Solution de la série 4
Traitement Quantique de l'Information

Exercice 1 Heisenberg Uncertainty Principle.

1. Let $\left|\phi_{\lambda}\right\rangle=(A+i \lambda B)|\psi\rangle$. For $\lambda \in \mathbb{R}$, let us define $f(\lambda)=\left\langle\psi_{\lambda} \mid \psi_{\lambda}\right\rangle$. It is clear that for any $\lambda \in \mathbb{R}, f(\lambda) \geq 0$. We also have

$$
\begin{aligned}
f(\lambda) & =\langle\psi|\left(A^{\dagger}-i \lambda^{*} B^{\dagger}\right)(A+i \lambda B)|\psi\rangle=\langle\psi|(A-i \lambda B)(A+i \lambda B)|\psi\rangle \\
& =\langle\psi| A^{2}|\psi\rangle+\lambda^{2}\langle\psi| B^{2}|\psi\rangle+i \lambda\langle\psi|(A B-B A)|\psi\rangle \\
& =\langle\psi| A^{2}|\psi\rangle+\lambda^{2}\langle\psi| B^{2}|\psi\rangle+\lambda\langle\psi| i[A, B]|\psi\rangle,
\end{aligned}
$$

where we used the Hermitian property of A and B and the fact that $\lambda \in \mathbb{R}$, thus $\lambda=\lambda^{*}$. First one can simply check that the operator $i[A, B]$ is a Hermitian operator so the last term $\langle\psi| i[A, B]|\psi\rangle$ is real-valued so $f(\lambda)$ is real-valued (this was already clear). We see that $f(\lambda)$ is a second order polynomial in $\lambda \in \mathbb{R}$. As it is non-negative for every value of λ, it results that its discriminant must be negative or zero (for a quadratic equation $a x^{2}+b x+c=0$ the discriminant is defined by $\Delta=b^{2}-4 a c$). Hence, we get

$$
|\langle\psi|[A, B]| \psi\rangle\left.\right|^{2} \leq 4\langle\psi| A^{2}|\psi\rangle\langle\psi| B^{2}|\psi\rangle .
$$

As we assumed that the operators have zero mean, $\langle\psi| A|\psi\rangle=\langle\psi| B|\psi\rangle=0$, we obtain that

$$
\Delta A \Delta B \geq \sqrt{\frac{|\langle\psi|[A, B]| \psi\rangle\left.\right|^{2}}{4}}=\frac{|\langle\psi|[A, B]| \psi\rangle \mid}{2}
$$

2. This time we will use Cauchy-Schwartz inequality that $|\langle a \mid b\rangle|^{2} \leq\langle a \mid a\rangle\langle b \mid b\rangle$ for any vector a and b in any Hilbert space. We also use the following inequality that for any two complex numbers x and $y,|x-y|^{2} \leq 2\left(|x|^{2}+|y|^{2}\right)$ which one can simply prove.

$$
\begin{aligned}
|\langle\psi|[A, B]| \psi\rangle\left.\right|^{2} & \left.\left.=|\langle\psi| A B| \psi\rangle-\left.\left.\langle\psi| B A|\psi\rangle\right|^{2} \stackrel{(a)}{\leq} 2(|\langle\psi| A B| \psi\rangle\right|^{2}+|\langle\psi| B A| \psi\right\rangle\left.\right|^{2}\right) \\
& \stackrel{(b)}{\leq} 2\left(\langle\psi| A A^{\dagger}|\psi\rangle\langle\psi| B^{\dagger} B|\psi\rangle+\langle\psi| B B^{\dagger}|\psi\rangle\langle\psi| A^{\dagger} A|\psi\rangle\right) \\
& \stackrel{(c)}{=} 4\langle\psi| A^{2}|\psi\rangle\langle\psi| B^{2}|\psi\rangle=4(\Delta A)^{2}(\Delta B)^{2}
\end{aligned}
$$

where (a) follows from the inequality for complex numbers just mentioned, (b) follows by applying the Cauchy-Schwartz inequality and (c) follows from the Hermitian property of A and B.
3. For $\psi=\frac{1}{\sqrt{2}}(|\uparrow\rangle+i|\downarrow\rangle)$ and $A=X$ and $B=Z$, we have

$$
\begin{aligned}
\bar{A} & =\langle\psi| A|\psi\rangle=\frac{1}{2}\left(\begin{array}{ll}
1 & -i
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{1}{i}=0, \\
\bar{A}^{2} & =\langle\psi| A^{2}|\psi\rangle=\frac{1}{2}\left(\begin{array}{ll}
1 & -i
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{1}{i}=1, \\
\bar{B} & =\langle\psi| B|\psi\rangle=\frac{1}{2}\left(\begin{array}{ll}
1 & -i
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{1}{i}=0, \\
\bar{B}^{2} & =\langle\psi| B^{2}|\psi\rangle=\frac{1}{2}\left(\begin{array}{ll}
1 & -i
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)\binom{1}{i}=1,
\end{aligned}
$$

where for an operator C, \bar{C} denotes the average of the operator in state $|\psi\rangle$. Therefore, we get

$$
(\Delta A)^{2}=\langle\psi| A^{2}|\psi\rangle-(\langle\psi| A|\psi\rangle)^{2}=1,(\Delta B)^{2}=\langle\psi| B^{2}|\psi\rangle-(\langle\psi| B|\psi\rangle)^{2}=1 .
$$

We also know that the Pauli matrices satisfy the identity $[X, Z]=2\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$. Thus, we have

$$
\langle\psi|[A, B]|\psi\rangle=2 \frac{1}{2}\left(\begin{array}{ll}
1 & -i
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\binom{1}{i}=-2 i,
$$

which satisfies the uncertainty principle

$$
(\Delta A)^{2}(\Delta B)^{2}=1 \geq \frac{|2 i|^{2}}{4}=\frac{|\langle\psi|[A, B]| \psi\rangle\left.\right|^{2}}{4} .
$$

In particular, in this case the uncertainty inequality turns out to be an equality.
4. In this exercise, the state of a particle is represented by a function of coordinate variable $\psi(x)$. We also know how \hat{x} and \hat{p} operators transform this state function. To find the commutator of \hat{x} and \hat{p}, we take an arbitrary state function $\phi(x)$ and investigate how $[\hat{x}, \hat{p}]$ operates on it. Specifically we have

$$
\begin{aligned}
& (\hat{p} \hat{x}) \phi(x)=\hat{p}(\hat{x} \phi(x))=\hat{p}(x \phi(x))=-i \hbar \frac{d}{d x}(x \phi(x))=-i \hbar\left(\phi(x)+x \frac{d}{d x} \phi(x)\right), \\
& (\hat{x} \hat{p}) \phi(x)=\hat{x}\left(-i \hbar \frac{d}{d x} \phi(x)\right)=-i \hbar x \frac{d}{d x} \phi(x)
\end{aligned}
$$

which implies that $[\hat{x}, \hat{p}] \phi(x)=i \hbar \phi(x)$. As ϕ was an arbitrary function, it results that $[\hat{x}, \hat{p}]=i \hbar$.

