
Solution de la série 6
Traitement Quantique de l’Information

Exercice 1

1. One has to show that ⟨Bx,y| Bx′,y′⟩ = δx,x′δy,y′ . We show it explicitly for two cases :

⟨B00| B00⟩ =
1

2
(⟨00|+ ⟨11|)(|00⟩+ |11⟩)

=
1

2
(⟨00| 00⟩+ ⟨00| 11⟩+ ⟨11| 00⟩+ ⟨11| 11⟩).

Now we have

⟨00| 00⟩ = ⟨0| 0⟩ ⟨0| 0⟩ = 1, ⟨00| 11⟩ = ⟨0| 1⟩ ⟨0| 1⟩ = 0,

⟨11| 00⟩ = ⟨1| 0⟩ ⟨1| 0⟩ = 0, ⟨11| 11⟩ = ⟨1| 1⟩ ⟨1| 1⟩ = 1.

Thus we get that ⟨B00| B00⟩ = 1
2
(1 + 0 + 0 + 1) = 1. Now let us consider

⟨B00| B01⟩ =
1

2
(⟨00|+ ⟨11|)(|01⟩+ |10⟩)

=
1

2
(⟨00| 01⟩+ ⟨00| 10⟩+ ⟨11| 01⟩+ ⟨11| 10⟩)

=
1

2
(0 + 0 + 0 + 0) = 0.

2. The proof is by contradiction. Suppose there exist a1, b1 and a2, b2 such that

|B00⟩ = (a1 |0⟩+ b1 |1⟩)⊗ (a2 |0⟩+ b2 |1⟩).

Then we must have

1

2
(|00⟩+ |11⟩) = a1a2 |00⟩+ a1b2 |01⟩+ b1a2 |10⟩+ a2b2 |11⟩ .

Since the states |00⟩ , |01⟩ , |10⟩ , |11⟩ form a basis one has

1

2
= a1a2,

1

2
= b1b2, a1b2 = 0, b1a2 = 0.

The third equality indicates that either a1 = 0 or b2 = 0 (or both). If a1 = 0 we
get a contradiction with the first equation. If on the other hand b2 = 0, we get a
contradiction with the second one. Therefore, there does not exist |ψ1⟩ and |ψ2⟩ such
that |B00⟩ can be written as |ψ1⟩ ⊗ |ψ2⟩. Therefore, B00 is entangled.
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3. We have

|γ⟩ ⊗ |γ⟩ = (cos(γ) |0⟩+ sin(γ) |1⟩)⊗ (cos(γ) |0⟩+ sin(γ) |1⟩)
= cos2(γ) |00⟩+ cos(γ) sin(γ) |01⟩+ sin(γ) cos(γ) |10⟩+ sin2(γ) |11⟩ .

Similarly,

|γ⊥⟩ ⊗ |γ⊥⟩ = cos2(γ⊥) |00⟩+ cos(γ⊥) sin(γ⊥) |01⟩+ sin(γ⊥) cos(γ⊥) |10⟩+ sin2(γ⊥) |11⟩ .

A picture shows that cos(γ⊥) = − sin(γ) and sin(γ⊥) = cos(γ) (this also allows
to check that ⟨γ| γ⊥⟩ = 0). Therefore, cos2(γ⊥) = sin2(γ), sin2(γ⊥) = cos2(γ) and
cos(γ⊥) sin(γ⊥) = − cos(γ) sin(γ). We find that

|γ⟩ ⊗ |γ⟩+ |γ⊥⟩ ⊗ |γ⊥⟩ = (cos2(γ) + sin2(γ)) |00⟩+ (sin2(γ) + cos2(γ)) |11⟩ ,

and the terms |01⟩ and |10⟩ cancel. Finally,

1√
2
(|γ⟩ ⊗ |γ⟩+ |γ⊥⟩ ⊗ |γ⊥⟩) =

1√
2
(|00⟩+ |11⟩) = |B00⟩ .

4. From the rule for the tensor product

(
a
b

)
⊗
(
c
d

)
=


a

(
c
d

)

b

(
c
d

)
 =


ac
ad
bc
bd

 ,

we get for the basis states

|0⟩ ⊗ |0⟩ =
(
1
0

)
⊗

(
1
0

)
=


1
0
0
0

 , |0⟩ ⊗ |1⟩ =
(
1
0

)
⊗
(
0
1

)
=


0
1
0
0

 ,

|1⟩ ⊗ |0⟩ =
(
0
1

)
⊗

(
1
0

)
=


0
0
1
0

 , |1⟩ ⊗ |1⟩ =
(
0
1

)
⊗
(
0
1

)
=


0
0
0
1

 .
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Thus,

|B00⟩ =
1√
2
(|00⟩+ |11⟩) = 1√

2


1
0
0
1

 ,

|B01⟩ =
1√
2
(|01⟩+ |10⟩) = 1√

2


0
1
1
0

 ,

|B10⟩ =
1√
2
(|00⟩ − |11⟩) = 1√

2


1
0
0
−1

 ,

|B11⟩ =
1√
2
(|01⟩ − |10⟩) = 1√

2


0
1
−1
0

 .

