
Solution de la série 4
Traitement Quantique de l’Information

Exercice 1 Heisenberg Uncertainty Principle.

1. Let |φλ〉 = (A+ iλB) |ψ〉. For λ ∈ R, let us define f(λ) = 〈ψλ| ψλ〉. It is clear that for
any λ ∈ R, f(λ) ≥ 0. We also have

f(λ) = 〈ψ| (A† − iλ∗B†)(A+ iλB) |ψ〉 = 〈ψ| (A− iλB)(A+ iλB) |ψ〉
= 〈ψ|A2 |ψ〉+ λ2 〈ψ|B2 |ψ〉+ iλ 〈ψ| (AB −BA) |ψ〉
= 〈ψ|A2 |ψ〉+ λ2 〈ψ|B2 |ψ〉+ λ 〈ψ| i[A,B] |ψ〉 ,

where we used the Hermitian property of A and B and the fact that λ ∈ R, thus
λ = λ∗. First one can simply check that the operator i[A,B] is a Hermitian operator
so the last term 〈ψ| i[A,B] |ψ〉 is real-valued so f(λ) is real-valued (this was already
clear). We see that f(λ) is a second order polynomial in λ ∈ R. As it is non-negative
for every value of λ, it results that its discriminant must be negative or zero (for a
quadratic equation ax2 + bx + c = 0 the discriminant is defined by ∆ = b2 − 4ac).
Hence, we get

| 〈ψ| [A,B] |ψ〉 |2 ≤ 4 〈ψ|A2 |ψ〉 〈ψ|B2 |ψ〉 .

As we assumed that the operators have zero mean, 〈ψ|A |ψ〉 = 〈ψ|B |ψ〉 = 0, we
obtain that

∆A∆B ≥
√
| 〈ψ| [A,B] |ψ〉 |2

4
=
| 〈ψ| [A,B] |ψ〉 |

2

2. This time we will use Cauchy-Schwartz inequality that | 〈a| b〉 |2 ≤ 〈a| a〉 〈b| b〉 for any
vector a and b in any Hilbert space. We also use the following inequality that for any
two complex numbers x and y, |x− y|2 ≤ 2(|x|2 + |y|2) which one can simply prove.

| 〈ψ| [A,B] |ψ〉 |2 = | 〈ψ|AB |ψ〉 − 〈ψ|BA |ψ〉 |2
(a)

≤ 2(| 〈ψ|AB |ψ〉 |2 + | 〈ψ|BA |ψ〉 |2)
(b)

≤ 2(〈ψ|AA† |ψ〉 〈ψ|B†B |ψ〉+ 〈ψ|BB† |ψ〉 〈ψ|A†A |ψ〉)
(c)
= 4 〈ψ|A2 |ψ〉 〈ψ|B2 |ψ〉 = 4(∆A)2(∆B)2,

where (a) follows from the inequality for complex numbers just mentioned, (b) fol-
lows by applying the Cauchy-Schwartz inequality and (c) follows from the Hermitian
property of A and B.
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3. For ψ = 1√
2
(|↑〉+ i |↓〉) and A = X and B = Z, we have

Ā = 〈ψ|A |ψ〉 =
1

2
(1 − i)

(
0 1
1 0

)(
1
i

)
= 0,

Ā2 = 〈ψ|A2 |ψ〉 =
1

2
(1 − i)

(
1 0
0 1

)(
1
i

)
= 1,

B̄ = 〈ψ|B |ψ〉 =
1

2
(1 − i)

(
1 0
0 −1

)(
1
i

)
= 0,

B̄2 = 〈ψ|B2 |ψ〉 =
1

2
(1 − i)

(
1 0
0 1

)(
1
i

)
= 1,

where for an operator C, C̄ denotes the average of the operator in state |ψ〉. Therefore,
we get

(∆A)2 = 〈ψ|A2 |ψ〉 − (〈ψ|A |ψ〉)2 = 1, (∆B)2 = 〈ψ|B2 |ψ〉 − (〈ψ|B |ψ〉)2 = 1.

We also know that the Pauli matrices satisfy the identity [X,Z] = 2

(
0 −1
1 0

)
. Thus,

we have

〈ψ| [A,B] |ψ〉 = 2
1

2
(1 − i)

(
0 −1
1 0

)(
1
i

)
= −2i,

which satisfies the uncertainty principle

(∆A)2(∆B)2 = 1 ≥ |2i|
2

4
=
| 〈ψ| [A,B] |ψ〉 |2

4
.

In particular, in this case the uncertainty inequality turns out to be an equality.

4. In this exercise, the state of a particle is represented by a function of coordinate
variable ψ(x). We also know how x̂ and p̂ operators transform this state function.
To find the commutator of x̂ and p̂, we take an arbitrary state function φ(x) and
investigate how [x̂, p̂] operates on it. Specifically we have

(p̂x̂)φ(x) = p̂(x̂φ(x)) = p̂(xφ(x)) = −i~ d
dx

(xφ(x)) = −i~(φ(x) + x
d

dx
φ(x)),

(x̂p̂)φ(x) = x̂(−i~ d
dx
φ(x)) = −i~x d

dx
φ(x),

which implies that [x̂, p̂]φ(x) = i~φ(x). As φ was an arbitrary function, it results that
[x̂, p̂] = i~.
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