x1 + x2)/2}, (2.57)

Dh=2 = {y : y > (x1 + x2)/2}. (2.58)
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y

Figure 2.1: The one example you should know by heart. Here, x1 = −1 and
x2 = 2, hence, the ML decision line is at y = 0.5.

To find the corresponding error probability, let us consider H = 1. We make an error when
y > (x1 + x2)/2 under fY |H(y|h = 1), which is

Pe,1 =

∫ ∞
(x1+x2)/2

fY |H(y|h = 1)dy (2.59)

=

∫ ∞
(x1+x2)/2

1√
2πσ2

e−
1

2σ2
(y−x1)2dy (2.60)

= Q

(
d12

2
√
σ2

)
, (2.61)

where d12 = x2− x1 is the distance between the two message points, and σ2 is the variance
of the additive noise. By symmetry, you can show that Pe,2 = Pe,1, and thus, the total error
probability is

Pe = Q

(
d12

2
√
σ2

)
. (2.62)

2.5.6 Sufficient Statistics

In many applications, the original observation Y is quite large and cumbersome. For ex-
ample, think of a wireless channel: the original observation Y is the full voltage trace over
all time at the receiving antenna. However, it often turns out that we can directly “throw
away” most of the observation and only keep a reduced version Z of Y. Informally, if Z con-
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tains all the information about H that Y had (that is, if we did not throw away anything
important), then we call Z a sufficient statistic for H given Y.

More formally, Z is called a sufficient statistic for H given Y if

fY,Z|H(y, z|h) = fZ|H(z|h)fY |Z(y|z). (2.63)

Dividing both sides by fZ|H(z|h), we can rewrite this condition equivalently as

fY |Z,H(y|z, h) = fY |Z(y|z). (2.64)

We note that the sufficient statistic is not unique. Trivially, for example, Y itself is
always a sufficient statistic. There is also a notion of minimal sufficient statistic, which
refers to the case where Z does not contain any irrelevant data, but we will not discuss this
further.

For the case of two hypotheses, one can show that the likelihood ratio is a sufficient
statistic, i.e., we can select

Z = Λ12(Y ) =
fY |H(Y |h = 1)

fY |H(Y |h = 2)
. (2.65)

In direct extension, this means that any “projection” of the original data Y that still permits
to calculate the likelihood ratio is also a sufficient statistic.

The main theorem says that the best detection based on Z is just as good (in terms of
error probability) as the best decision based on Y. In practical systems, it is often convenient
to determine a simple sufficient statistic. The received signal is then first pre-processed
into the sufficient statistic Z, from which we detect H. This can help find low-complexity
implementations of optimum detection. We will see several important examples of sufficient
statistics, including an orthogonal projection argument in Section 3.3.1, the Matched Filter
in Section 3.3.2, and the maximum ratio combiner in the consideration of coherent detection
over fading channels (Section 5.4.1).
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The AWGN Channel Model

One of the most fruitful models for the design of digital communication systems is the
AWGN channel model.

3.1 The Channel Model

In this chapter, we consider the standard AWGN channel model, given by the following
description:

Y (t) = x(t) + Z(t), (3.1)

where Z(t) is (real-valued) additive white Gaussian noise of power spectral density N0/2.

3.2 Additive White Gaussian Noise

The definition of the noise process Z(t) in the AWGN model is a little subtle. First, the
easy part: The noise is called “Gaussian” because we assume that for an arbitrary collection
of measurable functions {gi(t)}Ni=1, the random variables

Zi =

∫ ∞
−∞

Z(t)gi(t)dt, (3.2)

for i = 1, 2, . . . , N, are jointly Gaussian random variables.
The slightly more tricky part follows now. We assume that the process Z(t) satisfies

E[Z(t)] = 0 (3.3)

RZ(τ) = E[Z(t)Z(t+ τ)] =
N0

2
δ(τ). (3.4)

Clearly, there is a problem with the second expression since it is unbounded at τ = 0.
However, the formula will be good enough as a proxy in our applications. Nevertheless, we
do encourage the interested student to go and consult the mathematically more sophisticated
literature (e.g., [5, Chapter 25].

23
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These assumptions directly imply the following important fact about the random vari-
ables in Equation (3.2):

E[ZiZj ] =
N0

2

∫ ∞
−∞

gi(t)gj(t)dt. (3.5)

This is the key equation to remember about the noise.

3.3 Optimum Detection for Waveforms

Let us now suppose that the transmitted signal x(t) is selected from the following M choices:

x1(t), x2(t) . . . , xM (t). (3.6)

There are two versions of the sufficient statistic that both turn out to be important. The
first works via an orthonormal basis expansion, and the second is referred to as the matched
filter.

3.3.1 Sufficient Statistic, take 1: Orthonormal Basis Expansion

Let us first construct an orthonormal basis for our M signal waveforms:

ϕ1(t), ϕ2(t), . . . , ϕN (t), (3.7)

where we point out that N ≤M, but the precise value of N depends on the dimensionality
of the set of signal waveforms. This means that we can write, for m = 1, 2, . . . ,M,

xm(t) =
N∑
n=1

(∫ ∞
−∞

xm(u)ϕn(u)du

)
︸ ︷︷ ︸

xm,n

ϕn(t), (3.8)

and we will find it convenient to identify the waveform xm(t) with its corresponding vector
of coefficients (or coordinates in the ϕ-basis) xm = (xm,1, xm,2, . . . , xm,N )T .

Then, we can prove from first principles (see Appendix 3.A) that the following is a
sufficient statistic:

Y1 =

∫ ∞
−∞

Y (t)ϕ1(t)dt

Y2 =

∫ ∞
−∞

Y (t)ϕ2(t)dt

...
...

...

YN =

∫ ∞
−∞

Y (t)ϕN (t)dt. (3.9)

That is, instead of keeping the full continuous-time waveform Y (t), we can simply retain
these N real numbers and base all further processing on these. This is clearly a significantly
simpler scenario.
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Supposing that signal xm(t) was chosen at the transmitter, we can write:

Yn =

∫ ∞
−∞

Y (t)ϕn(t)dt =

∫ ∞
−∞

(xm(t) + Z(t))ϕn(t)dt

=

∫ ∞
−∞

xm(t)ϕn(t)dt︸ ︷︷ ︸
=xm,n

+

∫ ∞
−∞

Z(t)ϕn(t)dt︸ ︷︷ ︸
=Zn

, (3.10)

where the noises Z = (Z1, Z2, . . . , ZN )T are independent zero-mean Gaussian of variance
N0/2, and each transmitted waveform xm(t) is characterized by the vector of length N given
by xm = (xm,1, xm,2, . . . , xm,N )T . Thus, when the input signal x(t) can only assume one of
M different signals, the original waveform problem of Equation (3.1) is fully captured by
the following vector problem:

Y = xm + Z. (3.11)

3.3.2 Sufficient Statistic, take 2: The Matched Filter

Alternatively, we can retain the following:

U1 =

∫ ∞
−∞

Y (t)x1(t)dt

U2 =

∫ ∞
−∞

Y (t)x2(t)dt

...
...

...

UM =

∫ ∞
−∞

Y (t)xM (t)dt. (3.12)

Again, one can prove that U = (U1, U2, . . . , UM ) is a sufficient statistic for the detection
problem. For example, this can be shown by relating to the sufficient statistic given in
Equation (3.9), as we will do below in Equation (3.22). This version is often referred to
as the matched filter: we are “matching” the received waveform Y (t) against each of the
possible transmitted waveforms.

Supposing that signal xm(t) was chosen at the transmitter, we can write:

Uj =

∫ ∞
−∞

Y (t)xj(t)dt =

∫ ∞
−∞

(xm(t) + Z(t))xj(t)dt

=

∫ ∞
−∞

xm(t)xj(t)dt+

∫ ∞
−∞

Z(t)xj(t)dt︸ ︷︷ ︸
=Vj

, (3.13)

where it is important to note that the noises Vj are still Gaussian, but they are not inde-
pendent of each other. Therefore, in order to find an expression for the ML detector or
to calculate error probabilities, the orthonormal basis expansion (“take 1” of the sufficient
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statistic) is often easier to deal with. But it is still instructive to express the vector U in
the following shape:

U = Axm + V, (3.14)

where A is the M ×N matrix whose rows are given by xT1 ,x
T
2 , . . . ,x

T
M , and the vector V is

additive Gaussian noise of mean zero and covariance matrix N0
2 AA

T . To derive this formula,
it is convenient to first realize that we can rewrite:∫ ∞

−∞
xm(t)xj(t)dt = 〈xm,xj〉. (3.15)

Along the same lines, one can also prove that

Uj = 〈Y,xj〉, (3.16)

where Y is the vector with components given in Equation (3.10).

3.4 AWGN Vector Channels

We have seen that when the input signal x(t) can only assume one of M different signals,
the waveform problem of Equation (3.1) reduces to the vector problem

Y = x + Z, (3.17)

where all vectors are of length N, the vector x is known to be selected uniformly from a
given set {x1,x2, . . . ,xM}, and the noise vector Z is a vector of independent, zero-mean
Gaussian random variables of variance N0/2.

3.4.1 Optimal Detection

For such AWGN vector channels, it is very simple to find the ML detector. Note that we
are assuming that all signal points are selected with equal probability, therefore, the ML is
also the optimal (MAP) detector. To find the ML, we write out the conditional probability
density function:

fY|H(y|h) =
1

(πN0)N/2
e
− 1
N0
‖y−xh‖2 , (3.18)

where h ∈ {1, 2, . . . ,M}. Then,

HML(Y = y) = arg max
h

1

(πN0)N/2
e
− 1
N0
‖y−xh‖2 (3.19)

= arg min
h
‖y − xh‖2. (3.20)

Thus, amongst our M signal points {x1,x2, . . . ,xM}, we simply find the one that is closest
to the received vector y, which we call minimum distance detection.
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It is also instructive to further develop this expression. Namely,

HML(Y = y) = arg min
h
‖y‖2 + ‖xh‖2 − 2〈y,xh〉 (3.21)

= arg max
h
〈y,xh〉 −

1

2
‖xh‖2. (3.22)

To understand the significance of this formula, note that ‖xh‖2 is just a constant, inde-
pendent of the received signal y. The key is the expression 〈y,xh〉 which measures the
correlation between the received signal and each of the possible transmitted waveforms.
That is, with respect to the received signal, the only thing we need to keep to make opti-
mal decisions is the vector (〈y,x1〉, 〈y,x2〉, . . . , 〈y,xM 〉), which implies that this vector is a
sufficient statistic. Note that this is exactly the vector U given in Equation (3.12), which
shows that indeed, U is a sufficient statistic.

3.4.2 The one example you should know by heart...

Let us now suppose that M = 2, i.e., there are only two possible signal points {x1,x2}. We
will allow the dimensionality N to be arbitrary. The optimal detector is minimum distance,
thus we will choose x1 if

‖y − x1‖2 ≤ ‖y − x2‖2. (3.23)

Expanding this, we can rewrite:

‖y‖2 + ‖x1‖2 − 2〈y,x1〉 ≤ ‖y‖2 + ‖x2‖2 − 2〈y,x2〉, (3.24)

or, equivalently,

〈y,x2 − x1〉 ≤
‖x2‖2 − ‖x1‖2

2
. (3.25)

Thus, this formula proves that 〈y,x2 − x1〉 is a sufficient statistic for h given y. This is
intuitive: 〈y,x2 − x1〉 is just the (unnormalized) projection of y into the direction x2 − x1,
meaning that all that matters for our decision is the contribution of y in the direction of the
line connecting the two message points x1 and x2. All other components of y are orthogonal
to this direction and thus do not matter for the decision.

The corresponding error probability can easily be found to be

Pe = Q

(
d12

2
√
N0/2

)
, (3.26)

where d12 = ‖x1 − x2‖ is the distance between the two message points, and N0/2 is the
variance of the noise.



28 Chapter 3.

3.4.3 The Signal-to-Noise Ratio (SNR)

Communication engineers often find it convenient to express the error probability as a

function of the so-called signal-to-noise ratio. The average signal power is E
[∫∞
−∞ x

2(t)dt
]
,

which can be written in terms of the message point representation of the waveforms as

E =
1

M

M∑
m=1

‖xm‖2. (3.27)

The noise power is N0/2, and thus, we define the signal-to-noise ratio as

γ =
E

N0/2
. (3.28)

In order to compare different communication strategies, it is often interesting to consider
the energy-per-bit. With M different signals, we can represent log2M bits, hence, the
energy-per-bit is

Eb =
E

log2M
. (3.29)

Communications engineers then often like to express their results in terms of Eb/N0, which
is pronounced “Ebno.”

As an example, consider the signal set {x1 =
√
E ,x2 = −

√
E}. In this case, the average

signal power is precisely E , and we have d12 = 2
√
E . Therefore, we can rewrite Equa-

tion (3.26) as

Pe = Q

(
d12

2
√
N0/2

)
= Q

(
2
√
E

2
√
N0/2

)
= Q(

√
γ). (3.30)

Alternatively, we can also express this in terms of the “Ebno.” Since in this example, we
only transmit 1 bit, we simply obtain

Pe = Q(
√

2 Eb/N0). (3.31)

3.4.4 The general Gaussian vector channel

Finally, we also mention the general Gaussian vector problem, defined as

U = Ax + V, (3.32)

where A is an arbitrary K ×N matrix, x is a vector of length N selected uniformly from a
given set {x1,x2, . . . ,xM}, and the noise vector V is a vector of length K of jointly Gaussian
random variables of mean zero and arbitrary covariance matrix ΣV . Such a model arises for
example in Equation (3.14).

There are many tricks that one can play with such models. Let us first assume that the
matrix ΣV is a full-rank matrix. (Note that this is not generally the case for the model in
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Equation (3.14).) To understand optimum detection, a useful approach is to first render
the noise white. By this, we mean that we define

S = BU = BAx +BV, (3.33)

where we select the K ×K full-rank matrix B in such a way that the new equivalent noise
vector W = BV is a vector of independent and identically distributed Gaussian random
variables of mean zero and variance N0/2 (meaning that the equivalent noise W is white
Gaussian noise). One can show that such a matrix B exists when ΣV is a full-rank matrix.

With this, we can rewrite our probabilistic model as

S = x̃ + W, (3.34)

where all vectors are of length K, the vector x̃ is known to be selected uniformly from the
given set {BAx1, BAx2, . . . , BAxM}, and the noise vector W is a vector of independent,
zero-mean Gaussian random variables of varianceN0/2. That is, we have reduced the general
model to the model in Equation (3.17), which we know how to solve.

The case where the matrix ΣV is not full rank is left as an exercise.

3.5 Bounds on the Error Probability for Many Messages

So far, we have analyzed the case of two messages only. Let us now return to the original
setting and analyze the case of M messages. That is, we consider again

Y = x + Z, (3.35)

where all vectors are of length N, the vector x is known to be selected uniformly from a
given set {x1,x2, . . . ,xM}, and the noise vector Z is a vector of independent, zero-mean
Gaussian random variables of variance N0/2.