Exercice 2

1. By definition of the tensor product :

(H ⊗ I) |x⟩ ⊗ |y⟩ = H |x⟩ ⊗ I |y⟩ = H |x⟩ ⊗ |y⟩ .

Also, one can use that H = 1√
2

(
1 1
1 −1

)
to show that always

H |x⟩ = 1√
2
(|0⟩+ (−1)x |1⟩).

Thus,

(H ⊗ I) |x⟩ ⊗ |y⟩ = 1√
2
(|0⟩ ⊗ |y⟩+ (−1)x |1⟩ ⊗ |y⟩).

Note that this state is not entangled. Indeed (H ⊗ I) |x⟩ ⊗ |y⟩ = H|x⟩ ⊗ |y⟩ which is
a tensor product state.

Now we apply ‘CNOT’. By linearity, we can apply it to each term separately. Thus,

(CNOT )(H ⊗ I) |x⟩ ⊗ |y⟩ = 1√
2
((CNOT ) |0⟩ ⊗ |y⟩+ (−1)x(CNOT ) |1⟩ ⊗ |y⟩)

=
1√
2
(|0⟩ ⊗ |y⟩+ (−1)x |1⟩ ⊗ |y ⊕ 1⟩)

= |Bxy⟩ .

2. Let us first start with H ⊗ I. We use the rule

(
a b
c d

)
⊗
(
e f
g h

)
=


ae af be bf
ag ah bg bh
ce cf de df
cg ch dg dh

 ,
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Thus we have

1√
2

(
1 1
1 −1

)
⊗

(
1 0
0 1

)
=

1√
2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

 .

For (CNOT), we use the definition :

(CNOT ) |x⟩ ⊗ |y⟩ = |x⟩ ⊗ |y ⊕ x⟩ ,

which implies that the matrix elements are

⟨x′y′|CNOT |xy⟩ = ⟨x′, y′|x, y ⊗ x⟩ = ⟨x′| x⟩ ⟨y′| y ⊕ x⟩ = δxx′δy⊕x,y′ .

We obtain the following table with columns xy and rows x′y′ :

00 01 10 11

00 1 0 0 0
01 0 1 0 0
10 0 0 0 1
11 0 0 1 0

For the matrix product (CNOT )(H ⊗ I), we find that

(CNOT )H ⊗ I =
1√
2

(
I 0
0 X

)(
I I
I −I

)
=

1√
2

(
I I
X −X

)
,

where X =

(
0 1
1 0

)
. Thus,

(CNOT )(H ⊗ I) =
1√
2


1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0

 .

One can check that for example |B00⟩ = (CNOT )(H ⊗ I) |0⟩ ⊗ |0⟩. Finally to check
the unitarity, we have to check that UU † = U †U = I for U = H ⊗ I, CNOT and
(CNOT )(H ⊗ I). We leave this to the reader.

3. Let U = (CNOT )(H ⊗ I). We have

|Bxy⟩ = U |x⟩ ⊗ |y⟩ , ⟨Bx′y′| = ⟨x′| ⊗ ⟨y′|U †.

Thus,

⟨Bx′y′| Bxy⟩ = ⟨x′| ⊗ ⟨y′|U †U |x⟩ ⊗ |y⟩
= ⟨x′| ⊗ ⟨y′| I |x⟩ ⊗ |y⟩
= ⟨x′| x⟩ ⟨y′| y⟩ = δxx′δyy′ .

4



Exercice 3

1. The possible outcomes of the measurement are simply the basis states. Let us compute
the probability that the first basis state |α⟩ ⊗ |β⟩ is the outcome. According to the
measurement principle :

Prob(α, β) =

∣∣∣∣(⟨α| ⊗ ⟨β|)(|B00⟩)
∣∣∣∣2

Using |B00⟩ = 1√
2
|α⟩ ⊗ |α⟩+ 1√

2
|α⊥⟩ ⊗ |α⊥⟩ (see exercise 1 and choose γ = α) we get

Prob(α, β) =
1

2
|⟨α|α⟩⟨β|α⟩+ ⟨α|α⊥⟩⟨β|α⊥⟩|2

=
1

2
(cos(α− β))2

For the three other probabilities we have

Prob(α, β⊥) =
1

2
(cos(α− β⊥))

