Solution de la série 6

Traitement Quantique de l'Information

Exercice 1

1. One has to show that $\left\langle B_{x, y} \mid B_{x^{\prime}, y^{\prime}}\right\rangle=\delta_{x, x^{\prime}} \delta_{y, y^{\prime}}$. We show it explicitly for two cases :

$$
\begin{aligned}
\left\langle B_{00} \mid B_{00}\right\rangle & =\frac{1}{2}(\langle 00|+\langle 11|)(|00\rangle+|11\rangle) \\
& =\frac{1}{2}(\langle 00 \mid 00\rangle+\langle 00 \mid 11\rangle+\langle 11 \mid 00\rangle+\langle 11 \mid 11\rangle) .
\end{aligned}
$$

Now we have

$$
\begin{aligned}
& \langle 00 \mid 00\rangle=\langle 0 \mid 0\rangle\langle 0 \mid 0\rangle=1,\langle 00 \mid 11\rangle=\langle 0 \mid 1\rangle\langle 0 \mid 1\rangle=0, \\
& \langle 11 \mid 00\rangle=\langle 1 \mid 0\rangle\langle 1 \mid 0\rangle=0,\langle 11 \mid 11\rangle=\langle 1 \mid 1\rangle\langle 1 \mid 1\rangle=1 .
\end{aligned}
$$

Thus we get that $\left\langle B_{00} \mid B_{00}\right\rangle=\frac{1}{2}(1+0+0+1)=1$. Now let us consider

$$
\begin{aligned}
\left\langle B_{00} \mid B_{01}\right\rangle & =\frac{1}{2}(\langle 00|+\langle 11|)(|01\rangle+|10\rangle) \\
& =\frac{1}{2}(\langle 00 \mid 01\rangle+\langle 00 \mid 10\rangle+\langle 11 \mid 01\rangle+\langle 11 \mid 10\rangle) \\
& =\frac{1}{2}(0+0+0+0)=0
\end{aligned}
$$

2. The proof is by contradiction. Suppose there exist a_{1}, b_{1} and a_{2}, b_{2} such that

$$
\left|B_{00}\right\rangle=\left(a_{1}|0\rangle+b_{1}|1\rangle\right) \otimes\left(a_{2}|0\rangle+b_{2}|1\rangle\right)
$$

Then we must have

$$
\frac{1}{2}(|00\rangle+|11\rangle)=a_{1} a_{2}|00\rangle+a_{1} b_{2}|01\rangle+b_{1} a_{2}|10\rangle+a_{2} b_{2}|11\rangle
$$

Since the states $|00\rangle,|01\rangle,|10\rangle,|11\rangle$ form a basis one has

$$
\frac{1}{2}=a_{1} a_{2}, \frac{1}{2}=b_{1} b_{2}, a_{1} b_{2}=0, b_{1} a_{2}=0
$$

The third equality indicates that either $a_{1}=0$ or $b_{2}=0$ (or both). If $a_{1}=0$ we get a contradiction with the first equation. If on the other hand $b_{2}=0$, we get a contradiction with the second one. Therefore, there does not exist $\left|\psi_{1}\right\rangle$ and $\left|\psi_{2}\right\rangle$ such that $\left|B_{00}\right\rangle$ can be written as $\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle$. Therefore, B_{00} is entangled.
3. We have

$$
\begin{aligned}
|\gamma\rangle \otimes|\gamma\rangle & =(\cos (\gamma)|0\rangle+\sin (\gamma)|1\rangle) \otimes(\cos (\gamma)|0\rangle+\sin (\gamma)|1\rangle) \\
& =\cos ^{2}(\gamma)|00\rangle+\cos (\gamma) \sin (\gamma)|01\rangle+\sin (\gamma) \cos (\gamma)|10\rangle+\sin ^{2}(\gamma)|11\rangle .
\end{aligned}
$$

Similarly,
$\left|\gamma_{\perp}\right\rangle \otimes\left|\gamma_{\perp}\right\rangle=\cos ^{2}\left(\gamma_{\perp}\right)|00\rangle+\cos \left(\gamma_{\perp}\right) \sin \left(\gamma_{\perp}\right)|01\rangle+\sin \left(\gamma_{\perp}\right) \cos \left(\gamma_{\perp}\right)|10\rangle+\sin ^{2}\left(\gamma_{\perp}\right)|11\rangle$.