The error probability can be expressed as follows:

Pe =
1

M

M∑
m=1

P(Em), (3.36)

where Em denotes the event that a different message was detected, given that message m
was transmitted, and thus, an error occurred. Unfortunately, it is generally difficult to
determine this probability exactly. Instead, we now derive an upper bound to the error
probability. The trick is to split this event up into a union of “smaller” events:

Em =
M⋃

m′=1,m′ 6=m
Em,m′ , (3.37)

where now, Em,m′ denotes the event that message m′ was detected, given that message m
was transmitted. Clearly, we have

Pe =
1

M

M∑
m=1

P

 M⋃
m′=1,m′ 6=m

Em,m′

 . (3.38)
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Now, we can apply the union bound to get the following upper bound:

Pe ≤
1

M

M∑
m=1

M∑
m′=1,m′ 6=m

P(Em,m′). (3.39)

Finally, we observe that

P(Em,m′) = Q

(
dmm′

2
√
N0/2

)
, (3.40)

where dmm′ = ‖xm−xm′‖ is the distance between the two message points, and N0/2 is the
variance of the noise. Thus, we can write our upper bound on the error probability as

Pe ≤
1

M

M∑
m=1

M∑
m′=1,m′ 6=m

Q

(
dmm′

2
√
N0/2

)
. (3.41)

One simplification that leads to a weaker, but often still interesting bound, is to define
the minimum distance of our signal constellation as

dmin = min
m6=m′

‖xm − xm′‖. (3.42)

Then, we get the following upper bound:

Pe < (M − 1)Q

(
dmin

2
√
N0/2

)
. (3.43)

3.6 Constellation Design

Throughout this section, we assumed that the transmitted signal x(t) is selected from M
choices:

x1(t), x2(t) . . . , xM (t), (3.44)

or, equivalently, from M signal constellations points:

{x1,x2, . . . ,xM}. (3.45)

Every constellation can be characterized by four fundamental parameters:

1. The number of signals M ;

2. The dimensionalityN of the signal set (which essentially corresponds to the bandwidth
required by the given signal set);
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3. The average energy E needed:

E =
1

M

M∑
m=1

(∫ ∞
−∞

x2
m(t)dt

)
=

1

M

M∑
m=1

‖xm‖2; (3.46)

4. The average error probability incurred.

In line with this perspective, a considerable part of the communications literature of past
decades has attempted to solve the following problem: Fix M,N, and E and find the signal
constellation (that is, the signal set) that minimizes the incurred average probability of
error.

In this class, we will only briefly touch upon this problem. The main issue is that
contemporary communication systems use error-correcting codes. Therefore, the “raw”
error probability of the signal constellation is not by itself the dominant feature; a much more
involved optimization would have to be carried out. However, for reasons of implementation
complexity (since the constellation shaping requires analog electronics), most systems use
simple constellations and put all the optimization and cleverness into the design of the
error-correcting code.

3.7 Behavior when the number of messages becomes large

Let us now study a very particular choice of message points, namely

x1 =
√
E(1, 0, 0, 0, . . . 0)

x2 =
√
E(0, 1, 0, 0, . . . 0)

x3 =
√
E(0, 0, 1, 0, . . . 0)

x4 =
√
E(0, 0, 0, 1, . . . 0)

...
...

...

xM =
√
E(0, 0, 0, 0, . . . 1). (3.47)

This is referred to as orthogonal signaling — since all signal points are orthogonal to each
other. Clearly, the dimensionality of this signal set is N = M. A basic analysis of the
error probability of this signal set (assuming uniform priors) is easy. Simply note that
the distance between any two signal points is

√
2E . Thus, using Equation (3.43), the error

probability can be upper bounded by

Pe < (M − 1)Q

( √
2E

2
√
N0/2

)
. (3.48)

To gain insight, let us further upper bound the Q-function by Q(x) ≤ e−x2/2, and thus

Pe < (M − 1)e
− E

2N0 . (3.49)
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To rewrite this expression, let us define the energy per bit. We are transmitting a total
energy of E and communicating log2M bits. Thus, the energy per bit is Eb = E/ log2M.
Plugging in, we can write

Pe < (M − 1)e−
log2M

2
Eb/N0 , (3.50)

where we have used the “Ebno.” Now, since we can write M = 2log2M = e(ln 2) log2M ,

Pe < e(ln 2) log2Me−
log2M

2
Eb/N0 , (3.51)

and thus, finally,

Pe < e−
1
2

log2M(Eb/N0−2 ln 2). (3.52)

The astonishing insight is that as soon as our energy per bit investment is large enough
so that the “Ebno” satisfies Eb/N0 > 2 ln 2, we can make the resulting error probability as
small as we want simply by increasing log2M, the number of bits that we transmit! Such
behavior is definitely surprising and needs to be digested thoroughly.
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Appendix 3.A Proof of Sufficient Statistic (take 1)

Formal proofs of this fact can be found throughout the literature. One of the best sources
for formal arguments in this context is [5].

We here choose to ignore the mathematical subtleties and focus only on the main line
of the proof. In particular, consider the orthonormal basis

ϕ1(t), ϕ2(t), . . . , ϕN (t), (3.53)

and suppose that we extend this basis:

ϕ1(t), ϕ2(t), . . . , ϕN (t), ϕN+1(t), ϕN+2(t), . . . , (3.54)

indefinitely.

Without a proof, we are going to make the following leap of faith: The noise waveform
can be represented in this (infinite-dimensional) basis, namely,

Z(t) =

∞∑
k=1

Zkϕk(t), (3.55)

where, as always, we have to set

Zk = 〈Z(t), ϕk(t)〉 =

∫ ∞
−∞

Z(t)ϕk(t)dt. (3.56)

We should point out that this leap of faith does depend on our noise process Z(t) being
sufficiently well behaved, and we also point out that the claimed equality signs are valid
only in a certain sense. However, this “certain sense” is good enough for what we want to
show.

By contrast, what does not require any leap of faith is that the noise variables Zk are
all IID — they are independent zero-mean Gaussians of variance N0/2.

Let us now turn to the received waveform Y (t). The leap of faith we made about the
noise waveform implies that we can represent the received waveform Y (t) in this (infinite-
dimensional) basis, namely,

Y (t) =

∞∑
k=1

Ykϕk(t), (3.57)

where, again

Yk = 〈Y (t), ϕk(t)〉 =

∫ ∞
−∞

Y (t)ϕk(t)dt. (3.58)

Thus, from here onwards, we can work with Yk, for k = 1, 2, . . . , N,N + 1, N + 2, . . . : It is
trivial to see that these are a sufficient statistic since (under our leap of faith) they uniquely
specify the full waveform Y (t). (But recall that there are infinitely many Yk.)
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Now, supposing that xm(t) was transmitted, we can write

Yk = 〈Y (t), ϕk(t)〉 =

∫ ∞
−∞

(xm(t) + Z(t))ϕk(t)dt (3.59)

=

∫ ∞
−∞

xm(t)ϕk(t)dt+

∫ ∞
−∞

Z(t))ϕk(t)dt (3.60)

=

∫ ∞
−∞

xm(t)ϕk(t)dt+ Zk. (3.61)

Now, by definition, for k = 1, 2, . . . , N, we have∫ ∞
−∞

xm(t)ϕk(t)dt = xm,k. (3.62)

However, since all the basis vectors ϕN+1(t), ϕN+2(t), . . . are orthogonal to the space in
which the transmitted signals live, we have∫ ∞

−∞
xm(t)ϕk(t)dt = 0, (3.63)

for k = N + 1, N + 2, . . . So, we can write out explicitly:

Y1 = xm,1 + Z1

Y2 = xm,2 + Z2

...
...

...

YN = xm,N + ZN

YN+1 = ZN+1

YN+2 = ZN+2

...
...

...

It is very important to recall that the noises Zk are independent of each other. But then it is
trivial to observe that the samples YN+1, YN+2, . . . do not contain any relevant information
— they contain only noise, independent of everything else. This proves that (Y1, Y2, . . . , YN )
is indeed a sufficient statistic for our problem.
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The Bandlimited AWGN Channel
Model

4.1 The Channel Model

In this chapter, we consider an important generalization of the standard AWGN channel
model, given by the following description:

Y (t) =

∫ ∞
−∞

h(τ)x(t− τ)dτ + Z(t), (4.1)

where Z(t) is (real-valued) additive white Gaussian noise of power spectral density N0/2,
and h(t) is a stable filter (meaning that

∫
|h(t)|dt <∞).

Throughout this chapter, we assume that the channel input signal is of the following
form:

x(t) =
∞∑

k=−∞
I[k]g(t− kT ), (4.2)

where:

• I[k] will be referred to as the information symbols; each I[k] takes values in a finite
set, a typical example being binary antipodal modulation, meaning that I[k] = ±

√
Es.

Typically, we assume that {I[k]}k is a sequence of independent and identically dis-
tributed random variables.

• g(t) is a real-valued function called the “pulse shape,” to be designed carefully. It
typically needs to respect spectral constraints. Its choice is usually a trade-off between
performance and implementation complexity.

• T is a positive real number representing the interval between consecutive pulses.

Then, we can express the channel output in the following fashion:

Y (t) =
∞∑

k=−∞
I[k]c(t− kT ) + Z(t), (4.3)

35



36 Chapter 4.

where

c(t) = (g ∗ h)(t) =

∫ ∞
−∞

g(τ)h(t− τ)dτ. (4.4)

4.2 A Discrete-time Equivalent

The most important feature of this channel is that it has an insightful discrete-time equiv-
alent. To develop this, we first preprocess the received signal Y (t) to obtain:

U(t) =

∫ ∞
−∞

c̃(τ)Y (t− τ)dτ, (4.5)

where c̃(t) = c(−t), that is, c̃(t) is the matched filter for the signal c(t). The key observation
is that the samples of U(t) taken at intervals T, let us call them U [n] = U(nT ), are a
sufficient statistic for the information-carrying signal I[n], given the full original channel
output Y (t) (see Appendix 4.A). But we can write those samples as

U [n] =
∞∑

k=−∞
I[n− k]d[k] + V [n], (4.6)

= d[0]I[n] +
∞∑

k=−∞,k 6=0

I[n− k]d[k]︸ ︷︷ ︸
ISI

+V [n], (4.7)

where the function d[k] characterizes the inter-symbol interference (ISI), that is, the mixing
of the information symbols I[n] corresponding to different time instants. The ingredients
of Equation (4.6) are the following:

• The function d[k] is given by

d[k] = (c̃ ∗ c)(kT ), (4.8)

where we are using the shorthand

(c̃ ∗ c)(t) =

∫ ∞
−∞

c̃(τ)c(t− τ)dτ. (4.9)

Note that the function (c̃ ∗ c)(t) is symmetric in the sense (c̃ ∗ c)(t) = (c̃ ∗ c)(−t).

• It is important to realize that in Equation (4.6), the additive noise V [n] is not white.
That is, subsequent noise symbols are not independent of each other. However, V [n]
is still Gaussian and wide-sense stationary, thus uniquely specified by its mean (which
is zero) and its autocorrelation function

RV [k] =
N0

2
d[−k]. (4.10)
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4.3 Optimum Detection

To understand optimum detection for this channel, it is a good idea to first filter the
(discrete-time) signal U [n] such as to make the noise white. Let us denote the impulse
response of the (noise) whitening filter by dW [k]. The corresponding output signal can be
expressed as

S[n] =
∞∑

k=−∞
dW [k]U [n− k]

=
∞∑

k=−∞
I[n− k]f [k] +W [n], (4.11)

where now, the noise W [n] is additive white Gaussian noise and has variance N0/2. The
new equivalent filter f [k] is simply the convolution of d[k] with the noise whitening filter
dW [k].

Now, for each realization of the information-carrying signal I[n], consider the resulting
sequence

∑∞
k=−∞ I[n− k]f [k]. The received signal is the sum of one of these sequences and

white Gaussian noise. But we know from Chapter 3 that the ML detector under white
Gaussian noise is simply the minimum (Euclidean) distance decoder. That is, the ML
detector will decide for the one information sequence {Î[n]}n that minimizes

min
{Î[n]}n

∑
n

(
S[n]−

∞∑
k=−∞

Î[n− k]f [k]

)2

. (4.12)

This is often referred to as the Maximum Likelihood Sequence Estimator (MLSE).
Owing to the convolutional structure of the sum

∑∞
k=−∞ I[n − k]f [k], it is possible

to evaluate this minimum sequentially over time n, thus reducing the complexity. This is
referred to as the Viterbi algorithm. It has linear complexity in time n, but still exponential
complexity as a function of the depth of the ISI (i.e., the distance, in number of taps, between
the furthest-spaced non-zero taps in f [n]).

4.4 Avoiding ISI

By careful design of the transmitted pulse shape g(t), it is possible to avoid the problem
of ISI altogether. In particular, it is clear that if d[k] = 0 for k 6= 0, then Equation (4.6)
simplifies to U [n] = d[0]I[n] + V [n], where V [n] is simply additive white Gaussian noise.
This is precisely the channel model that we have studied in the previous chapter.

So, why bother? For several reasons. First, for many channels of interest, the pulse
shape that avoids ISI turns out to be essentially not implementable — something like a
sinc function, for example. Second, in many communication problems, we may not know
the precise shape of the channel impulse response at the transmitter, and thus, cannot
perfectly choose the pulse shape. Third, the channel impulse response may change over
time. Thus, we would have to update the pulse shape used by, say, the cell phone or the
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DSL modem, every so often. But to implement such a reconfigurable pulse shape generator
is very expensive, if it is even possible.

Thus, for all practical purposes, we have to design receiver architectures that can deal
with some amount of ISI — banking on completely avoiding ISI would be much too opti-
mistic.

4.5 Suboptimum Detection

4.5.1 Zero-forcing Equalization

Moving away from optimum detection, a first tempting approach is to simply remove all of
the ISI. This is often referred to as zero-forcing: Forcing the ISI to be zero. More precisely,
let us take the signal U [n] from Equation (4.6) and filter it by the inverse of the filter d[k].
Clearly, this leads to a new signal of the form

ÎZF [n] = I[n] + Ṽ [n], (4.13)

where the noise Ṽ [n] is not white. The idea here is that we decode I[n] using only one
received sample, namely ÎZF [n]. It is clear that this is suboptimal: The noise is not white,
which means that it can be predicted (to some accuracy) from its past. However, the appeal
of this approach is its really low complexity. Its main drawback is that the zero-forcing filter
generally amplifies the noise.

4.5.2 LMMSE Equalization

Reconsidering the approach taken in the previous section, we realize that the error proba-
bility will be governed by the equivalent per-sample noise, by which we mean that we filter
the signal U [n] to obtain

ÎLMMSE [n] =
∞∑

k=−∞
a[k]U [n− k], (4.14)

and we take a decision concerning the information symbol I[n] based on ÎLMMSE [n]. Thus,
the effective noise1 that affects our decision is ÎLMMSE [n] − I[n], and its variance is given
by

E
[(
ÎLMMSE [n]− I[n]

)2
]
. (4.15)

1We point out that this effective noise is not Gaussian, and thus, strictly speaking, the variance alone does
not determine the resulting error probability. However, it is customary to pretend that the noise is Gaussian
— and in an order-of-magnitude sense, this is often appropriate. First of all, we can use the Central Limit
Theorem to argue that we expect the noise to be close to Gaussian. More interestingly, as long as the noise
is additive and independent of the signal, in an information-theoretic sense (meaning that we assume that
optimal codes are used), for fixed variance, the worst-case distribution is indeed Gaussian. A second issue
is that the effective noise is generally not independent of the signal. Again, however, we can argue that it
is “almost” independent.
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Now, we want to select the filter a[k] such as to minimize the equivalent noise variance in
Equation (4.15). This is what gives this method its name: Linear Minimum Mean-Squared
Error (LMMSE) equalization. To solve the problem, we can simply take derivatives of the
expression in Equation (4.15) with respect to each of the filter coefficients a[k] and set all
these derivatives to zero.

The solution can be found in an elegant (and intuitively pleasing) two-step procedure.
In the first step, we can show that all derivatives are zero if and only if

E
[(
ÎLMMSE [n]− I[n]

)
U [n−m]

]
= 0, for m = −∞, . . . ,∞. (4.16)

This is often referred to as the orthogonality principle: If the coefficients a[k] are optimally
chosen in the mean-squared error sense (Equation (4.15)), the resulting error (ÎLMMSE [n]−
I[n]) must be orthogonal to all of the data samples U [k] that were used in order to produce
the estimate ÎLMMSE [n]. In the second step, we merely plug in from Equation (4.14) to
obtain

∞∑
k=−∞

a[k]E [U [n− k]U [n−m]] = E [I[n]U [n−m]] , for m = −∞, . . . ,∞. (4.17)

From now on, let us assume that the information symbols I[n] are a wide-sense stationary
random process with autocorrelation function denoted by RI [k] and power spectral density
denoted by SI(z). (For example, they could be independent and identically distributed
random variables of mean zero and variance E , in which case RI [k] = Eδ[k] and SI(z) = E .)
Combining with Equation (4.6), we can then evaluate

E [I[n]U [n−m]] = E

[
I[n]

( ∞∑
k=−∞

I[n−m− k]d[k] + V [n−m]

)]

=
∞∑

k=−∞
d[k]E [I[n]I[n−m− k]] + E [I[n]V [n−m]]

=

∞∑
`=−∞

d[−`]RI [m− `], (4.18)

where, for the last step, we have substituted ` = −k and used the fact that RI [·] is a
symmetric function. Hence, all derivatives are zero if and only if

∞∑
k=−∞

a[k]RU [m− k] =

∞∑
k=−∞

d̃[k]RI [m− k], for m = −∞, . . . ,∞, (4.19)

where d̃[n] = d[−n]. Transforming into the Z-domain, we can rewrite

A(z)SU (z) = D(1/z)SI(z). (4.20)

We can find SU (z) using Equation (2.29) and the fact that all signals are real-valued (which
implies that D∗(1/z∗) = D(1/z)), thus

A(z)

(
D(z)D(1/z)SI(z) +

N0

2
D(1/z)

)
= D(1/z)SI(z). (4.21)
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Then, the solution to this problem can be expressed in the following simple formula:

ALMMSE(z) =
SI(z)

SI(z)D(z) + N0
2

. (4.22)

Finally, consider the special case where the information symbols are independent and identi-
cally distributed random variables of mean zero and variance E . In this case, ALMMSE(z) =
E/(ED(z) + N0

2 ). Here, we observe that as the signal power E becomes large, this converges
simply to ALMMSE(z) = 1/D(z), which is precisely the zero-forcing solution. Thus, one
can think of the LMMSE as balancing between the noise and the ISI power.

