Solution de la série 6
Traitement Quantique de I'Information

Exercice 1

1. One has to show that (B, | By y) = 63.2/0,,,. We show it explicitly for two cases :

(Bool Bo) = 5({00] + {11])(100) + [11))
= 2((00] 00) + {00] 1) + (1] 00) + {11] 11)).
Now we have

{00] 00) = (0[ 0) 0] 0) = 1, {00] 11) = (0] 1) (0] 1)
(11]00) = (1] 0) (1] 0) = 0, (11 11) = (1] 1) (1] 1)

0,
1.
Thus we get that (Byg| Boo) = 3(1+0+ 0+ 1) = 1. Now let us consider

(Buol Bon) = 5((00] + {11])(Jo1) + [10))
- %(<00| 01 + (00| 10) + (11] 01) + (11 10))
= 2(04+0+0+0)=0
2. The proof is by contradiction. Suppose there exist a;, b; and as, by such that
| Boo) = (a1 |0) + b1 (1)) ® (a2 [0) + b2 |1)).
Then we must have
%(;oo) +111)) = axas |00) + azbs [01) + brag [10) + asbs [11).

Since the states |00) ,|01),[10),|11) form a basis one has

1 1
5 = ai10as9, 5 == blbg, Cllbg = 07 b1a2 = 0.

The third equality indicates that either a; = 0 or by = 0 (or both). If a; = 0 we
get a contradiction with the first equation. If on the other hand b, = 0, we get a
contradiction with the second one. Therefore, there does not exist |¢;) and |t)) such
that | Bgo) can be written as |1)1) ® |1)9). Therefore, By is entangled.
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3. We have

[7) @ [7) = (cos(7) [0) + sin(7) [1)) © (cos(7) [0) + sin(v) [1))
= cos?(7y) |00) + cos(7) sin(y) [01) + sin(7) cos(7) [10) + sin®(y) [11) .

Similarly,

[71) @ |7.) = cos?(71) [00) + cos(yy ) sin(y1) [01) + sin(y.) cos(yL) [10) + sin® () [11) .

A picture shows that cos(y,) = —sin(y) and sin(y,) = cos(y) (this also allows
to check that (y|~.) = 0). Therefore, cos?(v,) = sin*(y), sin®(y,) = cos?(y) and
cos(y, ) sin(y,) = — cos(y) sin(y). We find that

) ® 1) + [71) @ [y1) = (cos(7) + sin*(7)) |00) + (sin*(7) + cos®(v)) [11) ,
and the terms |01) and |10) cancel. Finally,

=) 1) + 1) @ b)) = (100) + (1) = Bro).

Sl
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4. From the rule for the tensor product
a (C) ac
@) o (€)= d | ad
b d) . | be ]’
()
1 0
- men=(y)s(})-

- omen=(])e(])-

O R OO OO o
_ o oo O o~ Oo




Thus,

1
1 0
| Boo) = 7(|OO>+|11>) NAR
1
0
B 01 10 1 1
|Bor) = 7(| ) +110)) = VAR
0
1
1 0
|Bio) = 7(\0@ |11>):E K
-1
0
1 1
|Bi1) = 7(|01> |1O>):E q
0

Exercice 2
1. By definition of the tensor product :
(HeI)|x)®y) = Hl|z)@1y) = Hlz) @y) .

1 1

— L
Also, one can use that H = 7 (1 1

) to show that always

H|x>—7<|o> (—1)* 1).
Thus,
He D) |2)® |y) = %um ® 1)+ (~1)% 1) ® |y)).

Note that this state is not entangled. Indeed (H ® I) |z) ® |y) = H|z) ® |y) which is
a tensor product state.

Now we apply ‘CNOT". By linearity, we can apply it to each term separately. Thus,

(CNOT)(H®I)I$>®I?J>—7((CNOT)|0>®I?J> (=D*(CNOT) 1) @ [y))

= E(I()) ®y)+ (1) [Helye 1))
= |Bﬂcy>'
2. Let us first start with H ® I. We use the rule
ac af be bf

a b o (© f\ _[ag ah bg O
c d g h) |ce cf de df |’
cg ch dg dh

*)



Thus we have

Al Aol 5

For (CNOT), we use the definition :

O = O =
—_— O = O
|
—

(CNOT) |z) @ |y) = |2) @ |y ® x)
which implies that the matrix elements are
(@'Y | CNOT |zy) = (o, y|z,y ® @) = (2’| ) (V| Y ® @) = b2 Oy -

We obtain the following table with columns zy and rows =’y :

00 01 10 11
cof1 0 0 0
0140 1 0 0
100 0 0 1
110 0 1 0
For the matrix product (CNOT)(H ® I), we find that

(CNOTYH® I = % (é S{) G —Il>

(1
V2 \X X))
01
where X = (1 0).Thus,

10 1 O
1 o1 0 1
(C’NOT)(H@I)_E 01 0 -1
1 0 -1 0

One can check that for example |By) = (CNOT)(H ® I)|0) ® |0). Finally to check
the unitarity, we have to check that UUT = UTU = I for U = H ® I, CNOT and
(CNOT)(H ® I). We leave this to the reader.