A picture shows that $\cos \left(\gamma_{\perp}\right)=-\sin (\gamma)$ and $\sin \left(\gamma_{\perp}\right)=\cos (\gamma)$ (this also allows to check that $\left\langle\gamma \mid \gamma_{\perp}\right\rangle=0$). Therefore, $\cos ^{2}\left(\gamma_{\perp}\right)=\sin ^{2}(\gamma), \sin ^{2}\left(\gamma_{\perp}\right)=\cos ^{2}(\gamma)$ and $\cos \left(\gamma_{\perp}\right) \sin \left(\gamma_{\perp}\right)=-\cos (\gamma) \sin (\gamma)$. We find that

$$
|\gamma\rangle \otimes|\gamma\rangle+\left|\gamma_{\perp}\right\rangle \otimes\left|\gamma_{\perp}\right\rangle=\left(\cos ^{2}(\gamma)+\sin ^{2}(\gamma)\right)|00\rangle+\left(\sin ^{2}(\gamma)+\cos ^{2}(\gamma)\right)|11\rangle,
$$

and the terms $|01\rangle$ and $|10\rangle$ cancel. Finally,

$$
\frac{1}{\sqrt{2}}\left(|\gamma\rangle \otimes|\gamma\rangle+\left|\gamma_{\perp}\right\rangle \otimes\left|\gamma_{\perp}\right\rangle\right)=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=\left|B_{00}\right\rangle .
$$

4. From the rule for the tensor product

$$
\binom{a}{b} \otimes\binom{c}{d}=\binom{a\binom{c}{d}}{b\binom{c}{d}}=\left(\begin{array}{l}
a c \\
a d \\
b c \\
b d
\end{array}\right),
$$

we get for the basis states

$$
\begin{array}{ll}
|0\rangle \otimes|0\rangle=\binom{1}{0} \otimes\binom{1}{0}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right), & |0\rangle \otimes|1\rangle=\binom{1}{0} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right), \\
|1\rangle \otimes|0\rangle=\binom{0}{1} \otimes\binom{1}{0}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right), & |1\rangle \otimes|1\rangle=\binom{0}{1} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) .
\end{array}
$$

Thus,

$$
\begin{aligned}
& \left|B_{00}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right), \\
& \left|B_{01}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle)=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right), \\
& \left|B_{10}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle)=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right), \\
& \left|B_{11}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right) .
\end{aligned}
$$

Exercice 2

1. By definition of the tensor product:

$$
(H \otimes I)|x\rangle \otimes|y\rangle=H|x\rangle \otimes I|y\rangle=H|x\rangle \otimes|y\rangle .
$$

Also, one can use that $H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$ to show that always

$$
H|x\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{x}|1\rangle\right) .
$$

Thus,

$$
(H \otimes I)|x\rangle \otimes|y\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle \otimes|y\rangle+(-1)^{x}|1\rangle \otimes|y\rangle\right) .
$$

Note that this state is not entangled. Indeed $(H \otimes I)|x\rangle \otimes|y\rangle=H|x\rangle \otimes|y\rangle$ which is a tensor product state.
Now we apply 'CNOT'. By linearity, we can apply it to each term separately. Thus,

$$
\begin{aligned}
(C N O T)(H \otimes I)|x\rangle \otimes|y\rangle & =\frac{1}{\sqrt{2}}\left((C N O T)|0\rangle \otimes|y\rangle+(-1)^{x}(C N O T)|1\rangle \otimes|y\rangle\right) \\
& =\frac{1}{\sqrt{2}}\left(|0\rangle \otimes|y\rangle+(-1)^{x}|1\rangle \otimes|y \oplus 1\rangle\right) \\
& =\left|B_{x y}\right\rangle .
\end{aligned}
$$