4.5.3 Finite-order LMMSE Equalization

In applications, it might not be possible to implement the filter DLMMSE(z). In order to
have control over the complexity of the filter, one can impose a constraint on its length (in
number of taps) and thus consider

ÎKLMMSE [n] =

K∑
k=−K

a[k]U [n− k]. (4.23)

The 2K + 1 taps of this filter are now selected to minimize the mean-squared error in
Equation (4.15).

Again, taking derivatives leads to the same orthogonality principle,

E
[(
ÎLMMSE [n]− I[n]

)
U [n−m]

]
= 0, (4.24)

with the difference that this time, this only has to hold for −K ≤ m ≤ K. This means that
the equivalent of Equation (4.19) now becomes

K∑
k=−K

a[k]RU [m− k] = Ed[−m], for m = −K, . . . ,K. (4.25)

These are 2K + 1 linear conditions on 2K + 1 variables. Collecting the variables into the
vector a = (a[−K], a[−K+1], . . . , a[K−1], a[K])T , it is instructive to write Equation (4.25)
in matrix form as:

RUa = r, (4.26)

and thus, the optimal coefficient vector a = R−1
U r can be found by matrix inversion, pro-

vided that RU is invertible. Here r = E(d[K], d[K − 1], . . . , d[−K + 1], d[−K])T , and the
autocorrelation matrix RU is given by

RU =



RU [0] RU [−1] RU [−2] . . . RU [−2K + 1] RU [−2K]
RU [1] RU [0] RU [−1] . . . RU [−2K + 2] RU [−2K + 1]
RU [2] RU [1] RU [0] . . . RU [−2K + 3] RU [−2K + 2]

...
...

...
. . .

...
...

RU [2K − 1] RU [2K − 2] RU [2K − 3] . . . RU [0] RU [−1]
RU [2K] RU [2K − 1] RU [2K − 2] . . . RU [1] RU [0]


(4.27)
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This matrix is special in that along any diagonal, the entries are constant. Such a matrix
is called a Toeplitz matrix. We also note that for real-valued processes, RU [k] = RU [−k],
and for complex-valued processes, RU [k] = R∗U [−k]. Hence, the matrix RU is a symmetric
Topelitz matrix.

4.5.4 Decision-feedback Equalization

To be completed for the next version.

4.6 Bandpass Signaling and Complex-Valued Channel Models

So far, we have considered the general case of band-limited signaling across the AWGN
channel model, characterized by Equation (4.2). For the remainder of this chapter, we
will further specialize this to the case of so-called bandpass signaling, which means that we
are using two base-band, band-limited information-carrying signals, xI(t) and xQ(t), band-
limited to (−W,W ), from which we form the transmitted waveform as

x(t) = xI(t) cos(2πfct)− xQ(t) sin(2πfct), (4.28)

where we assume that W � fc. We leave it as an exercise for the reader to prove that
indeed, this equation represents a special case of the more general formula given in Equation
(4.2) (but note that in this case, I[n] cannot be chosen to be independent and identically
distributed). It is convenient to write this as

x(t) = Re
(
xb(t)e

j2πfct
)
, (4.29)

where we call xb(t) the complex base-band equivalent of the transmitted signal x(t). Note
that xb(t) is also band-limited to the frequency interval (−W,W ). It can be written as

xb(t) = xI(t) + jxQ(t). (4.30)

Let us now discuss the corresponding channel output signal. To this end, we will first
ignore the noise. The noiseless channel output is given by

Y (t) =

∫ ∞
−∞

h(τ)Re
(
xb(t− τ)ej2πfc(t−τ)

)
dτ (4.31)

= Re

(∫ ∞
−∞

h(τ)xb(t− τ)ej2πfc(t−τ)dτ

)
(4.32)

= Re


(∫ ∞
−∞

h(τ)e−j2πfcτxb(t− τ)dτ

)
︸ ︷︷ ︸

=Yb(t)

ej2πfct

 . (4.33)
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With this formalism, we can now equivalently think of the channel as a complex channel,
and consider

Yb(t) =

∫ ∞
−∞

h(τ)e−j2πfcτ︸ ︷︷ ︸
=hc(τ)

xb(t− τ)dτ, (4.34)

where hc(τ) is the equivalent complex-valued channel.
Finally, we recall that both xb(t) and Yb(t) are band-limited to (−W,W ). This means

that they are uniquely specified by their Nyquist samples, meaning that we arrive at the
equivalent channel model

Yb[n] =
∞∑

k=−∞
hc[k]xb[n− k]. (4.35)

Let us now finally bring the noise back in to obtain (see Appendix 4.B):

Yb[n] =
∞∑

k=−∞
hc[k]xb[n− k] + Zb[n], (4.36)

where Zb[n] is circularly symmetric complex-valued additive white Gaussian noise of vari-
ance N0, which means that its real and imaginary parts are independent with mean zero
and variance N0/2. That is, plugging into Equation (2.16), we can write the pdf of this
complex-valued random variable as

f(Re(zb), Im(zb)) =
1

πN0
e
− 1
N0

(Re(zb)
2+Im(zb)

2)
. (4.37)

A more convenient way of writing the same is

f(zb) =
1

πN0
e
− 1
N0
|zb|2 . (4.38)

We could now again proceed to discuss ML detection and the suboptimal approaches,
with the only modification of having a complex-valued channel. We will not do this —
our main motivation for introducing the complex-valued channel model is to have a nice
discussion of OFDM. The interested student can find the complex-valued version of the
LMMSE in Appendix 4.C.

4.7 An FFT Implementation of OFDM

We start with a simple example:2

y[n] = h0x[n] + h1x[n− 1] + w[n]. (4.39)

2In this subsection, we slightly deviate from our notational convention and write all time-domain signals
in lower case so as to be able to distinguish from the DFT domain, as shown in the sequel.



4.7. An FFT Implementation of OFDM 43

The trick is to use a so-called cyclic prefix. That is, we transmit a block of N information
symbols, which we will denote as x0, x1, x2, . . . , xN−1, using more than N channel uses. For
the example at hand, we use N + 1 channel uses. Specifically, the FFT-OFDM system will
transmit:

x[−1] = xN−1

x[0] = x0

x[1] = x1

...
...

...

x[N − 1] = xN−1. (4.40)

The transmitted sample x[−1] is referred to as the “cyclic prefix,” and the whole sequence
of N + 1 transmitted symbols is referred to as one OFDM symbol.

What is the received signal? We can express it as follows:

y[−1] = h0xN−1 + h1x[−2] + w[−1]

y[0] = h0x0 + h1xN−1 + w[0]

y[1] = h0x1 + h1x0 + w[1]

...
...

...

y[N − 1] = h0xN−1 + h1xN−2 + w[N − 1], (4.41)

which depends on the transmitted signal x[−2]. We have not specified this signal (actually,
if you want, this signal would belong to the previous OFDM symbol). The key trick is
to simply disregard (“throw away,” if you prefer) the received sample y[−1], which is the
price we pay for this beautiful implementation. The remaining received samples can then
be collected into the following nice matrix form:

y[0]
y[1]
y[2]

...
y[N − 2]
y[N − 1]


=



h0 0 0 . . . 0 h1

h1 h0 0 . . . 0 0
0 h1 h0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . h0 0
0 0 0 . . . h1 h0





x0

x1

x2
...

xN−2

xN−1


+



w[0]
w[1]
w[2]

...
w[N − 2]
w[N − 1]


. (4.42)

Let us introduce the N -dimensional Fourier matrix FN using ω = e−j2π/N as

FN =
1√
N



1 1 1 . . . 1 1
1 ω ω2 . . . ωN−2 ωN−1

1 ω2 ω4 . . . ω2(N−2) ω2(N−1)

...
...

...
. . .

...
...

1 ωN−2 ω2(N−2) . . . ω(N−2)2 ω(N−2)(N−1)

1 ωN−1 ω2(N−1) . . . ω(N−2)(N−1) ω(N−1)2


. (4.43)
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In Equation (4.42), we multiply both sides (from the left) by the N -dimensional Fourier
matrix FN . Moreover, letting X = (X0, X1, X2, . . . , XN−1)T be the DFT of our information
vector x = (x0, x1, x2, . . . , xN−1)T , we can write x = F−1

N X. Thus, the equation now looks
as follows:

FN



y[0]
y[1]
y[2]

...
y[N − 2]
y[N − 1]


︸ ︷︷ ︸

This is Y

= FN



h0 0 0 . . . 0 h1

h1 h0 0 . . . 0 0
0 h1 h0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . h0 0
0 0 0 . . . h1 h0


F−1
N

︸ ︷︷ ︸
This is a diagonal matrix

X + FN



w[0]
w[1]
w[2]

...
w[N − 2]
w[N − 1]


︸ ︷︷ ︸
Still IID Gaussian

.

(4.44)

We know that there is a diagonal matrix in the middle because circulant matrices are
diagonalized by the Fourier matrix. Furthermore, we know that the equivalent new noise is
still IID Gaussian because the Fourier matrix is unitary. Thus, we obtain the desired form:

Y0

Y1

Y2
...

YN−2

YN−1


=



H0 0 0 . . . 0 0
0 H1 0 . . . 0 0
0 0 H2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . HN−2 0
0 0 0 . . . 0 HN−1


X +



Z0

Z1

Z2
...

ZN−2

ZN−1


. (4.45)

The elements Hi on the diagonal are simply the eigenvalues of the original channel matrix:

h0 0 0 . . . 0 h1

h1 h0 0 . . . 0 0
0 h1 h0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . h0 0
0 0 0 . . . h1 h0


. (4.46)

Because this matrix is circulant, we can write the diagonal elements Hi in closed form, for
m = 0, 1, 2, . . . , N − 1,

Hm =
N−1∑
`=0

h`ω
`m. (4.47)

That is, through the FFT-OFDM implementation, we turn the original ISI channel into N
parallel ISI-free channels, each of different quality:

Ym[k] = HmXm[k] + Zm[k], (4.48)
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for m = 0, 1, 2, . . . , N − 1, where we use the index k to denote the OFDM symbol. That is,
each tick of k represents (N + length of cyclic prefix ) uses of the original channel.

We have discussed the example given in Equation (4.39), but it should be clear that
the approach works for any channel of this type, as long as the filter h[n] only has a finite
number of “taps”, namely, filter coefficients. To this end, let us introduce the term “depth
of the ISI” as the total time span of the filter governing the ISI, expressed in number of
time steps. For example, in Equation (4.39), the depth of the ISI is two; and for the filter
with h0 = 1, h2 = 0.5 and h5 = 0.25 (and all other values of hn equal to zero), the depth of
the ISI is 6. We then simply select an appropriate length of cyclic prefix to end up with a
representation as in Equation (4.42), where the matrix is circulant.

Length of cyclic prefix. To end this discussion, let us mention that N is a completely free
design parameter, but the cyclic prefix is not: if we want to obtain the beautiful circulant
channel form given in Equation (4.42), we must use a cyclic prefix whose length is no smaller
than the depth of the ISI, minus one. In our example of Equation (4.39), the depth of the
ISI is 2, and we need a cyclic prefix of length at least 1. The price is that we will disregard
(“throw away”) as many received samples per OFDM symbol as the length of the cyclic
prefix. Thus, the effective symbol rate of an FFT-OFDM system is

R =
N

N + length of cyclic prefix
=

N

N + depth of the ISI − 1
. (4.49)

For fixed ISI, by selecting N large enough, one can make the symbol rate as close to 1 as
desired, but at the expense of large delay — all (N + length of cyclic prefix) symbols have
to be transmitted (and received) before anything can be decoded.

4.8 Resource Allocation in OFDM systems

Once we have removed ISI and obtained parallel channels, there is one key question left.
To illustrate this issue, consider the running example of Section 4.7 and set N = 2 with
h0 = 1 and h1 = 0.5. The FFT-OFDM approach will lead to two parallel channels with
H0 = 1.5 and H1 = 0.5. But this means that at equal transmit power, the better channel
has a signal-to-noise ratio that is 9 times higher than the worse channel!

Should we really assign equal power to both channels? And if we do, should we send
more bits through the better channel? Using which signal constellation?

To answer this question, we need to specify what we want to optimize. Clearly, a first
candidate would be the end-to-end error probability for the entire message (part of which is
transmitted via the better channel and part via the worse channel). However, this problem
does not appear to have an instructive solution as it crucially depends on exactly how we
modulate in each of the parallel channels.

An alternative approach that has had significant impact on practical systems is via the
concept of capacity. A formal discussion of this concept is beyond the scope of this class.
However, the resulting allocation problem has a very interesting structure that appears in
several other related problems and is of high importance in communication engineering.
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Figure 4.1: FFT-OFDM implementation. Each tick on the time axis represents
one channel use. In this example, N = 4 and the cyclic prefix is of length 2.
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Figure 4.2: A time-frequency picture of the FFT-OFDM approach: Each tick
on the time axis represents one OFDM symbol, meaning N + L uses of the

original underlying ISI channel, where N = 5 in the example shown, and L is the
length of the cyclic prefix.
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For a single (complex-valued) channel with gain Hi and noise level N0, used with input
power Pi, the so-called capacity is given by

Ci = log2

(
1 +
|Hi|2Pi
N0

)
. (4.50)

If we have K parallel channels, the total capacity is

K∑
i=1

log2

(
1 +
|Hi|2Pi
N0

)
. (4.51)

The goal is now to allocate the total system power P in such a way to the K separate
channels as to maximize the sum rate:

Ctotal = max
K∑
i=1

log2

(
1 +
|Hi|2Pi
N0

)
, (4.52)

where the maximum is over all possible power allocations that satisfy P1+P2+. . .+PK = P.
Clearly, we must observe Pi ≥ 0.

To solve this problem, we find it useful to first rewrite it in “standard form.” We will
say that an optimization problem is in standard form if it is expressed as3

minimize f0(x) (4.53)

subject to fi(x) ≤ 0, for i = 1, 2, . . . ,m, (4.54)

hj(x) = 0, for j = 1, 2, . . . , p. (4.55)

Here, x is an n-dimensional vector, f0(x) is called the objective function, fi(x) are called the
inequality constraints and hj(x) are called the equality constraints. The so-called Lagrangian
for a problem in standard form is given as

L(x, λ, ν) = f0(x) +
m∑
i=1

λifi(x) +

p∑
j=1

νjhj(x). (4.56)

When the problem is convex (as it is in our case), the key advantage of the Lagrange
formulation is that we have the KKT (Karush-Kuhn-Tucker) conditions, saying that the
optimal solution is characterized by:4

∂

∂x`
L(x, λ, ν) = 0, for all ` = 1, 2, . . . , n (4.57)

fi(x) ≤ 0, for all i = 1, 2, . . . ,m (4.58)

hj(x) = 0, for all j = 1, 2, . . . , p (4.59)

λi ≥ 0, for all i = 1, 2, . . . ,m (4.60)

λifi(x) = 0, for all i = 1, 2, . . . ,m. (4.61)

3Here, we follow the terminology of the standard reference book: S. Boyd and L. Vandenberghe, Convex
Optimization, Cambridge University Press, 2004, p.127.