2 =
1

2
(sin(α− β))2

Prob(α⊥, β) =
1

2
(cos(α⊥ − β))2 =

1

2
(sin(α− β))2

Prob(α⊥, β⊥) =
1

2
(cos(α⊥ − β⊥))

2 =
1

2
(cos(α− β))2

2. In her lab Alice observes |α⟩ ou |α⊥⟩. Using the results above (with (cos2 +sin2 = 1)
we find the probabilities

Prob(α) = Prob(α, β) + Prob(α, β⊥) =
1

2

et

Prob(α⊥) = Prob(α⊥, β) + Prob(α⊥, β⊥) =
1

2

De même Bob dans son labo observe |β⟩ ou |β⊥⟩ avec probabilités 1/2. So from the
perspective of Alice and Bob each quantum bit is completely random !

3. First only Alice measures. The resulting states are calculated by acting with the
projectors on |B00⟩ :

(|α⟩⟨α| ⊗ I)|B00⟩, (|α⊥⟩⟨α⊥| ⊗ I)|B00⟩

Using the formula of exercise 1 for γ = α we find the two states

1√
2
|α⟩ ⊗ |α⟩, 1√

2
|α⊥⟩ ⊗ |α⊥⟩

Since we should normalise the states we must discard the 1/
√
2 in these formulas.

The probabilities are∣∣∣∣(⟨α| ⊗ ⟨α|)(|B00⟩)
∣∣∣∣2 = 1

2
,

∣∣∣∣(⟨α⊥| ⊗ ⟨α⊥|)(|B00⟩)
∣∣∣∣2 = 1

2
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Now Bob measures. Thus the states just obtained after Alice’s measurement are pro-
jected with the projectors I ⊗ |β⟩⟨β| or I ⊗ |β⊥⟩⟨β⊥|.
– If after Alice’s measurement the state is |α⟩⊗ |α⟩ (occurs with prob 1/2) when Bob
measures the state becomes (proportional to)

(I⊗|β⟩⟨β|)(|α⟩⊗|α⟩) = ⟨β|α⟩ |α⟩⊗|β⟩, (I⊗|β⊥⟩⟨β⊥|)(|α⟩⊗|α⟩) = ⟨β⊥|α⟩ |α⟩⊗|β⊥⟩

with probabilities

1

2
|⟨α| ⊗ ⟨β|α⟩ ⊗ |α⟩|2 = 1

2
(cos(α− β))2,

1

2
|⟨α| ⊗ ⟨β⊥|α⟩ ⊗ |α⟩|2 = 1

2
(sin(α− β))2

– If after Alice’s measurement the state is |α⊥⟩ ⊗ |α⊥⟩ (occurs with prob 1/2) when
Bob measures the state becomes (proportional to)

(I⊗|β⟩⟨β|)(|α⊥⟩⊗|α⊥⟩) = ⟨β|α⊥⟩ |α⊥⟩⊗|β⟩, (I⊗|β⊥⟩⟨β⊥|)(|α⊥⟩⊗|α⊥⟩) = ⟨β⊥|α⊥⟩ |α⊥⟩⊗|β⊥⟩

with probabilities

1

2
|⟨α⊥|⊗⟨β|α⊥⟩⊗|α⊥⟩|2 =

1

2
(sin(α−β))2, 1

2
|⟨α⊥|⊗⟨β⊥|α⊥⟩⊗|α⊥⟩|2 =

1

2
(cos(α−β))2

4. The previous question implies that when Alice does the measurement first and Bob
after :

– Alice got the result |α⟩ or |α⊥⟩ with prob 1/2.

– Bob got in his lab the result |β⟩ with probability

1

2
(cos(α− β))2 +

1

2
(sin(α− β))2 =

1

2

or the result |β⊥⟩ with probability

1

2
(sin(α− β))2 +

1

2
(cos(α− β))2 =

1

2

5. Summarising, this exercise has shown that the observations of Alice and Bob in each
lab are the same wether the measurements are done simultaneously or in a series.
With no communication between Alice and Bob the net result is :

– Alice chooses a measurement basis {|α⟩, |α⊥⟩} and gets the outcomes |α⟩ or |α⊥⟩
with probability 1/2 ;

– Bob chooses a measurement basis {|β⟩, |β⊥⟩} and gets the outcomes |β⟩ or |β⊥⟩
with probability 1/2.

With no communication the entanglement (intrication) is never detectable by local
operations. Quantum bits in each separate lab appear to Alice and Bob as completely
disordered or random.
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