2. Let us first start with $H \otimes I$. We use the rule

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \otimes\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)=\left(\begin{array}{llll}
a e & a f & b e & b f \\
a g & a h & b g & b h \\
c e & c f & d e & d f \\
c g & c h & d g & d h
\end{array}\right)
$$

Thus we have

$$
\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \otimes\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right)
$$

For (CNOT), we use the definition :

$$
(C N O T)|x\rangle \otimes|y\rangle=|x\rangle \otimes|y \oplus x\rangle,
$$

which implies that the matrix elements are

$$
\left\langle x^{\prime} y^{\prime}\right| C N O T|x y\rangle=\left\langle x^{\prime}, y^{\prime} \mid x, y \otimes x\right\rangle=\left\langle x^{\prime} \mid x\right\rangle\left\langle y^{\prime} \mid y \oplus x\right\rangle=\delta_{x x^{\prime}} \delta_{y \oplus x, y^{\prime}} .
$$

We obtain the following table with columns $x y$ and rows $x^{\prime} y^{\prime}$:

	00	01	10	11
00	1	0	0	0
01	0	1	0	0
10	0	0	0	1
11	0	0	1	0

For the matrix product $(C N O T)(H \otimes I)$, we find that

$$
\begin{aligned}
(C N O T) H \otimes I & =\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
I & 0 \\
0 & X
\end{array}\right)\left(\begin{array}{cc}
I & I \\
I & -I
\end{array}\right) \\
& =\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
I & I \\
X & -X
\end{array}\right),
\end{aligned}
$$

where $X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. Thus,

$$
(C N O T)(H \otimes I)=\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 1 & 0 & -1 \\
1 & 0 & -1 & 0
\end{array}\right)
$$

One can check that for example $\left|B_{00}\right\rangle=(C N O T)(H \otimes I)|0\rangle \otimes|0\rangle$. Finally to check the unitarity, we have to check that $U U^{\dagger}=U^{\dagger} U=I$ for $U=H \otimes I, C N O T$ and $(C N O T)(H \otimes I)$. We leave this to the reader.
3. Let $U=(C N O T)(H \otimes I)$. We have

$$
\left|B_{x y}\right\rangle=U|x\rangle \otimes|y\rangle,\left\langle B_{x^{\prime} y^{\prime}}\right|=\left\langle x^{\prime}\right| \otimes\left\langle y^{\prime}\right| U^{\dagger} .
$$

Thus,

$$
\begin{aligned}
\left\langle B_{x^{\prime} y^{\prime}} \mid B_{x y}\right\rangle & =\left\langle x^{\prime}\right| \otimes\left\langle y^{\prime}\right| U^{\dagger} U|x\rangle \otimes|y\rangle \\
& =\left\langle x^{\prime}\right| \otimes\left\langle y^{\prime}\right| I|x\rangle \otimes|y\rangle \\
& =\left\langle x^{\prime} \mid x\right\rangle\left\langle y^{\prime} \mid y\right\rangle=\delta_{x x^{\prime}} \delta_{y y^{\prime}} .
\end{aligned}
$$

Exercice 3

1. The possible outcomes of the measurement are simply the basis states. Let us compute the probability that the first basis state $|\alpha\rangle \otimes|\beta\rangle$ is the outcome. According to the measurement principle :

$$
\operatorname{Prob}(\alpha, \beta)=\mid\left.(\langle\alpha| \otimes\langle\beta|)\left(\left|B_{00}\right\rangle\right)\right|^{2}
$$

Using $\left|B_{00}\right\rangle=\frac{1}{\sqrt{2}}|\alpha\rangle \otimes|\alpha\rangle+\frac{1}{\sqrt{2}}\left|\alpha_{\perp}\right\rangle \otimes\left|\alpha_{\perp}\right\rangle$ (see exercise 1 and choose $\gamma=\alpha$) we get

$$
\begin{aligned}
\operatorname{Prob}(\alpha, \beta)= & \frac{1}{2}\left|\langle\alpha \mid \alpha\rangle\langle\beta \mid \alpha\rangle+\left\langle\alpha \mid \alpha_{\perp}\right\rangle\left\langle\beta \mid \alpha_{\perp}\right\rangle\right|^{2} \\
& =\frac{1}{2}(\cos (\alpha-\beta))^{2}
\end{aligned}
$$