4If you want to learn more, you may turn to Chapter 5 of S. Boyd and L. Vandenberghe, Convex
Optimization, Cambridge University Press, 2004. Here, we are using p.243 ff.
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If we apply this technique to our rate allocation problem, we can show that the KKT
conditions imply

Either Pi satisfies: Pi +
N0

|Hi|2
= constant (4.62)

or Pi = 0. (4.63)

This formula can be interpreted in an instructive way via a “water-filling” picture, which
is left as an exercise.
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Appendix 4.A Proof of Discrete-time Equivalent

In this appendix, we prove that for the band-limited AWGN channel model, if the input
signal is of the form given in Equation (4.2), then we can equivalently express the channel
in the shape given in Equation (4.6).

Looking at Equation (4.3), consider the following set of functions:

ψk(t) =
1

C
c(t− kT ), (4.64)

where C2 =
∫
|c(t)|2dt ensures that the functions ψk(t) all have unit norm. In all but trivial

cases, the functions ψk(t) are linearly independent and thus constitute a basis of some space
of functions, though not generally an orthogonal basis. We now complement this basis with
additional basis functions, denoted by η`(t), for ` = 1, 2, 3, . . . . We assume that these basis
functions are orthogonal to the space spanned by all the ψk(t), that they are orthogonal
with respect to each other and that they are normalized.

Next, we use the same leap of faith as in Equation (3.55): we assume that any waveform
can be written as a linear combination of the ψk(t) and the η`(t). This means that we can
express the received waveform in Equation (4.3) as

Y (t) =
∞∑

k=−∞
Ãkψk(t) +

∞∑
`=1

Bkη`(t). (4.65)

Because the η`(t) form an orthonormal basis and are orthogonal to all of the ψk(t), we can
express

Bk =

∫ ∞
−∞

Y (t)η`(t)dt. (4.66)

The more difficult part is to find the coefficients Ãk. For this, we need to understand a little
more about non-orthogonal bases. We will use the notion of a Riesz pair of bases: it can
be shown that there exists a set of functions

ψ̃k(t) (4.67)

which is also a basis for the space spanned by the ψk(t) and which satisfies the following
condition: ∫ ∞

−∞
ψn(t)ψ̃k(t)dt =

{
0, if k 6= n,
1, if k = n.

(4.68)

Using this, we can now also represent the received waveform as

Y (t) =
∞∑

k=−∞
Akψ̃k(t) +

∞∑
`=1

Bkη`(t), (4.69)
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and using the relation given in Equation (4.68), you can establish that

Ak =

∫ ∞
−∞

Y (τ)ψk(τ)dτ =

∫ ∞
−∞

1

C
c(τ − kT )Y (τ)dτ

=
1

C

∫ ∞
−∞

c̃(τ)Y (kT − τ)dτ. (4.70)

To conclude the proof, we show that the Bk are independent of everything else and thus
constitute irrelevant information. Therefore, the Ak are a sufficient statistic. But the Ak are
(up to the irrelevant constant scaling factor C) precisely the samples that we are retaining,
as a comparison with Equation (4.5) reveals.

Appendix 4.B The complex base-band representation

In this appendix, we prove that for the band-limited AWGN channel model, if the input
signal is of the form given in Equation (4.28), then we can equivalently express the channel
in the shape given in Equation (4.36). Define

ϕk(t) = γ sinc(t/T − k) cos(2πfct) and ψk(t) = γ sinc(t/T − k) sin(2πfct), (4.71)

where T = 1/(2W ) and γ is a constant chosen such that these functions have unit norm. We
observe that {ϕk(t), ψk(t)}∞k=−∞ is an orthonormal basis for the space of functions whose
spectrum is band-limited to the interval (fc −W, fc + W ) (and its negative complement).
Since x(t) is assumed to be band-limited exactly to this frequency interval, we can represent

x(t) =
∞∑

k=−∞
xI [k]ϕk(t)− xQ[k]ψk(t), (4.72)

which alternatively can be understood simply as the sampling theorem. Next, we use the
same leap of faith as in Equation (3.55): we complement our basis with many more basis
vectors, orthogonal to all the basis vectors we have already chosen, in such a way as to
obtain a basis for all waveforms. Let us call these additional basis elements η`(t). Then, we
can represent the received waveform as

Y (t) =

∞∑
n=−∞

YI [n]ϕn(t)− YQ[n]ψn(t) +
∑
`

C`η`(t). (4.73)

Again, we can show that the random variables C` are independent of the transmitted signal
and independent of YI [n] and YQ[n], so they represent irrelevant data and can be dropped
from our consideration. The remaining terms can be rewritten as follows:

Ỹ (t) = Re




∞∑

n=−∞
(YI [n] + jYQ[n])γ sinc(t/T − n)︸ ︷︷ ︸

=Yb(t)

 ej2πfct

 . (4.74)
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We point out that Ỹ (t) is simply Y (t) passed through a bandpass filter that only retains
the frequency band (fc−W, fc+W ) (and its negative complement). It should be intuitively
clear that Ỹ (t) is a sufficient statistic since outside of this frequency band, there is only
noise, and since the noise is white. Moreover, we observe that the filtered channel output
Ỹ (t) is completely characterized by the (complex-valued) samples:

Yb[n] = YI [n] + jYQ[n] (4.75)

The main bulk of the argument is now to calculate these two quantities and relate them to
the channel input and noise. Because we are dealing with orthonormal bases, it is easy to
get started:

YI [n] =

∫ ∞
−∞

Y (t)ϕn(t)dt

=

∫ ∞
−∞

(∫ ∞
−∞

h(τ)x(t− τ)dτ + Z(t)

)
ϕn(t)dt

=

∫ ∞
−∞

(∫ ∞
−∞

h(τ)x(t− τ)dτ

)
ϕn(t)dt+

∫ ∞
−∞

Z(t)ϕn(t)dt

=

∫ ∞
−∞

h(τ)

(∫ ∞
−∞

x(t− τ)ϕn(t)dt

)
dτ + Zϕn

=
∞∑

k=−∞
xI [k]

(∫ ∞
−∞

∫ ∞
−∞

h(τ)ϕk(t− τ)ϕn(t)dtdτ

)
−xQ[k]

(∫ ∞
−∞

∫ ∞
−∞

h(τ)ψk(t− τ)ϕn(t)dtdτ

)
+ Zϕn

=
∞∑

k=−∞
xI [k]h1[n− k]− xQ[k]h2[n− k] + Zϕn (4.76)

where

h1[m] =

∫ ∞
−∞

∫ ∞
−∞

h(τ)ϕ0(t− τ)ϕm(t)dtdτ

h2[m] =

∫ ∞
−∞

∫ ∞
−∞

h(τ)ψ0(t− τ)ϕm(t)dtdτ. (4.77)
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Similarly,

YQ[n] = −
∫ ∞
−∞

Y (t)ψn(t)dt

= −
∫ ∞
−∞

(∫ ∞
−∞

h(τ)x(t− τ)dτ + Z(t)

)
ψn(t)dt

= −
∫ ∞
−∞

(∫ ∞
−∞

h(τ)x(t− τ)dτ

)
ψn(t)dt+

∫ ∞
−∞

Z(t)ψn(t)dt

= −
∫ ∞
−∞

h(τ)

(∫ ∞
−∞

x(t− τ)ψn(t)dt

)
dτ + Zψn

= −
∞∑

k=−∞
xI [k]

(∫ ∞
−∞

∫ ∞
−∞

h(τ)ϕk(t− τ)ψn(t)dtdτ

)
+xQ[k]

(∫ ∞
−∞

∫ ∞
−∞

h(τ)ψk(t− τ)ψn(t)dtdτ

)
+ Zψn

=
∞∑

k=−∞
xI [k]h2[n− k] + xQ[k]h1[n− k] + Zψn . (4.78)

We point out that one technicality would deserve further scrutiny, namely, interchanging
the order of the integrals and the summation. This is beyond the scope of the current
course; it follows from the fact that h(t) is stable and Fubini’s theorem.

Finally, we find

Yb[n] =
∞∑

k=−∞
(xI [k] + jxQ[k])︸ ︷︷ ︸

=xb[k]

(h1[n− k] + jh2[n− k])︸ ︷︷ ︸
=hc[n−k]

+Zϕn + jZψn . (4.79)

The key to observe is that since the noise on our channel is Gaussian, the random variables
Zϕn and Zψn are all independent for all n and have mean zero and variance N0/2.

Appendix 4.C LMMSE Equalization for Complex-Valued Signals

In the complex-valued case, we have

U(t) =

∫ ∞
−∞

c̃(τ)Y (t− τ)dτ, (4.80)

where c̃(t) = c∗(−t), that is, c̃∗(t) is the matched filter for the signal c(t).

As in Equation (4.6), we have

U [n] =

∞∑
k=−∞

I[n− k]d[k] + V [n], (4.81)
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but we have to recalculate the autocorrelation function of the noise V [n] for the complex-
valued case. We find

RV [k] =
N0

2
d∗[−k]. (4.82)

and hence,

SV (z) =
N0

2
D∗(1/z∗). (4.83)

In the complex-valued case, the orthogonality principle takes the shape

E
[(
ÎLMMSE [n]− I[n]

)
U∗[n−m]

]
= 0, for m = −∞, . . . ,∞. (4.84)

Thus
∞∑

k=−∞
a[k]E [U [n− k]U∗[n−m]] = E [I[n]U∗[n−m]] , for m = −∞, . . . ,∞. (4.85)

As in the real-valued case, let us assume that the information symbols I[n] are from a
(complex-valued) wide-sense stationary random process with autocorrelation function RI [k]
and power spectrum SI(z). Combining with Equation (4.6), we can then evaluate

E [I[n]U∗[n−m]] = E

[
I[n]

( ∞∑
k=−∞

I∗[n−m− k]d∗[k] + V ∗[n−m]

)]

=

∞∑
k=−∞

d∗[k]E [I[n]I∗[n−m− k]] + E [I[n]V ∗[n−m]]

=

∞∑
`=−∞

d∗[−`]RI [m− `], (4.86)

where, for the last step, we have substituted ` = −k. Hence, all derivatives are zero if and
only if

∞∑
k=−∞

a[k]RU [m− k] =
∞∑

`=−∞
d∗[−`]RI [m− `], for m = −∞, . . . ,∞. (4.87)

Transforming into the Z-domain, we can rewrite

A(z)SU (z) = D∗(1/z∗)SI(z). (4.88)

We can find SU (z) using Equation (2.29), thus

A(z)

(
D(z)D∗(1/z∗)SI(z) +

N0

2
D∗(1/z∗)

)
= D∗(1/z∗)SI(z). (4.89)

Hence, interestingly, the final solution does not change, and still takes the shape

ALMMSE(z) =
SI(z)

D(z)SI(z) + N0
2

. (4.90)



Chapter 5

Wireless Communication

5.1 Physical Channel Models

The main effects are

• Free-space signal (amplitude) decay is as 1/distance.

• Reflections (include a phase shift).

• Linear superposition of many reflected versions, constructive and destructive interfer-
ence, channel coherence (in space).

• Mobility and Doppler effect, channel coherence (in time and frequency).

• “Rural tragedy”: with ideal reflections off a ground plane, energy decays like 1/d4,
where d is the distance from the transmitter.

5.2 Statistical Channel Models

To model multi-path propagation from the wireless transmitter to the receiver, we assume
that there are K paths:

Y (t) =

K∑
k=1

αk(t)x(t− dk(t)) + Z(t), (5.1)

where the sum is over all signal propagations paths, αk(t) is the strength of path k at time
t and dk(t) is the delay incurred along path k at time t. Finally, Z(t) is additive white
Gaussian noise.

5.2.1 Bandpass Signalling

We suppose a particular way of signaling across the wireless channel. Namely, we assume
that we are using two base-band, band-limited information-carrying signals, xI(t) and xQ(t).

55
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We suppose they are band-limited to the interval (−W,W ). From these, we form the trans-
mitted waveform as

x(t) = xI(t) cos(2πfct)− xQ(t) sin(2πfct), (5.2)

where we assume that fc �W. It is convenient to write this as

x(t) = Re
(
xb(t)e

j2πfct
)
, (5.3)

where we call xb(t) = xI(t) + jxQ(t) the complex base-band equivalent of the transmitted
signal x(t).

Plugging this into the wireless model of (5.1), and for now ignoring the additive noise,
we can write

Y (t) = Re

ej2πfct
K∑
k=1

αk(t)e
−j2πfcdk(t)xb(t− dk(t))︸ ︷︷ ︸

=Yb(t)

 , (5.4)

where we call Yb(t) the complex base-band equivalent of the received signal Y (t).
That is, we can now switch to considering only complex base-band equivalent signals,

and obtain the following equivalent channel model:

Yb(t) =
K∑
k=1

αk(t)e
−j2πfcdk(t)xb(t− dk(t)). (5.5)

5.2.2 Complex Discrete-time Model

The complex baseband equivalent signal xb(t) is band-limited to (−W,W ). This does not
imply that the (noiseless) received signal Yb(t) is also band-limited: the wireless channel
model is a linear time-varying system and new frequencies can be “added” (Doppler effect).
Nevertheless, in contemporary considerations, it is customary to assume that the received
signal Y (t) is first band-pass filtered and sampled. In general, this comes at a certain loss of
optimality, but assuming that the Doppler shift is small compared to the signal bandwidth,
the loss is negligible. Then, the discrete-time equivalent of the wireless channel takes the
following shape:

Y [n] =
∞∑

`=−∞
Hn[`]x[n− `] + Z[n], (5.6)

where x[n] are the complex-valued (Nyquist) samples of the signal xb(t). The noise process
Z[n] is a sequence of independent and identically distributed (iid) circularly symmetric
complex-valued Gaussian random variables of mean zero and variance N0, which means
that real and imaginary parts of Z[n] are independent of each other and have variance N0/2
each. For the case where the channel is not time-varying, we have derived the discrete-time
representation in Appendix 4.B.
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5.2.3 Channel Estimation

An obvious question is how we would know the precise characteristics of the channel at
hand. In principle, one could attempt to identify the geometry of the scene, and hence,
determine all K paths separately, along with their strength αk(t) and delay dk(t). Knowing
this, one could then calculate the channel coefficients Hn[`] in Equation (5.6).

In practice, this procedure is very difficult to implement. Instead, one usually assumes
that the channel coefficients Hn[`] do not change too much over time n. Then, one can
simply estimate them, for example by sending so-called pilot signals, which are known
ahead of time to the receiver: if the receiver knows the transmitted signal x[n] (at least
for some portion of time) in Equation (5.6), it can use the channel outputs to estimate the
channel coefficients Hn[`]. In this fashion, at the end of the training period, the receiver has
knowledge of the channel and can use that knowledge in subsequent channel uses to decode
the information-carrying signal (assuming that the channel coefficients do not change over
time n). We will not study the problem of channel estimation in much detail in this class.
Rather, we will consider the channel model given in Equation (5.6) and mostly assume that
the channel coefficients are known precisely to the receiver.

5.3 Rayleigh Flat-Fading

To get started, we consider perhaps the simplest possible case of a fading channel, Rayleigh
Flat-Fading (also called Rayleigh frequency non-selective fading):

Y [n] = H[0]x[n] + Z[n], (5.7)

where H[0] is a circularly-symmetric complex Gaussian random variable of unit variance
(meaning that its real and imaginary parts are independent and each have variance 1/2)
and Z[n] is circularly-symmetric complex additive white Gaussian noise whose real and
imaginary parts each have variance N0/2.

For notational convenience, we will simply write this as

Y [n] = Hx[n] + Z[n]. (5.8)

It will be convenient to recall the following facts about the distribution of H :

E[H] = E[Re(H)] + jE[Im(H)] = 0 (5.9)

E[|H|2] = E[(Re(H))2 + (Im(H))2] = E[(Re(H))2] + E[(Im(H))2] = 1, (5.10)

both of which can be easily proved by noting that Re(H) and Im(H) are independent
Gaussian random variables of mean zero and variance 1/2. Next, it is not hard to show that
the random variable R = |H| has a Rayleigh distribution:

fR(r) =

{
2re−r

2
, for r ≥ 0,

0, otherwise.
(5.11)
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Finally, perhaps the most useful fact is that the random variable V = |H|2 is exponentially
distributed:

fV (v) =

{
e−v, for v ≥ 0,
0, otherwise.