. Let U = (CNOT)(H ® I). We have
|B;L’y> =U |[E> ® |y> ) <Bac’y’| = <ZL',| ® <y/| UT'
Thus,

(Bury| Boy) = (2’| @ (/| UTU |) @ |y)
= (@@ Y1) ® |y)
= (x’| x> (y/] ?J> = 5rx’5yy”



Exercice 3

1. The possible outcomes of the measurement are simply the basis states. Let us compute
the probability that the first basis state |o) ® |5) is the outcome. According to the
measurement, principle :

2

Prob(a, 8) = |({a| ® (5])(|Boo))

Using |Boy) = \/ii|oz> ® |a) + \%|O@) ® |ay) (see exercise 1 and choose v = a) we get

Prob(a, ) :%|(a|a><ﬁ|a> +(alas)(BlaL)?
= %(cos(a —B))?

For the three other probabilities we have

—_

Prob(a, B1) = 5 (cos(a — §.))? = 5(sin(a — )

— DN

Prob(a,, 8) = %(COS(OQ —3))? = = (sin(a — 5))?

[\]

Probla, £.) = 5(cos(a — 5.))? = 5(cos(a — )

2. In her lab Alice observes |a) ou |, ). Using the results above (with (cos? +sin® = 1)
we find the probabilities

Prob(a) = Prob(a, 4) + Prob(a, 8.) = %

et
1
Prob(a, ) = Prob(a, ) + Prob(a,,5,) = 5

De méme Bob dans son labo observe |5) ou |3,) avec probabilités 1/2. So from the
perspective of Alice and Bob each quantum bit is completely random !

3. First only Alice measures. The resulting states are calculated by acting with the
projectors on |By) :

(la)(al © D)|Bow),  (lar){aL] @ I)[Bo)

Using the formula of exercise 1 for v = a we find the two states

) ® lay, ) ® lal)

| |
— | —|a
V2 V2o
Since we should normalise the states we must discard the 1/ V2 in these formulas.
The probabilities are

S| S |

(] ® {al)(Buo))| =5, Mmg®@gm%m !
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Now Bob measures. Thus the states just obtained after Alice’s measurement are pro-
jected with the projectors I ® |5)(5| or I & |BL){B1].

— If after Alice’s measurement the state is |o) ® |«) (occurs with prob 1/2) when Bob
measures the state becomes (proportional to)

(I2[B)(B)(|0)@]a)) = (Ble) |e)®@[8),  (IS|BL(BL(le)®la)) = (Bila) |a)@]|BL)
with probabilities

1 2 1 2 1 o L. 2
Slal® (Bla) @ ) = S(cos(a— B)7. 5lal® (Bula) @ |a) P = S (sin(a - 5))

— If after Alice’s measurement the state is | ) ® |y ) (occurs with prob 1/2) when
Bob measures the state becomes (proportional to)

I|B) (B (len)@lar)) = (Blar) len@lB),  IS[BL{BLD)(ar)@lar)) = (BLlaL) [en)@|61;

with probabilities
Slaleiflan)elan) = Seina—p)P,  slauls(Bilanela)l = 5(cs@—p)?

. The previous question implies that when Alice does the measurement first and Bob
after :

— Alice got the result |a) or |a, ) with prob 1/2.
— Bob got in his lab the result |3) with probability

%(cos(oz —B))* + %(Sin(a —B))?* = %
or the result |5, ) with probability
S(sin(a— 7)) + 5(cos(a — ) = 5

. Summarising, this exercise has shown that the observations of Alice and Bob in each
lab are the same wether the measurements are done simultaneously or in a series.
With no communication between Alice and Bob the net result is :

— Alice chooses a measurement basis {|a), |a))} and gets the outcomes |a) or |a )
with probability 1/2;
— Bob chooses a measurement basis {|3),|5.)} and gets the outcomes |3) or |5,)
with probability 1/2.

With no communication the entanglement (intrication) is never detectable by local
operations. Quantum bits in each separate lab appear to Alice and Bob as completely
disordered or random.