For the three other probabilities we have

$$
\begin{aligned}
\operatorname{Prob}\left(\alpha, \beta_{\perp}\right) & =\frac{1}{2}\left(\cos \left(\alpha-\beta_{\perp}\right)\right)^{2}=\frac{1}{2}(\sin (\alpha-\beta))^{2} \\
\operatorname{Prob}\left(\alpha_{\perp}, \beta\right) & =\frac{1}{2}\left(\cos \left(\alpha_{\perp}-\beta\right)\right)^{2}=\frac{1}{2}(\sin (\alpha-\beta))^{2} \\
\operatorname{Prob}\left(\alpha_{\perp}, \beta_{\perp}\right) & =\frac{1}{2}\left(\cos \left(\alpha_{\perp}-\beta_{\perp}\right)\right)^{2}=\frac{1}{2}(\cos (\alpha-\beta))^{2}
\end{aligned}
$$

2. In her lab Alice observes $|\alpha\rangle$ ou $\left|\alpha_{\perp}\right\rangle$. Using the results above (with $\left(\cos ^{2}+\sin ^{2}=1\right)$ we find the probabilities

$$
\operatorname{Prob}(\alpha)=\operatorname{Prob}(\alpha, \beta)+\operatorname{Prob}\left(\alpha, \beta_{\perp}\right)=\frac{1}{2}
$$

et

$$
\operatorname{Prob}\left(\alpha_{\perp}\right)=\operatorname{Prob}\left(\alpha_{\perp}, \beta\right)+\operatorname{Prob}\left(\alpha_{\perp}, \beta_{\perp}\right)=\frac{1}{2}
$$

De même Bob dans son labo observe $|\beta\rangle$ ou $\left|\beta_{\perp}\right\rangle$ avec probabilités $1 / 2$. So from the perspective of Alice and Bob each quantum bit is completely random!
3. First only Alice measures. The resulting states are calculated by acting with the projectors on $\left|B_{00}\right\rangle$:

$$
(|\alpha\rangle\langle\alpha| \otimes I)\left|B_{00}\right\rangle, \quad\left(\left|\alpha_{\perp}\right\rangle\left\langle\alpha_{\perp}\right| \otimes I\right)\left|B_{00}\right\rangle
$$

Using the formula of exercise 1 for $\gamma=\alpha$ we find the two states

$$
\frac{1}{\sqrt{2}}|\alpha\rangle \otimes|\alpha\rangle, \quad \frac{1}{\sqrt{2}}\left|\alpha_{\perp}\right\rangle \otimes\left|\alpha_{\perp}\right\rangle
$$

Since we should normalise the states we must discard the $1 / \sqrt{2}$ in these formulas. The probabilities are

$$
\left\lvert\,\left.(\langle\alpha| \otimes\langle\alpha|)\left(\left|B_{00}\right\rangle\right)\right|^{2}=\frac{1}{2}\right., \quad \left\lvert\,\left.\left(\left\langle\alpha_{\perp}\right| \otimes\left\langle\alpha_{\perp}\right|\right)\left(\left|B_{00}\right\rangle\right)\right|^{2}=\frac{1}{2}\right.
$$

Now Bob measures. Thus the states just obtained after Alice's measurement are projected with the projectors $I \otimes|\beta\rangle\langle\beta|$ or $I \otimes\left|\beta_{\perp}\right\rangle\left\langle\beta_{\perp}\right|$.