(5.12)

5.3.1 Antipodal Signaling over Rayleigh Flat-Fading

Let us now assume that the transmitted signal is ±
√
Ec (with uniform priors). Moreover,

we assume channel state information at the receiver (CSIR), meaning that the realization
h of the fading state H is known to the receiver.

The next important (and simple) observation is that for a fixed fading state H = h, it
is easy to find the error probability Pe(h). First, we observe that without loss of optimality,
we can start by removing the phase of the fading state, as follows:

Ỹ = e−j arg(h)Y = e−j arg(h)hx[n] + e−j arg(h)Z[n] (5.13)

= |h|x[n] + Z̃[n]. (5.14)

Since we are only changing the phase, it is easy to show that Z̃[n] is again circularly-
symmetric complex additive white Gaussian noise whose real and imaginary parts each
have variance N0/2. Finally, note that the transmitted signal is real-valued and the noise
has independent real and imaginary parts. Hence, the imaginary part of Ỹ is irrelevant
information, and the real part of Ỹ is a sufficient statistic. Therefore, this is simply the
standard problem of antipodal detection in Gaussian noise, where the two message points
are now located at ±

√
|h|2Ec. Thus, their distance is given by d(h) = 2

√
|h|2Ec, and the

error probability can be written as (using Equation (3.26))

Pe(h) = Q

(
d(h)

2
√
N0/2

)
= Q

(√
|h|2Ec
N0/2

)
. (5.15)

To gain intuition for the behavior of Rayleigh fading, it is convenient to introduce the
effective signal-to-noise ratio for channel state h as

γ =
|h|2Ec
N0/2

. (5.16)

Then, we can write the error probability as

Pe(γ) = Q (
√
γ) . (5.17)

Let us consider the average error probability, averaged over all fading states H :

Pe = EH [Pe(H)] =

∫
h
Pe(h)fH(h)dh. (5.18)

It is convenient to switch coordinates and express:

Pe =

∫ ∞
0

Pe(γ)fΓ(γ)dγ. (5.19)
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To compute this, we have to find the pdf of the effective SNR, fΓ(γ). Clearly, since γ = |h|2Ec
N0/2

,

and since the random variable |H|2 is exponentially distributed, we know that the random
variable Γ is also exponentially distributed, and thus,

fΓ(γ) =

{ 1
γ e
−γ/γ , for γ ≥ 0,

0, otherwise,
(5.20)

where γ denotes the average effective SNR:

γ = E[Γ] = E[|H|2]
Ec

N0/2
=
Ec

N0/2
. (5.21)

With this in hand, we can write:

Pe =

∫ ∞
0

Q (
√
γ)

1

γ
e−γ/γdγ. (5.22)

Perhaps somewhat surprisingly, this integral can actually be solved in closed form! In the
homework, you will show that

Pe =
1

2

(
1−

√
γ

2 + γ

)
. (5.23)

It is interesting to consider how this expression behaves as we increase the transmit energy
Ec, meaning that the average SNR γ becomes large. To do so, we can study√

γ

2 + γ
=

√
1− 2

2 + γ
. (5.24)

Now, for small ε, we can use the approximation
√

1− ε ≈ 1− ε
2 , thus we find

Pe ≈
1

2γ
. (5.25)

This formula is rather disappointing because it says that the error probability only decays
inversely proportional to the transmitted energy. By comparison, for any fixed AWGN
channel, we saw earlier that the error probability decays exponentially with the transmitted
energy.

Where does this disappointing behavior come from? There is an interesting observation
concerning the intuitively pleasing concept of a deep fade. To this end, we think of Ec as
being large, and we say that the channel is in a deep fade if the resulting effective SNR
is small even though we made Ec large, meaning that the channel fading robbed us pretty
much of all the power we invested. More formally, we consider the event where Γ < 1 to be
a deep fade event. This means at a given Ec, we are in a deep fade if

|h|2 <
N0/2

Ec
. (5.26)
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Now, let us look at the probability (over the fading state, for fixed transmit energy) of ending
up in a deep fade:

P(Γ < 1) = P
(
|H|2 < N0/2

Ec

)
(5.27)

=

∫ N0/2
Ec

0
fV (v)dv, (5.28)

where V = |H|2 and fV (v) is given in Equation (5.12). But because the exponential distri-
bution is essentially constant (and non-zero) for small values, we find that the probability
of a deep fade event is

P(Γ < 1) ≈ N0/2

Ec
=

1

γ
. (5.29)

Finally, we would like to connect the deep fade event to the overall error probability. To
do so, we can write (using E to denote the error event, and exploiting the law of total
probability):

Pe = P(E|Γ < 1)P(Γ < 1) + P(E|Γ ≥ 1)P(Γ ≥ 1)

≥ Q(1)P(Γ < 1). (5.30)

This means that the error probability is lower bounded by the probability of a deep fade
event (multiplied by the constant Q(1)); hence, these events are responsible for the disap-
pointing behavior.

5.3.2 Orthogonal Signaling over Rayleigh Flat-Fading

Let us now consider a different way of signaling over this channel. This time, we consider
two consecutive channel uses:

Y [0] = Hx[0] + Z[0] (5.31)

Y [1] = Hx[1] + Z[1], (5.32)

where all assumptions are as above, except the signaling: now, we assume orthogonal
signaling, i.e., we transmit one of the following two signal vectors:(

x[0]
x[1]

)
=

( √
Ec
0

)
or

(
x[0]
x[1]

)
=

(
0√
Ec

)
. (5.33)

Note that in this case, we transmit real-valued signals only, but we receive two complex-
valued signals.

First, for a fixed fading state H = h, we can again undo the phase term to obtain the
two samples

Ỹ [0] = |h|x[0] + Z̃[0] (5.34)

Ỹ [1] = |h|x[1] + Z̃[1], (5.35)
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where we now observe that it is a sufficient statistic to only keep the real parts — the
imaginary parts only contain independent noise. Thus, we arrive at the model

ỸR[0] = |h|x[0] + Z̃R[0] (5.36)

ỸR[1] = |h|x[1] + Z̃R[1], (5.37)

This is again just a binary hypothesis testing problem in Gaussian noise, and the two
possible message points are given by(

x[0]
x[1]

)
=

( √
|h|2Ec
0

)
or

(
x[0]
x[1]

)
=

(
0√
|h|2Ec

)
. (5.38)

The distance between these points is simply d(h) =
√

2
√
|h|2Ec, meaning that (using Equa-

tion (3.26))

Pe(h) = Q

(
d(h)

2
√
N0/2

)
= Q

√ |h|2Ec
N0

 . (5.39)

Proceeding along similar steps as in the derivation of Equation (5.23), we find, not surpris-
ingly,

Pe =
1

2

(
1−

√
γ

4 + γ

)
, (5.40)

showing exactly the same deep-fade behavior.

5.4 Diversity

5.4.1 The Basic Picture — Maximum Ratio Combining

Suppose that instead of just a single faded noisy observation, we have L independently faded
noisy observations of one and the same information symbol x:

Y1 = H1x+ Z1

Y2 = H2x+ Z2

...
...

...

YL = HLx+ ZL, (5.41)

where H` are independent circularly-symmetric complex Gaussian random variables of unit
variance and Z` are independent circularly-symmetric complex additive white Gaussian
noise, whose real and imaginary parts each have variance N0/2.

The key observation is that irrespective of any assumptions about x, if the realizations
of the fading coefficients are known to the decoder, then the following is a sufficient statistic
for x given Y1, Y2, . . . , YL :

Y =

L∑
`=1

h∗`Y`. (5.42)
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This is called maximum ratio combining — we linearly combine the L received values with
the best possible relative weights (“ratios”).

To prove that Y is indeed a sufficient statistic, we simply write out the conditional prob-
ability density function of all channel outputs given the channel input, f(y1, y2, . . . , yL|x),
and notice that Y1, Y2, . . . , YL are conditionally independent given x (see Appendix 5.A).

That is, we can write

Y =

(
L∑
`=1

|h`|2
)
x+

L∑
`=1

h∗`Z`︸ ︷︷ ︸
Z

, (5.43)

where the equivalent noise Z is circularly symmetric complex-valued Gaussian with mean
zero and variance N0

∑L
`=1 |h`|2.

Now, assuming binary antipodal modulation (of energy Ec), for a fixed realization
(h1, h2, . . . , hL), the equivalent message points are located at ±(

∑L
`=1 |h`|2)

√
Ec, and thus,

d(h1, h2, . . . , hL) = 2(
∑L

`=1 |h`|2)
√
Ec. However, the noise is also modified: its variance is

(
∑L

`=1 |h`|2)N0/2. Thus, the error probability is (using Equation (3.26))

Pe(h1, h2, . . . , hL) = Q

 d(h1, h2, . . . , hL)

2

√(∑L
`=1 |h`|2

)
N0/2

 (5.44)

= Q


√√√√2

(∑L
`=1 |h`|2

)
Ec

N0

 . (5.45)

This needs to be averaged over the randomness in the fading process. Again, somewhat
surprisingly, this can actually be solved in closed form. Eventually, we find the following
formula for the error probability:

Pe(γ) =

(
1

2

(
1−

√
γ

2 + γ

))L L−1∑
`=0

(
L− 1 + `

`

)(
1

2

(
1 +

√
γ

2 + γ

))`
. (5.46)

The dependence of this formula on γ can be made explicit (for large γ) via the following
approximation:

Pe(γ) ≈
(

1

2γ

)L(2L− 1

L

)
. (5.47)

This is called diversity of order L because the error probability depends on the average SNR
γ like 1/γL.
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5.4.2 Formal Definition of Diversity

More formally, we can define the diversity order of a communication strategy as

d = − lim
γ→∞

logPe(γ)

log γ
. (5.48)

Thus, diversity captures the high-SNR behavior of a communication strategy. (This is not
to say that high SNR is the only interesting operating regime!)

5.4.3 Sources of Diversity

As we have seen, diversity is obtained if we can observe one and the same signal multiple
times, each time independently faded. The question is, why and when would we get to
observe one and the same signal multiple times?

• Diversity in time. A first answer is to wait long enough: After a sufficient amount of
time, the channel will have changed to a new fading state that is independent of the
previous one. That is, the strategy would be to transmit the information symbol x at
time 0, then wait long enough and transmit it again at a future time, again wait long
enough and transmit again at a future time, and so on.

The coherence time of the channel gives a certain basic measure of how long one has
to wait to see an independent new channel. In the literature, the following two models
are popular:

– A simple abstraction is the so-called fast-fading channel:

Y [n] = Hn[0]x[n] + Z[n], (5.49)

where we now assume that {Hn[0]}n is an IID sequence of circularly-symmetric
complex Gaussian random variables of unit variance.

– A more realistic model is to assume a so-called block fading model. We can write
the channel again simply as:

Y [n] = Hn[0]x[n] + Z[n], (5.50)

but the difference lies in the model according to which Hn[0] changes as a function
of n. Specifically, under the block fading model, we assume that Hn[0] stays con-
stant for a block of N transmissions, after which it independently assumes a new
value, again drawn from a circularly-symmetric complex Gaussian distribution
of unit variance.

Beyond this, one could also assume that the process {Hn[0]}n is a Markov process (or
similar), but in this class, we will not discuss such models to any level of detail.

• Diversity in frequency. Another way to obtain diversity is to use multiple frequency
bands in such a way that each frequency band is independently faded.
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• Diversity in space. Perhaps the most obvious source of diversity is to use multiple
antennas at the receiver. If we use L antennas and assume that they are sufficiently
far apart from each other so that the multi-path patterns are very different for each
antenna, then we directly receive L independently faded copies, and thus, attain a
diversity order of L. A rule of thumb found often in the literature stipulates that an
antenna distance of at least a quarter or a half wavelength (of the carrier frequency) is
sufficient to obtain independent fades (though the specifics depend on the multi-path
propagation environment at hand).

5.5 Transmit Diversity and the Alamouti Trick

It is clear that L receive antennas give a diversity level of L (assuming independent fades
on each receive antenna). What if we have L transmit antennas? Can we get diversity out
of these?

Let us consider L = 2. The channel model is now given by

Y [n] = H1x1[n] +H2x2[n] + Z[n], (5.51)

where we assume that H1 and H2 are independent circularly symmetric complex Gaussians
with unit variance. The signal x1[n] is the signal transmitted from the first antenna and
the signal x2[n] from the second antenna.

It should be immediately clear that we can get diversity order of 2 by repetition coding.
To see this, denote the information symbol by u and let:

x1[0] = u and x2[0] = 0, (5.52)

x1[1] = 0 and x2[1] = u. (5.53)

This seems very wasteful: we are using both antennas and two time slots for just a
single information symbol. To fix this, a famous trick due to Alamouti is to consider two
information symbols, let us denote them by u1 and u2, and transmit

x1[0] = u1 and x2[0] = u2, (5.54)

x1[1] = −u∗2 and x2[1] = u∗1. (5.55)

Analyzing ML detection reveals that we get diversity order 2 for both information symbols.

5.6 Non-coherent Detection

So far, we have only talked about the case where the channel fading state realization is
known to the receiver (but not to the transmitter). In this section, we look at the case
where the channel fading state realization is completely unknown to both the transmitter
and the receiver. The receiver’s operation in this case is often referred to as non-coherent
detection.

First of all, it should be clear that antipodal signaling is now completely useless: Even if
there is no noise, the channel output is statistically independent of the signal, because the
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phase of the channel state is uniform over the full interval from 0 to 2π. By contrast, one
example of a signaling scheme that still works reasonably well even if we do not know the
channel state at the receiver is the orthogonal signaling scheme analyzed in Section 5.3.2.
You will study this in detail in the homework.

5.7 MIMO Communication

Let us consider a system with T transmit antennas and R receive antennas:
Y1[n]
Y2[n]

...
YR[n]

 =


H11 H12 . . . H1T

H21 H22 . . . H2T
...

...
. . .

...
HR1 HR2 . . . HRT




X1[n]
X2[n]

...
XT [n]

+


Z1[n]
Z2[n]

...
ZR[n]

 , (5.56)

where Zj [n] are IID circularly symmetric complex Gaussians of variance N0.

We will also write this equation more compactly, in terms of vectors and matrices, as

Y = HX + Z, (5.57)

where, for notational convenience, we have also suppressed the time index n.

We consider this model mostly for a fixed channel matrix H, but later also for the
case where all Hij are IID circularly symmetric complex Gaussians of unit variance, again
assuming coherent detection, i.e., that the receiver knows the realizations of all of the
Hij . However, we point out that it is also of interest to consider models in which there is
dependence between the individual fading coefficients.

5.7.1 Channel Known at The Transmitter

Although this case is not as frequent in practice, let us first assume that the transmitter
knows the channel matrix H. Then, it can apply what is often referred to as precoding: It
transmits the signal

X = ṼW, (5.58)

where Ṽ is the precoding matrix and W is the data-carrying vector (containing the mod-
ulated symbols). How should we select the matrix Ṽ ? To understand this, we need to
introduce the so-called singular-value decomposition. This decomposition asserts that any
R× T matrix H can be written as

H = UΣV H , (5.59)

where U is a unitary1 R×R matrix, V is a unitary T ×T matrix, and Σ is a diagonal R×T
matrix containing the singular values of the matrix H (where we start the diagonal with

1unitary means that UUH = UHU = IR, where IR is the R-dimensional identity matrix.
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the upper left element and proceed as far as we can, which means that there are at most
min{R, T} non-zero entries in Σ). Now, we see that if we select Ṽ = V, we get

Y = UΣW + Z. (5.60)

Finally, without losing anything, we let the decoder first multiply the received signal by
UH , leading to the model

Y′ = UHY = ΣW + UHZ. (5.61)

Since Σ is a diagonal matrix, and since the noise vector UHZ still has independent compo-
nents2, we thus obtain min{R, T} completely independent, parallel channels:

Y ′1 = σ1W1 + Z ′1

Y ′2 = σ2W2 + Z ′2
... =

...