- If after Alice's measurement the state is $|\alpha\rangle \otimes|\alpha\rangle$ (occurs with prob $1 / 2$) when Bob measures the state becomes (proportional to)
$(I \otimes|\beta\rangle\langle\beta|)(|\alpha\rangle \otimes|\alpha\rangle)=\langle\beta \mid \alpha\rangle|\alpha\rangle \otimes|\beta\rangle, \quad\left(I \otimes\left|\beta_{\perp}\right\rangle\left\langle\beta_{\perp}\right|\right)(|\alpha\rangle \otimes|\alpha\rangle)=\left\langle\beta_{\perp} \mid \alpha\right\rangle|\alpha\rangle \otimes\left|\beta_{\perp}\right\rangle$
with probabilities
$\left.\left.\frac{1}{2}|\langle\alpha| \otimes\langle\beta \mid \alpha\rangle \otimes| \alpha\right\rangle\left.\right|^{2}=\frac{1}{2}(\cos (\alpha-\beta))^{2}, \quad \frac{1}{2}\left|\langle\alpha| \otimes\left\langle\beta_{\perp} \mid \alpha\right\rangle \otimes\right| \alpha\right\rangle\left.\right|^{2}=\frac{1}{2}(\sin (\alpha-\beta))^{2}$
- If after Alice's measurement the state is $\left|\alpha_{\perp}\right\rangle \otimes\left|\alpha_{\perp}\right\rangle$ (occurs with prob $1 / 2$) when Bob measures the state becomes (proportional to)
$(I \otimes|\beta\rangle\langle\beta|)\left(\left|\alpha_{\perp}\right\rangle \otimes\left|\alpha_{\perp}\right\rangle\right)=\left\langle\beta \mid \alpha_{\perp}\right\rangle\left|\alpha_{\perp}\right\rangle \otimes|\beta\rangle, \quad\left(I \otimes\left|\beta_{\perp}\right\rangle\left\langle\beta_{\perp}\right|\right)\left(\left|\alpha_{\perp}\right\rangle \otimes\left|\alpha_{\perp}\right\rangle\right)=\left\langle\beta_{\perp} \mid \alpha_{\perp}\right\rangle\left|\alpha_{\perp}\right\rangle \otimes\left|\beta_{\perp}\right\rangle$
with probabilities
$\left.\left.\frac{1}{2}\left|\left\langle\alpha_{\perp}\right| \otimes\left\langle\beta \mid \alpha_{\perp}\right\rangle \otimes\right| \alpha_{\perp}\right\rangle\left.\right|^{2}=\frac{1}{2}(\sin (\alpha-\beta))^{2}, \quad \frac{1}{2}\left|\left\langle\alpha_{\perp}\right| \otimes\left\langle\beta_{\perp} \mid \alpha_{\perp}\right\rangle \otimes\right| \alpha_{\perp}\right\rangle\left.\right|^{2}=\frac{1}{2}(\cos (\alpha-\beta))^{2}$

4. The previous question implies that when Alice does the measurement first and Bob after :

- Alice got the result $|\alpha\rangle$ or $\left|\alpha_{\perp}\right\rangle$ with prob $1 / 2$.
- Bob got in his lab the result $|\beta\rangle$ with probability

$$
\frac{1}{2}(\cos (\alpha-\beta))^{2}+\frac{1}{2}(\sin (\alpha-\beta))^{2}=\frac{1}{2}
$$

or the result $\left|\beta_{\perp}\right\rangle$ with probability

$$
\frac{1}{2}(\sin (\alpha-\beta))^{2}+\frac{1}{2}(\cos (\alpha-\beta))^{2}=\frac{1}{2}
$$

5. Summarising, this exercise has shown that the observations of Alice and Bob in each lab are the same wether the measurements are done simultaneously or in a series. With no communication between Alice and Bob the net result is :

- Alice chooses a measurement basis $\left\{|\alpha\rangle,\left|\alpha_{\perp}\right\rangle\right\}$ and gets the outcomes $|\alpha\rangle$ or $\left|\alpha_{\perp}\right\rangle$ with probability $1 / 2$;
- Bob chooses a measurement basis $\left\{|\beta\rangle,\left|\beta_{\perp}\right\rangle\right\}$ and gets the outcomes $|\beta\rangle$ or $\left|\beta_{\perp}\right\rangle$ with probability $1 / 2$.

With no communication the entanglement (intrication) is never detectable by local operations. Quantum bits in each separate lab appear to Alice and Bob as completely disordered or random.