Y ′min{R,T} = σmin{R,T}Wmin{R,T} + Z ′min{R,T}, (5.62)

where, to be precise, we should point out that some of the singular values could be zero,
hence, there could be fewer than min{R, T} parallel channels.

5.7.2 V-BLAST: Signaling

In the remainder of this chapter, we will assume that the transmitter does not know the
matrix H. In this case, how should we signal across the T transmit antennas? In the V-
BLAST (Vertical Bell Labs Space Time) architecture, we transmit independent data streams
across each antenna. Therefore, in our analysis of V-BLAST, we will assume that for ` 6= k,

X`[n] and Xk[m] are independent random variables for all n,m. (5.63)

Moreover, we assume that modulation is balanced and that the energy (per symbol) is E :

E [X`[n]] = 0, (5.64)

E
[
|X`[n]|2

]
= E , (5.65)

for all `, n.

5.7.3 V-BLAST: ML Detection

Since the additive noise is Gaussian, we can express the ML detector simply as a minimum
distance detector, exactly as in the discussion in Section 3.4.4. Searching over all possible
transmitted sequences, we find that the complexity is exponential in the product of the
number of transmit antennas and the number of channel uses. In practice, however, many
systems decouple the spatial from the temporal processing. That is, they first disentangle
the T transmitted signals, and then decode each one separately against the noise. In the
next few subsections, we discuss a few common approaches to disentangle the T transmitted
signals.

2This is left as an exercise for the reader.
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5.7.4 Suboptimal V-BLAST Detection: The Zero-Forcer

The rationale of this architecture is to first multiply the channel output vector by a matrix
to suppress the interference between the T data streams, namely:

Ỹ1[n]

Ỹ2[n]
...

ỸT [n]

 =


B11 B12 . . . B1R

B21 B22 . . . B2R
...

...
. . .

...
BT1 BT2 . . . BTR




Y1[n]
Y2[n]

...
YR[n]

 . (5.66)

For simplicity, let us start with the case where R = T and the matrix H is invertible. Then,
the Zero-Forcer chooses B = H−1, thus obtaining

Ỹ1[n]

Ỹ2[n]
...

ỸT [n]

 =


X1[n]
X2[n]

...
XT [n]

+


Z̃1[n]

Z̃2[n]
...

Z̃R[n]

 , (5.67)

where now we detect X1[n] using only Ỹ1[n]; we detect X2[n] using only Ỹ2[n]; and so on.
An alternative and perhaps more instructive way of understanding the Zero-Forcer is to

consider the projection of the received vector Y = (Y1, Y2, . . . , YR) into judiciously chosen
directions. (We suppress the time index n for ease of notation.) In particular, we form a
first projection

Ỹ1 = bH1 Y, (5.68)

where we choose the vector b1 to be orthogonal to columns 2, 3, . . . , T of the matrix H. By
doing so, Ỹ1 will only depend on X1, but not on X2, X3, . . . , XT . As a second projection,
we use

Ỹ2 = bH2 Y, (5.69)

where we choose the vector b2 to be orthogonal to columns 1, 3, 4, . . . , T of the matrix H.
By doing so, Ỹ2 will only depend on X2, but not on X1, X3, X4, . . . , XT . We keep going
until we have extracted all T data streams.

How well does the Zero-Forcer perform? At a first glance, everything looks fine, until
we notice that we have done something to the noise: The new noise vector Z̃[n] = H−1Z[n]
is still circularly symmetric3 complex Gaussian with mean zero, but has covariance matrix

E[Z̃Z̃H ] = N0H
−1H−H . (5.70)

Rather than dwelling on this formula, let us consider an example with T = R = 2,
namely

H =

(
1 0.99

0.99 1

)
, (5.71)

3Note that it is not entirely trivial that in the vector Z̃[n], real and imaginary parts are still independent
(as required to qualify as “circularly symmetric”) — the proof is a bit tedious and left as an exercise.
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for which we find

H−1 ≈
(

50.25 −49.75
−49.75 50.25

)
. (5.72)

Thus, we find

E[Z̃Z̃H ] = N0H
−1H−H ≈ N0

(
5000 4999
4999 5000

)
. (5.73)

Thus, the noise variance in each stream has increased by a factor of 5000 in this unfortu-
nate example! This is very undesirable, and we will therefore explore alternative receiver
architectures.

The cases where H is not invertible and where R 6= T are left as exercises.

5.7.5 Suboptimal V-BLAST Detection: MMSE

The main idea behind the Zero-Forcer was to project the received signal vector into appro-
priately chosen directions. Are there other projection directions that might be of interest?
To study this question, reconsider the projection

bH1 Y. (5.74)

If we use this projection to extract the first data stream, X1, then our equivalent noise is
simply given by X1 − bH1 Y. The noise power is thus given by

E
[∣∣X1 − bH1 Y

∣∣2] , (5.75)

and a reasonable goal is to choose b1 such as to minimize this noise power. This problem
can be solved by taking derivatives, leading to the so-called orthogonality principle: The
error has to be orthogonal to all of the data that was used. For the case at hand, the error is(
X1 −

∑R
r=1 b

∗
1rYr

)
, and the data used is Y1, Y2, . . . , YR. Thus, we obtain R orthogonality

conditions:

E

[(
X1 −

R∑
r=1

b∗1rYr

)∗
Y1

]
= 0,

E

[(
X1 −

R∑
r=1

b∗1rYr

)∗
Y2

]
= 0,

...
...

...

E

[(
X1 −

R∑
r=1

b∗1rYr

)∗
YR

]
= 0. (5.76)

A somewhat tedious (but simple) calculation shows that we can rewrite this in the following
shape:

RY Y b1 = r1, (5.77)



5.7. MIMO Communication 69

where the matrix RY Y is the autocorrelation matrix of the channel output vector, defined
as follows:

RY Y =


E[Y1Y

∗
1 ] E[Y1Y

∗
2 ] . . . E[Y1Y

∗
R]

E[Y2Y
∗

1 ] E[Y2Y
∗

2 ] . . . E[Y2Y
∗
R]

...
...

. . .
...

E[YRY
∗

1 ] E[YRY
∗

2 ] . . . E[YRY
∗
R]

 (5.78)

= E
[
YYH

]
(5.79)

= E
[
(HX + Z)(HX + Z)H

]
(5.80)

= HE
[
XXH

]
HH + E

[
ZZH

]
. (5.81)

Now, we recall that in V-BLAST, the signals in each of the transmitted streams are inde-
pendent and of energy E . Therefore, we can express RY Y as

RY Y = EHHH +N0IR, (5.82)

where IR denotes the R-dimensional identity matrix. Moreover, the vector r1 is given by

r1 =


E[Y1X

∗
1 ]

E[Y2X
∗
1 ]

...
E[YRX

∗
1 ]

 = E


h11

h21
...

hR1

 . (5.83)

From Equation (5.77), and assuming that RY Y is invertible, we can express the optimal
equalization coefficients for the first stream as

b1 = E
(
EHHH +N0IR

)−1


h11

h21
...

hR1

 . (5.84)

By analogy, we can find the appropriate vectors to extract streams t = 2, 3, . . . , T as

bt = E
(
EHHH +N0IR

)−1


h1t

h2t
...
hRt

 . (5.85)

Finally, as a convenient short-hand, we can summarize all T operations as taking the
channel output vector and multiplying it by the following matrix:

EHH
(
EHHH +N0IR

)−1
. (5.86)
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Now, let us get a sense for how good this MIMO detector is. That is, how large is the
resulting effective noise for each stream? Consider the detection problem in stream 1. The
effective noise in this detection problem has variance4 given by

E

∣∣∣∣∣X1 −
R∑
r=1

B∗1rYr

∣∣∣∣∣
2
 . (5.87)

We can rewrite this as

E

[(
X1 −

R∑
r=1

B∗1rYr

)∗
X1

]
−

R∑
r̃=1

B∗1r̃E

[(
X1 −

R∑
r=1

B∗1rYr

)∗
Yr̃

]
. (5.88)

If we plug in the optimum coefficients from Equation (5.84), then we know from the or-
thogonality conditions in Equation (5.76) that the second term is zero, and hence, that the
effective noise in the detection problem has variance

E

[(
X1 −

R∑
r=1

B∗1rYr

)∗
X1

]
= E − rH1 R

−1
Y Y r1 (5.89)

= E
(
1− EhH1 (EHHH +N0I)−1h1

)
. (5.90)

Again, rather than dwelling on this formula, let us go back to our example and plug in

H =

(
1 0.99

0.99 1

)
, (5.91)

which gives us

E

∣∣∣∣∣X1 −
R∑
r=1

B1rYr

∣∣∣∣∣
2
 (5.92)

= E

(
1− E(1 0.99)

(
1.9801E +N0 1.98E

1.98E 1.9801E +N0

)−1(
1

0.99

))
. (5.93)

For example, plugging in a signal energy of E = 2 and N0 = 1, we find

E

∣∣∣∣∣X1 −
R∑
r=1

B1rYr

∣∣∣∣∣
2
 ≈ 1.1119. (5.94)

That is, we see that there is a significant difference compared to the zero-forcer: there, the
effective noise was 5000 (plugging in N0 = 1) while here, it is only 1.1119.

As a final remark, we point out that as E tends to infinity, the MMSE detector tends to
the zero-forcing solution.

4We point out that this effective noise is not Gaussian, and thus, strictly speaking, the variance alone
does not determine the resulting error probability. However, it is customary to pretend that the noise is
Gaussian — and in an order-of-magnitude sense, this is often appropriate. More interestingly, as long as the
noise is additive and independent of the signal, in an information-theoretic sense (meaning that we assume
that optimal codes are used), for fixed variance, the worst-case distribution is indeed Gaussian.
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5.7.6 Suboptimal V-BLAST Detection: Successive Interference Cancellation
(SIC)

To be written up for the next version.

5.8 MIMO Communication under Fading

So far, we have studied the MIMO communication channel in Equation (5.56) for a fixed
channel matrix H. Returning to the fading channel models, it should be clear that it is also
of interest to study the scenario where the channel matrix H is random. Starting from the
Rayleigh fading model we have studied in detail, a first MIMO model with fading is simply
to assume that all entries of the matrix H are independent of each other, and that each
entry by itself is standard Rayleigh fading, exactly as considered earlier.

For this model, let us simply use V-BLAST signaling (which does not require knowing
anything about the actual fading matrix). Then, we can ask about the resulting diversity. A
simple calculation reveals that we can obtain a diversity of R for each transmitted symbol,
where R is the number of receive antennas, as before.

An interesting follow-up question is whether we can obtain a higher diversity. If we
assume that the channel matrix stays fixed for at least T time slots, then we could send each
information symbol using T time slots: we send that information symbol in turn separately
over each of the T transmit antennas. Via maximum-ratio combining, it is straightforward
to show that we thus attain a diversity of RT for this symbol.

Clearly, this is a high price to pay: over T channel uses and occupying all T transmit
antennas, we have transmitted just one single information symbol. To increase the number
of information symbols, we can again use codes like the Alamouti trick discussed earlier.
This is called space-time coding. A full treatment of space-time coding is beyond the scope
of this class (but we will see some constructions in class and in the homework).

5.9 Wireless Multi-user Communication

5.9.1 Wireless Broadcast Channels

There are many aspects of wireless broadcasting that have been intensively studied over the
last decade. In this course, we can only scratch the surface.

As a first case, we consider the so-called broadcast channel (or “downlink”). In this
scenario, there is a base station that serves L users. The base station has a separate
message for each of the L users. The goal is to deliver all L messages in an efficient fashion.
A baseline strategy is for the base station to take turns and serve all L users. That is, it
starts by serving the first user, ignoring the fact that all other L− 1 users can overhear the
communication. Then, it serves the second user, and so on. The question is whether we
can do better than this simple, static scheme.

The answer to this question is a resounding yes, and there are multiple techniques and
tricks to do better. In this class, we will only study one such technique, often referred to as
multi-user diversity. For this purpose, we will assume that the base station knows ahead of
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time which user has the best channel state (that is, the largest magnitude of the channel
coefficient). We will also assume that the channel states change over time. To make matters
more concrete, let us suppose that there is a single transmitted signal x[n] received by L
users. User ` receives

Y`[n] = H`[n]x[n] + Z`[n], (5.95)

where the Rayleigh fading coefficients H`[n] and additive white Gaussian noises Z`[n] of
different users are assumed to be independent. Since we assume that the transmitter knows
all the channel states ahead of time, in every time step, it can select the one user with the
best channel. It is then a simple matter to show that every user will attain diversity L.

There are a few things to observe here. First of all, how would a particular user know
that in a certain time slot, she has the best channel state? To fix this, one solution would
be to assume that the channel state stays fixed over a block of time slots, and we could
include a header sequence into the transmitted message in that block, identifying which
user it is destined for. Note that this revised fading model would also make it more realistic
to assume channel state information at the transmitter (measured by the users and fed back
to the transmitters).

A second issue concerns the effective symbol rate of each user, which is now a random
variable, depending on how many times a particular user turned out to be the best user.
Over long time intervals, assuming symmetric fading conditions, this would even out and
lead to a fair overall allocation. Of course, if we deviate from pure Rayleigh fading and bring
in, say, the geometry, meaning that users “closer” to the transmitter tend to have better
channels, then we have to be more careful to obtain a fair solution. A similar observation
applies to the delay experienced by each user.

Finally, we emphasize that this example only serves to illustrate the issue of multi-user
diversity (which is indeed exploited in certain practical wireless systems). By contrast, a
fundamental treatment of the problem of broadcasting would involve many more issues,
including the idea of “superposition coding,” where, in one and the same time slot and
frequency band, we transmit information to multiple users.

5.9.2 Wireless Multi-access Channels

In a multi-access scenario, multiple users communicate to a single receiver and the trans-
mitted signals interfere. This leads to many new issues. In classical systems (such as GSM),
multi-accessing is solved simply by scheduling: the users take turns so that at no time more
than one transmitter is active.

While a full treatment of how to deal with this scenario is beyond this course, we
discuss two ideas. First, consider L users with transmit signals x`[n] transmitting to a
single destination according to

Y [n] =
L∑
`=1

H`[n]x`[n] + Z[n], (5.96)

where H` is Rayleigh fading, independent across users. We can now use the idea of multi-
user diversity: In every time slot, only one user transmits, namely, the one with the best
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channel. While this again attains diversity L for each user, it requires significant overheads
(users must be informed when to transmit).

As a second example, let us go back to the ISI channel and follow the treatment in
Section 4.7, except that we add more users. That is, our channel model is now, by analogy
to Equation (4.39), given by

y[n] =
L∑
`=1

∞∑
k=−∞

h`[k]x`[n− k] + w[n], (5.97)

where we have used the same notation as in Section 4.7 because we now apply the FFT-
OFDM approach. In particular, we consider data length N plus a sufficient cyclic prefix
(chosen such as to accommodate the “worst” of the L users). For a single user, we have
seen in Equation (4.48) that FFT-OFDM transforms the original ISI channel into N parallel
channels of the form

Ym[k] = HmXm[k] + Zm[k]. (5.98)

Due to the linearity of our multi-access model, we can show exactly along the same lines
that the FFT-OFDM approach transforms our multi-access channel into N parallel channels
of the form:

Ym[k] =

L∑
`=1

H`,mX`,m[k] + Zm[k]. (5.99)

There are LN coefficients H`,m, and engineers have found it instructive to draw these as a
two-dimensional L ×N sudoku-style grid of “OFDM chips.” Then, one can allocate these
chips between the L users, again exploiting an idea like multi-user diversity: for every m,
we could assign unique transmitting rights to the one user who has the best channel. Or
we can mix and match. We will discuss this further in the homework.

5.9.3 Wireless Relay Channels

[TO BE COMPLETED for the next version]
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Appendix 5.A Proof of Equation (5.42)

The conditional pdf fY1,Y2,...,YL|x(y1, y2, . . . , yL|x) for any fixed (complex) number x is simply

fY1,Y2,...,YL|x(y1, y2, . . . , yL|x) =
L∏
`=1

1

πN0
e
− 1
N0

(y`−h`x)∗(y`−h`x)
(5.100)

=

(
1

πN0

)L
e
− 1
N0

∑L
`=1(y`−h`x)∗(y`−h`x)

(5.101)

Now, let us suppose that x is selected from the set {xa, xb}, where xa and xb are completely
arbitrary complex numbers. Based on the noisy observations (Y1, Y2, . . . , YL), we want to
detect whether xa or xb was transmitted. The log-likelihood ratio is

LLRab(y1, y2, . . . , yL) =
1

N0

(
L∑
`=1

(y` − h`xb)∗(y` − h`xb)−
L∑
`=1

(y` − h`xa)∗(y` − h`xa)

)
(5.102)

Rewriting the expression in parentheses, we find

L∑
`=1

(y` − h`xb)∗(y` − h`xb)−
L∑
`=1

(y` − h`xa)∗(y` − h`xa)

=
L∑
`=1

(
|y`|2 − h`xby∗` − h∗`x∗by` − |h`|2|xb|2

)
−
(
|y`|2 − h`xay∗` − h∗`x∗ay` − |h`|2|xa|2

)
= −

(
L∑
`=1

h∗`y`

)∗
xb −

(
L∑
`=1

h∗`y`

)
x∗b +

(
L∑
`=1

h∗`y`

)∗
xa +

(
L∑
`=1

h∗`y`

)
x∗a

+

L∑
`=1

|h`|2|xa|2 −
L∑
`=1

|h`|2|xb|2. (5.103)

Clearly, as soon as we have
∑L

`=1 h
∗
`y`, we can calculate the LLR — we do not need to

retain any other information about the received signal vector. In other words, this very
expression is a sufficient statistic for the given problem.

Since we did not make any assumptions about xa and xb, this result holds irrespective
of the constellation — even if there are more than just two alternatives: any pairwise LLR
can be calculated simply from knowing

∑L
`=1 h

∗
`y`.

Therefore, let us define

Y =

L∑
`=1

h∗`Y`. (5.104)
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By plugging in, we find that

Y =

L∑
`=1

h∗` (h`x+ Z`) (5.105)

=
L∑
`=1

h∗`h`x+
L∑
`=1

h∗`Z` (5.106)

=

(
L∑
`=1

|h`|2
)
x+ Z, (5.107)

where the noise Z is again circularly symmetric AWGN, but its variance is given by

N0

L∑
`=1

|h`|2. (5.108)

To prove this, we can first show that E[Re(Z)Im(Z)] = 0, which ensures the “circularly sym-
metric” part of the claim. Then, we can show that E[Re(Z)2] = E[Im(Z)2] = N0

2

∑L
`=1 |h`|2.
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Chapter 6

Coding for Noisy Channels

6.1 High-dimensional Signaling, Revisited

In Section 3.7, we have considered a set of M orthogonal messages and have observed
remarkable behavior in terms of error probability as the number of messages becomes large.
The price to pay was a sharp increase in the number of signaling dimensions. Now, looking
back at the M message points considered in Section 3.7, it is tempting to add more messages
points without increasing the number of signal dimensions. In Equation (3.47), what
happens to the error probability if we add another message point with coordinates xM+1 =√
E(1, 1, 1, 0, . . . 0)? How many more message points can we add with negligible effect on the

error probability? In this chapter, we consider a systematic way of designing constellations
of message points. These constellations are intuitively pleasing and of obvious practical
appeal.

A deeper question would concern the optimality of message point constellations for
certain channel models. For this, we refer the student to the class on Information Theory
as well as to advanced classes on Coding Theory.

6.2 Binary Linear Codes: An Informal Introduction

6.2.1 Binary Codes

A binary (block) code of length N is simply any subset C of the binary strings of length
N. We will denote the number of codewords by M. The rate of the code is defined as
R = (log2M)/N.

Error Correction and Detection; Minimum Distance of the code

There is a natural fashion of thinking about error correction and detection with respect to
a block code. Suppose you are given a block code C of length N and any binary string z of
length N. Then:

1. Either z belongs to the code, in which case we would conclude that no error happened.

77
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2. Or z does not belong to the code. Then, we have detected an error: something went
wrong.

In this second case, we can push things further: we can say that we map the string
z to the closest1 string x that is part of the code C. In this sense, we have corrected
errors.

We can even give a quantitative measure as to how many errors we have “corrected:”
Simply compare the original string z to the decoded string x and count how many
disagreements there are (i.e., in how many positions these two strings differ). This is
how many errors were “corrected.”

How good is a given code C? Our discussion of error correction and detection gives us
one set of criteria to answer this question. Typically, we would like the code to correct as
many errors as possible. To this end, we introduce the minimum Hamming distance of the
code C as

dH,min = min
x,y∈C,x 6=y

dH(x,y), (6.1)

where the expression dH(x,y) denotes the number of positions in which the two strings x
and y differ (the so-called Hamming distance).

It is now clear that our code C can correct any pattern of t errors if and only if

2t < dH,min. (6.2)

This is one figure of merit for a given code C; we will see more refined (and more relevant)
criteria later on.

6.2.2 Binary Linear Codes

In order to efficiently implement codes, we need them to have some structure. That is,
instead of picking any M sequences of length N, we now consider one clever way of finding
good sets of sequences. Namely, we consider binary linear codes of block length N. We
represent codewords by row vectors.2 A binary linear code is specified by a binary matrix
G of dimension K ×N. This matrix is called the (code) generator matrix. The task of the
code designer is to find a good generator matrix.

Given the generator matrix, all the codewords can then be generated by

b = aG, (6.3)

where a is a binary (row) vector of length K, and we let a vary over all of its 2K possibilities.
We will refer to the code as a binary linear (N,K) block code.

Example. Consider the binary linear (3, 2) block code given by the generator matrix

G =

(
1 0 1
0 1 1

)
1Note that there could be multiple closest strings, in which case this does not work.
2In coding theory, it is customary to use row vectors. We here choose not to deviate from this tradition.
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Using Equation (6.3), we successively plug in (0, 0), (1, 0), (0, 1) and (1, 1) for a and thus
identify the 2K = 4 codewords as (0, 0, 0), (1, 0, 1), (0, 1, 1), and (1, 1, 0), respectively.

In such a binary linear code, there cannot be more than 2K codewords. There could
be fewer, depending on the rows of the generator matrix. Let us denote the number of
codewords by M. The rate of the code is defined as R = (log2M)/N.

6.2.3 The Algebra of Binary Linear Codes

Here are two key observations about binary linear codes that we will use over and over
again:

P1: In a binary linear code, the all-zero sequence is always a codeword.

P2: In a binary linear code, the sum of any two codewords is again a codeword.

It is easy to verify this property for our running example.

6.2.4 The Geometry of Binary Linear Codes

Let us reconsider our running example, namely, the binary linear (3, 2) block code given by
the generator matrix

G =

(
1 0 1
0 1 1

)
.

If we write a = (a1, a2), then we can write Equation (6.3) as

b = a1(1, 0, 1) + a2(0, 1, 1). (6.4)

This is just a linear combination of two vectors.

For a minute, let us pretend that a1 and a2 are real numbers, and the addition is usual
real-valued addition. Then, as you have seen in your math classes, Equation (6.4) describes
a two-dimensional plane in three-dimensional space, and this plane goes through the origin.
Equivalently, you can describe this plane by the equation b1 + b2 = b3.

As you have also seen in your math classes, it is often convenient to describe such a
plane by the vector that is orthogonal to this plane.

Can we do this in the binary world, too? As it turns out, the answer is yes. For our
example, a vector that is orthogonal (in the binary world) to both of the binary vectors
(1, 0, 1) and (0, 1, 1) is

h = (1, 1, 1), (6.5)

and indeed, you can convince yourself that a binary sequence x of length 3 is a codeword
in our binary linear (3, 2) block code if and only if it satisfies

bhT = 0. (6.6)
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In a similar fashion, we can show that any binary linear (N,K) block code is just a
K-dimensional subspace of N -dimensional space. Again, we can characterize this subspace
by N −K binary vectors that are orthogonal to the space spanned by the code. Call these
vectors h1,h2, . . . ,hN−K . Then, we can show that a binary sequence b of length n belongs
to our code if and only if it satisfies

bhTi = 0, (6.7)

for i = 1, 2, . . . , N−K. It is often convenient to collect this condition into a matrix condition
by forming the so-called parity check matrix

H =


h1

h2
...

hN−K

 , (6.8)

and writing the condition as

bHT = 0, (6.9)

where, here, 0 is the all-zero (row) vector of length N −K.
In general, it is not straightforward to find a parity check matrix H for a code defined

via its generator matrix G. However, there is a special case where it is easy. This is the
case of systematic codes, which are codes with generator matrix of the form

G = (IK |P ) , (6.10)

where IK is the K-dimensional identity matrix and P is an arbitrary binary K × (N −K)
matrix. In this case, a parity check matrix can be found as

H =
(
P T | IN−K

)
, (6.11)

where IN−K is the (N −K)-dimensional identity matrix.

6.2.5 Cosets and Syndromes

An important concept to grasp the structure of binary linear codes comes in the shape of
so-called cosets. Namely, for each binary sequence r of length N, we define its corresponding
coset as the set of those binary sequences obtained by adding, in turn, each of the codewords
in our code to the sequence r.

Formally, we can express this as

e + C = {x : x = e + b for some b ∈ C}, (6.12)

where e is any binary sequence of length N.

Here are two important facts about cosets:
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1. Every binary sequence r of length N is in exactly one coset.

2. It is easy to identify which coset simply by calculating the so-called syndrome s = rHT ,
where H is the parity check matrix of our code.

To prove these two facts requires further insights about the underlying (so-called finite-field)
algebra.

Moreover, since the code has 2K (distinct) codewords, we know that the coset corre-
sponding to the all-zero sequence (meaning that in Equation (6.12), we choose e to be the
all-zero sequence) contains exactly 2K sequences. By the same token, we can infer that
every coset must contain exactly 2K sequences. Finally, since every sequence is in exactly
one coset, this means that there are exactly 2N−K different cosets.

Example. Consider again the binary linear (3, 2) block code with codewords

(0, 0, 0), (1, 0, 1), (0, 1, 1), (1, 1, 0).

Recall that here, the parity check matrix is simply the vector (1, 1, 1). We obtain the fol-
lowing table of cosets:

binary sequence r Corresponding Coset Syndrome s = rHT

000 000 101 011 110 0
001 001 100 010 111 1
010 010 111 001 100 1
011 011 110 000 101 0
100 100 001 111 010 1
101 101 000 110 011 0
110 110 011 101 000 0
111 111 010 100 001 1

To understand the meaning of this table, it is important to note that for a set, the ordering
does not matter. That is, the cosets on lines 1, 4, 6, and 7 are all exactly the same set (they
have exactly the same elements), and the same comment applies to lines 2, 3, 5, and 8. So,
in this simple example, there are only two possible cosets. In class, we will see the coset
structure of a longer code.

6.2.6 Syndrome Decoding

As we stated, for any binary sequence r of length N, one can determine which coset it
belongs to by calculating the syndrome

s = rHT . (6.13)

Clearly, by Equation (6.9), the syndrome is s = 0 if and only if r is a codeword. Indeed,
the code itself is the coset corresponding to choosing e as the all-zero sequence.

For all other sequences, there is an insightful observation as follows: Trivially, we can
write r = b + e, where b is a codeword. But then,

s = rHT = (b + e)HT = bHT + eHT = eHT . (6.14)
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That is, the syndrome s identifies the coset in which the error pattern e lies.
This leads to the idea of syndrome decoding: For any binary sequence r, determine first

the coset in which it lies (with respect to a given code C). Then, inside the coset, find
the sequence of smallest Hamming weight, which we denote by emin(r). We decode the
sequence r to the sequence r− emin(r), that is, we simply subtract the error pattern from
the sequence r. (Recall that over the binary field, adding and subtracting is the same.)

To understand the appeal of this decoder, let us imagine that we transmit a codeword
over an imperfect channel. Suppose that we are guaranteed that out of the N components of
the codeword, the channel only affects at most t and leaves the remaining N−t components
perfectly intact. Then, as long as all binary sequences of Hamming weight up to t are in
different cosets, we are guaranteed that the syndrome decoder returns the correct answer.

6.2.7 Distance Properties and Minimum Distance

The power of a code results from its distance properties, i.e., the mutual distances between
all pairs of codewords. For binary sequences, there is only one (intuitively pleasing) way to
measure distance, the so-called Hamming distance:

dH(x,y) = Number of positions where x and y differ. (6.15)

Now, take an arbitrary codeword that is a member of our binary linear (N,K) block
code, call it b. Define the distance enumerator for codeword b as

Dk(b) = ( Number of codewords y that satisfy dH(b,y) = k ) . (6.16)

Example: For the binary linear (3, 2) block code considered above, let us take, for
example, the codeword b = (0, 1, 1). Then, we can see that D0(b = (0, 1, 1)) = 1, D1(b =
(0, 1, 1)) = 0, D2(b = (0, 1, 1)) = 3, and D3(b = (0, 1, 1)) = 0.

The next fundamental fact about binary linear codes is the following:

P3: For a binary linear code, Dk(b) = Dk, i.e., it does not depend on b.

This fundamental insight follows straightforwardly from P1 (i.e., the fact that the sum
of any two codewords is again a codeword) and the observation that

dH(x,y) = dH(x + z,y + z), (6.17)

for any binary vector z, where the addition is component-wise modulo-2.
We know that any binary linear code always contains the all-zero codeword. Therefore,

to explore the distance spectrum Dk, we can simply start from the all-zero codeword. This
is particularly easy if we introduce the Hamming weight of a binary sequence:

wH(x) = ( Number of positions where x is one ) = dH(x,0). (6.18)

With this, it follows that Dk is simply equal to the weight spectrum of the code, defined as

Ak = ( Number of codewords b that have Hamming weight k ) . (6.19)

We can then also state the following more convenient version of P3:
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P3’: For a binary linear code, Dk(b) = Ak for every codeword b.

One interesting fact about a code is its minimum distance, that is, the smallest Hamming
distance between any two codewords of the code, which we can formally define as

dH,min = min
b,c

dH(b, c), (6.20)

where both b and c are codewords. From our theorem, we can directly conclude that

dH,min = ( smallest Hamming weight of any codeword, except the all-zero codeword ) .

(6.21)

However, we have to caution the reader that it is not always easy to directly find the
minimum distance of a code.

Example: For the binary linear (3, 2) block code considered above, we have seen that
D0 = 1, D1 = 0, D2 = 3, D3 = 0. Thus, the minimum Hamming weight of any non-zero
codeword is 2 (and there are 3 codewords of weight 2). Thus, the minimum distance of the
code must be 2.

6.2.8 Minimum Distance via the Parity Check Matrix

We have seen that any binary sequence of length n is a codeword if it satisfies

bHT = 0. (6.22)

To find the minimum distance of the code, we must find the one sequence with the smallest
Hamming weight, i.e., the smallest number of ones, that satisfies this condition, and we
cannot choose the all-zero sequence.

This problem has a nice structure. Namely, we can observe that we are simply adding
up a subset of the columns of the parity check matrix H, precisely those columns that
correspond to the 1’s in the candidate codeword b.

Therefore, we obtain the following fundamental insight:

• The minimum distance of the code is equal to the smallest integer d such that there
is a set of d columns in the parity check matrix that adds up to the all-zero sequence.

Example: For the binary linear (3, 2) block code considered above, we have seen that
the parity check matrix is simply the (row) vector (1, 1, 1). This vector has 3 columns. Any
single column is not equal to zero, so the minimum distance is definitely larger than 1. Are
there two columns that can be added up to arrive at zero? Clearly, this is true. Therefore,
the minimum distance is 2, in line with our earlier result.

6.2.9 Minimum Distance: Singleton Bound

For a binary code of block length N, it is clear that the minimum distance can never be
larger than N. Now, suppose that the code has dimension K. Intuitively, it should be clear
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that the larger K (which means: the more codewords there are in the code), the smaller
the minimum distance.

A simple bound called the Singleton Bound shows that any (N,K) linear code with
minimum distance dH,min must satisfy

dH,min ≤ N −K + 1. (6.23)

This follows trivially from the main insight of Section 6.2.8: Since the parity check matrix is
of dimension (N−K)×N, we know that any collection of N−K+1 columns must be linearly
dependent, meaning that it must contain a subset that adds up to the all-zero sequence.
But this directly means that the minimum distance cannot be larger than N −K + 1.

A code that attains equality in the Singleton bound is called an MDS code (maximum
distance separable code).

6.2.10 Hamming Codes

Hamming’s construction is a simple way of exploiting the main result of Subsection 6.2.8
in order to construct a code that has minimum distance dH,min = 3. Namely, we directly
design the parity check matrix H in such a way that no two columns are equal, and no
column is equal to the all-zero sequence.

From Subsection 6.2.8, this means that we need to add up at least three columns of
the parity check matrix in order to arrive at the all-zero sequence. Thus, the code has a
minimum distance of at least dH,min = 3.

Now, we would like to select as many columns as possible: the more columns, the more
codewords we have in our code. So, Hamming codes fix the length N −K of the columns
in the parity check matrix and simply include all possible binary vectors of length N −K,
except the all-zero vector. For example, if we set N −K = 3, there are 7 different non-zero
binary vectors, and we obtain the following parity check matrix for the (7, 4) Hamming
code:

H =

 1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

 . (6.24)

It is easy to show that a parity check matrix is given by

G =


1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

 (6.25)
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Here are all 2K = 16 codewords of the (7,4) Hamming code:

b1 = (0, 0, 0, 0, 0, 0, 0)

b2 = (1, 0, 0, 0, 1, 1, 0)

b3 = (0, 1, 0, 0, 1, 0, 1)

b4 = (0, 0, 1, 0, 0, 1, 1)

b5 = (0, 0, 0, 1, 1, 1, 1)

b6 = (1, 1, 0, 0, 0, 1, 1)

b7 = (1, 0, 1, 0, 1, 0, 1)

b8 = (1, 0, 0, 1, 0, 0, 1)

b9 = (0, 1, 1, 0, 1, 1, 0)

b10 = (0, 1, 0, 1, 0, 1, 0)

b11 = (0, 0, 1, 1, 0, 0, 1)

b12 = (1, 1, 1, 0, 0, 0, 0)

b13 = (1, 1, 0, 1, 1, 0, 0)

b14 = (1, 0, 1, 1, 0, 1, 0)

b15 = (0, 1, 1, 1, 0, 0, 1)

b16 = (1, 1, 1, 1, 1, 1, 1)

We can also write the weight enumerator function explicitly (just by counting codewords of
a particular Hamming weight in the above list):

A0 = 1, A1 = 0, A2 = 0, A3 = 7, A4 = 7, A5 = 0, A6 = 0, A7 = 1, (6.26)

which, for example, shows that the minimum (Hamming) distance of the code dH,min = 3.

6.3 Binary Linear Block Codes on Noisy Channels

In this section, we characterize the channel by a conditional probability density function

fY|B(y|b), (6.27)

where we use B to denote the random vector representing the codeword (and b its realiza-
tion) and we use Y to represent the channel output vector (and y its realization).

6.3.1 ML Decoding, Bhattacharyya bound

By analogy to Section 3.5, let us consider Em,m′ , the event that message m′ was detected,
given that message m was transmitted. That is, we suppose that the codeword bm is
transmitted, but the decoder decided for codeword bm′ . The ML decoder decides in favor
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of bm′ if the received vector y satisfies fY|B(y|bm′) > fY|B(y|bm). Therefore,

P
(
Em,m′

)
= P ( decode to bm′ | bm is transmitted )

= P
(

ln

(
fY|B(Y|bm′)
fY|B(Y|bm)

)
≥ 0

∣∣∣∣ bm is transmitted

)
. (6.28)

Next, we use the Chernoff bound to upper bound this, for λ > 0, as

P
(

ln

(
fY|B(Y|bm′)
fY|B(Y|bm)

)
≥ 0

∣∣∣∣ bm is transmitted

)

≤ E

[
e
λ ln

(
fY|B(Y|bm′ )
fY|B(Y|bm)

) ∣∣∣∣∣ bm is transmitted

]
(6.29)

=

∫
y
e
λ ln

(
fY|B(y|bm′ )
fY|B(y|bm)

)
fY|B(y|bm)dy (6.30)

=

∫
y
fλY|B(y|bm′)f1−λ

Y|B(y|bm)dy. (6.31)

Next, a particularly appealing choice appears to be λ = 1/2 (though we challenge the reader
to try other choices), from which we find

P
(
Em,m′

)
≤

∫
y

√
fY|B(y|bm′)fY|B(y|bm)dy. (6.32)

Note that so far, we have not used a single property of our code... To bring this to bearing,
we now assume that the channel is memoryless, by which we mean that

fY|B(y|b) =
N∏
i=1

fY |B(yi|bi). (6.33)

Then, we find

P
(
Em,m′

)
≤

∫
y

√√√√ N∏
i=1

fY |B(yi|bm′,i)fY |B(yi|bm,i)dy

=

N∏
i=1

∫
yi

√
fY |B(yi|bm′,i)fY |B(yi|bm,i)dyi. (6.34)

However, the integral inside the product evaluates to 1 whenever bm′,i = bm,i, and when
bm′,i 6= bm,i, it evaluates to ∫

y

√
fY |B(y|1)fY |B(y|0)dy

def
= ∆, (6.35)
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where ∆ is called the Bhattacharyya parameter3 of the (binary-input) channel fY |B(y|b).
Using this, we can express our bound as

P
(
Em,m′

)
≤ ∆dH(bm′ ,bm). (6.36)

Using the union bound as in Equation (3.39), we find

Pe ≤
1

M

M∑
m=1

M∑
m′=1,m′ 6=m

∆dH(bm′ ,bm). (6.37)

Next, using the distance enumerator Dk(b) defined in Equation (6.16), we can write

Pe ≤
1

M

M∑
m=1

(
D1(bm)∆ +D2(bm)∆2 + . . .+DN (bm)∆N

)
. (6.38)

Now, exploiting the structure of the linear code, we recall that Dk(b) does not depend
on which codeword b we consider, and since the all-zero sequence is itself a codeword, we
have Dk(b) = Ak, where Ak is the weight enumerator of the code, that is, the number of
codewords in the code that have Hamming weight exactly equal to k. Hence,

Pe ≤
1

M

M∑
m=1

(
A1∆ +A2∆2 + . . .+AN∆N

)
, (6.39)

but now, the expression in parentheses no longer depends on m, and hence,

Pe ≤
N∑

`=dH,min

A`∆
`, (6.40)

where ∆ is the Bhattacharyya parameter of the channel.
It can be shown that 0 ≤ ∆ ≤ 1 for all channel laws pY |X(y|x) (for example via Cauchy-

Schwarz). Because of this, the above upper bound on Pe can be weakened to

Pe ≤
(
2K − 1

)
∆dH,min , (6.41)

which tends to be much easier to deal with.

6.4 Binary Linear Block Codes on AWGN Channels

We reconsider the standard AWGN channel model, given by the following description:

Y (t) = x(t) + Z(t), (6.42)

where Z(t) is (real-valued) additive white Gaussian noise of power spectral density N0/2.

3If the channel output alphabet of y is discrete-valued, all integrals in the derivation as well as in the
definition of ∆ are naturally replaced with sums.
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6.4.1 Modulation

The basic idea is to consider the binary codeword of length N, given by

b = (b1, b2, . . . , bN ), (6.43)

and to map it symbol-by-symbol to a waveform, for example, simply by transmitting the
signal

x(t) =

n∑
`=1

A(b`)g(t− (`− 1)T ), (6.44)

where we could choose the pulse shape g(t) to be a box of width T and height 1/
√
T ,

starting at t = 0, and

A(b`) =

{ √
E , if b` = 1,

−
√
E , if b` = 0.

(6.45)

Now, we can proceed exactly as in Chapter 3: Without loss of optimality, we can convert
this scenario into a vector AWGN channel with 2K message points: one message point for
each codeword. Let us consider this for the case of a simple example:

Example 6.1. For the (7,4) Hamming code, modulated onto ±
√
E , we end up with the

following M = 16 message points:

x1 =
√
E(−1,−1,−1,−1,−1,−1,−1)

x2 =
√
E(1,−1,−1,−1, 1, 1,−1)

x3 =
√
E(−1, 1,−1,−1, 1,−1, 1)

x4 =
√
E(−1,−1, 1,−1,−1, 1, 1)

x5 =
√
E(−1,−1,−1, 1, 1, 1, 1)

x6 =
√
E(1, 1,−1,−1,−1, 1, 1)

x7 =
√
E(1,−1, 1,−1, 1,−1, 1)

x8 =
√
E(1,−1,−1, 1,−1,−1, 1)

x9 =
√
E(−1, 1, 1,−1, 1, 1,−1)

x10 =
√
E(−1, 1,−1, 1,−1, 1,−1)

x11 =
√
E(−1,−1, 1, 1,−1,−1, 1)

x12 =
√
E(1, 1, 1,−1,−1,−1,−1)

x13 =
√
E(1, 1,−1, 1, 1,−1,−1)

x14 =
√
E(1,−1, 1, 1,−1, 1,−1)

x15 =
√
E(−1, 1, 1, 1,−1,−1, 1)

x16 =
√
E(1, 1, 1, 1, 1, 1, 1)
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6.4.2 ML Decoding, Standard Gaussian bound

After modulating our binary linear code onto waveforms and doing the usual conversion to
the vector AWGN channel, we have the standard scenario

Y = x + Z, (6.46)

where all vectors are of length N, the vector x is known to be selected uniformly from a
given set {x1,x2, . . . ,xM} and the noise vector Z is a vector of independent, zero-mean
Gaussian random variables of variance N0/2.

The only new thing is that there is some structure to the set of message points
{x1,x2, . . . ,xM}.

As a first step, we can use the tools developed in Section 3.5. There, we found the
following upper bound on the error probability (Equation (3.41)):

Pe ≤
1

M

M∑
m=1

M∑
m′=1,m′ 6=m

Q

(
dmm′

2
√
N0/2

)
, (6.47)

where, as before,

dmm′ = ‖xm − xm′‖. (6.48)

The key is to connect this to the Hamming distance between the corresponding code-
words. Let us now suppose that we have simply modulated a code digit of “1” to

√
E and

a code digit of “0” to −
√
E . It is then easy to show that

dmm′ = 2
√
EdH(bm,bm′), (6.49)

Hence, we can give the upper bound

Pe ≤
1

M

M∑
m=1

M∑
m′=1,m′ 6=m

Q

√2dH(bm,bm′)E
N0

 . (6.50)

Next, using the distance enumerator Dk(b) defined in Equation (6.16), we can write

Pe ≤
1

M

M∑
m=1

(
D1(bm)Q

(√
2E
N0

)
+D2(bm)Q

(√
4E
N0

)
+ . . .+DN (bm)Q

(√
2NE
N0

))
(6.51)

Now, exploiting the structure of the linear code, we recall that Dk(b) does not depend
on which codeword b we consider, and since the all-zero sequence is itself a codeword,
Dk(b) = Ak. Hence,

Pe ≤
1

M

M∑
m=1

(
A1Q

(√
2E
N0

)
+A2Q

(√
4E
N0

)
+ . . .+ANQ

(√
2NE
N0

))
(6.52)
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but now, the expression in parentheses no longer depends on m, and hence,

Pe ≤
N∑

`=dH,min

A`Q

(√
2`E
N0

)
, (6.53)

where dH,min is the minimum (Hamming) distance of the code and A` is the weight enu-
merator function of the code.

Finally, it is sometimes instructive to further upper bound this. To this end we note
that the largest term in the above sum is for ` = dH,min, thus,

Pe ≤
(
2K − 1

)
Q

(√
2EdH,min

N0

)
. (6.54)

If you like, you may use the standard exponential upper bound Q(x) ≤ e−x2/2 to obtain

Pe ≤
(
2K − 1

)
e
− E
N0

dH,min . (6.55)

6.4.3 ML Decoding, Bhattacharyya bound

For the AWGN channel used with antipodal modulation ±
√
E and noise of variance N0/2,

we find that the Bhattacharyya parameter is given by

∆ = e
− E
N0 . (6.56)

Hence, using Equation (6.40), we find

Pe ≤
N∑

`=dH,min

A`e
−` E

N0 . (6.57)

Comparing to Equation (6.53), we observe that the Bhattacharyya approach leads to a
slightly weaker bound — easily obtained by combining Equation (6.53) with the standard
upper bound Q(x) ≤ e−x2/2.

6.4.4 “Hard-decision decoding”

Consider again the standard vector AWGN channel:

Y = x + Z, (6.58)

where all vectors are of length N, the vector x is known to be selected uniformly from a
given set {x1,x2, . . . ,xM} and the noise vector Z is a vector of independent, zero-mean
Gaussian random variables of variance N0/2.

Now, suppose that we have simply modulated a code digit of “1” to
√
E and a code digit

of “0” to −
√
E .
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A popular suboptimal decoder is to first do a “hard-decision” step. That is, the receiver
takes the received vector y and first forms the vector c, where

ci =

{
0, if yi < 0,
1, if yi ≥ 0.

(6.59)

Intuitively, we are taking every received digit and separately guessing whether the corre-
sponding code bit was a “0” or a “1,” without exploiting the structure of the codebook.
This is clearly generally suboptimal.

If we start the decoding process with this suboptimal step, we are equivalently turning
the original channel into a new channel:

pC|B(c|b), (6.60)

where now both b and c are binary vectors. To analyze the error probability associated
with decoding from this channel, we can apply the approach in Section 6.3.1. This allows
to develop an understanding of the loss due to hard-decision decoding, which is left as an
exercise.

6.5 Some Famous Binary Codes

Hamming Codes

For every integer m ≥ 3, there exists a Hamming code with the following properties:

Code Length: N = 2m − 1

Code Dimension: K = 2m −m− 1

Minimum distance: dH,min = 3.

To construct such a Hamming code, it is easiest to start from the parity check matrix.
This matrix is of dimension m×(2m−1) and contains as its rows all possible distinct binary
sequences of length m except the all-zero sequence.

Reed-Muller Codes

For all integers m and r with 0 ≤ r ≤ m, there exists a binary Reed-Muller code with the
following properties:

Code Length: N = 2m

Code Dimension: K = 1 +

(
m

1

)
+

(
m

2

)
+ . . .+

(
m

r

)
Minimum distance: dH,min = 2m−r.

One way of constructing these codes is through their generator matrix. To do so, we
start with the matrix

G(2,2) =

(
1 1
0 1

)
. (6.61)
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Next, we take the m-fold Kronecker product of this matrix with itself, thus arriving at a
matrix of dimenions 2m × 2m. Finally, of this matrix, we only retain those rows that have
a Hamming weight of at least 2m−r. This is the generator matrix of the Reed-Muller code
with parameters m and r. (Exercise: Verify that this matrix has dimension (1 +

(
m
1

)
+(

m
2

)
+ . . .+

(
m
r

)
)× 2m.)

Recently, a promising code construction called Polar Codes has been proposed. These
codes are closely related to Reed-Muller codes. The difference is that instead of retaining
those rows that have a Hamming weight of at least 2m−r, a more involved selection of rows
is carried out, based on information measures.

The (23,12) Golay Code

This code was invented by Marcel J. E. Golay, born on May 3, 1902, in Neuchâtel, Switzer-
land. It has many special properties. The basics are:

Code Length: N = 23

Code Dimension: K = 12

Minimum distance: dH,min = 7.

A generator matrix for this code is given by

G =
(
I12 A

)
, (6.62)

where I12 denotes the identity matrix of dimension 12× 12 and A is the matrix

A =



1 1 1 1 1 1 1 1 1 1 0
0 0 0 0 1 1 1 1 1 1 1
0 1 1 1 0 0 0 1 1 1 1
1 0 1 1 0 1 1 0 0 1 1
1 1 0 1 1 0 1 0 1 0 1
1 1 1 0 1 1 0 1 0 0 1
0 0 1 1 1 1 0 0 1 0 1
0 1 0 1 0 1 1 1 0 0 1
0 1 1 0 1 0 1 0 0 1 1
1 0 0 1 1 0 0 1 0 1 1
1 0 1 0 0 0 1 1 1 0 1
1 1 0 0 0 1 0 0 1 1 1



(6.63)
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