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Preface

Draft of course notes





Part I

Quantum Mechanics and
Quantum Bits





1 Experiments with light

At the beginning of the 20th century a major change of paradigm took place

in our understanding of the laws of physics. This revolution was triggered by a

host of experimental discoveries which lead to a major revision of our concepts

of particle, wave and measurements of observables such as for example position,

velocity, magnetic moment. The quantum theory that emerged is today the best

tested theory of physical phenomena. The classical laws of physics are seen as a

limiting case of quantum laws, that are valid when quantum effects can be ne-

glected. This is the case for a wide range of phenomena which roughly speaking

are macroscopic phenomena for which Newton’s (or perhaps relativistic) laws

of motion and Maxwell equations are adequate. Quantum effects cannot be ne-

glected when we want to describe microscopic phenomena. Note however that

macroscopic quantum phenomena also exist and the borderline between classical

and quantum behaviours is a deep, subtle and not totally solved problem. In

any case, quantum theory explains the chemical bond (is thus at the basis of

chemistry) it explains the structure of the atom and the periodic table of ele-

ments, and is the basis for nuclear, particle and high energy physics. Quantum

mechanics is also necessary to explain many properties of condensed matter for

example metals, semi-conductors, magnets, superconductors, superfluids. Quan-

tum mechanics is necessary to explain the interaction of matter and light.

Quantum mechanics was largely discovered by studying the interaction of mat-

ter with light. The early experiments of the 20th century, and some of the

late 19th century, forced physicist to revise completely their views on the in-

timate nature of light and matter. It was gradually realised that light has both

particle-like and wave-like behaviours. Similarly particles (e.g. the electron) have

both particle-like and wave-like behaviours. Today we view these constituents of

matter as entities called “quantum fields”, a notion that encompasses both be-

haviours. Wave and particle behaviours are two different manifestations of the

quantum fields.

The laws of physics are expressed in mathematical language. It is thus not

so surprising that these conceptual revolutions were couched in a mathematical

formalism that departs quite radically from the one of classical physics. For

example observable and measurable quantities, such as position and velocity of

an electron orbiting an atom, are represented by “matrices” or “linear operators”.

The mathematical formalism of quantum mechanics has posed, and still does,
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new interesting problems in functional analysis, geometry, group theory Today

quantum information theory also offers new mathematical challenges of its own.

The development of quantum mechanics in its modern form spans a period

of at least 25-30 years between 1900 and 1930’s. It is the achievement of many

experimental and theoretical physicists. This was a golden age of discovery in

physics full of surprising developments and it will not be possible to go through

and understand the historical development of quantum mechanics in this course.
1 Starting with chapter 2, the modern formalism of quantum mechanics is pre-

sented. This mathematical formalisation of the physical laws discovered by the

founding fathers (Planck, Einstein, Bohr, Heisenberg, De Broglie, Schroedinger

and others), was first clearly spelled out by Dirac and von Neumann around 1930-

1932 in two influential books, and has remained for the main part unchanged

since then.

Before proceeding directly to the mathematical formalism it is nevertheless

good to motivate it thanks to simple experiments that can be performed with

light. The experiments are presented here as “thought experiments”, but they

can be performed in a real lab. We will gradually introduce some of the basic

ideas of quantum mechanics through the discussion of these experiments. This

is the goal of this chapter.

1.1 Electromagnetic waves

According to Maxwell (1862) and Hertz (1886), light is an electromagnetic wave

of electric E(x, t) and magnetic B(x, t) fields freely oscillating in vacuum. The

solutions of Maxwell equations in empty space are superpositions of monochro-

matic modes of frequency ω. A mode, or plane wave, propagating along the z

axis, is given by

E(x, t) = ReE0 e
i(kz−ωt), B(x, t) =

1

c
ẑ×E(x, t), ω = ck (1.1)

The amplitude vector E0 (thus E and B also) always belongs to the (x, y) ⊥ z

plane,

E0 = E0

cos θeiδxsin θeiδy

0

 (1.2)

The energy per unit time per unit surface that would be imparted to a material

object by the wave, is given by the norm of the Poynting vector

S = ϵ0c
2E×B (1.3)

A convenient measure of the intensity I of the wave is given by the average of

its norm, over a period T = 2π
ω ,

I =
1

2
ϵ0c|E0|2 =

1

2
ϵ0cE

2
0 (1.4)
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Figure 1.1 Preparation of beam polarized along θ

From (1.1), (1.2) it follows that the tip of the electric (and hence also magnetic)

field vector describes, as a function of time, an ellipse in the (x, y) plane. There

are two degenerate cases of special importance. Linear polarization corresponds

to δx − δy = mπ (m integer) and the tip of the field oscillates in the (x, y)

plane on a line making the angle θ with x (m even/odd). For θ = π
4 (so that

cos θ = sin θ = 1√
2
) and δx − δy = mπ

2 (m odd integer) the polarization is

left/right circular which means that the tip of the field rotates along a circle of

radius E0.

A light beam can be easily prepared in a state of linear polarization with the

help of a filter which transmits only the component of the electric field along

θ. All our subsequent discussion does not rely on a detailed explanation of the

phenomenon and we do not need to know more about it2. Such a device is called

a polarizer with axis θ (figure 1.1).

Analyzer-detector apparatus. Assume that a source of light has been pre-

pared in a state of linear polarization along θ as in figure 1.1.

Ein(x, t) = E0

cos θsin θ

0

Re ei(kz−ωt) (1.5)

The intensity of the prepared beam (1.5) is proportional to E2
0 . Suppose now that

this ray is transmitted through a second polarizer at an angle α. This second

polarizer is called the analyzer. The light is then collected by a detector3 and its

intensity measured (see figure 1.2). The electric field of the final beam is obtained

by projecting the incoming electric field on the analyzer axis eα

Eout = (Ein · eα) eα = E0 cos(θ − α)

cosαsinα

0

Re ei(kz−ωt) (1.6)

and the intensity received in D is proportional to E2
0 cos

2(θ−α). To summarize,

when a beam polarized along θ is transmitted through an analyzer at an angle

α, the outgoing beam is polarized along α and the fraction of intensity collected
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Figure 1.2 analyzer-detector measurement apparatus

by the detector (average power per unit surface) is4

Iout
Iin

= cos2(θ − α) (1.7)

In particular if α − θ = 0, π all the light passes through the analyzer, while if

α−θ = ±π
2 none of it is transmitted. The analyzer-detector system can be used as

a measurement apparatus to determine the polarization of a wave (assuming we

know a priori that it is linear) by adjusting the angle α such that the collected

intensity varies from 0 to its maximal value. Let us now describe two simple

experiments with electromagnetic waves.

Polarizing beam-splitter experiment. There exist prisms5 that have the

property of splitting a beam in two linearly polarized ones, one is polarized

perpendicular to the incidence plane while the other is polarized parallel to that

plane. In figure 1.3 the incidence plane is (x, z) so one ray has y polarization

while the other one has x polarization. Two detectors Dx and Dy measure the

outgoing intensities of each beam. Note that the polarization degree of freedom

is coupled to the orbital (path of ray) degree of freedom. Before the polarizing

beam-splitter the electric filed is given by (1.5) and has intensity proportional

to E2
0 . After the beam-splitter the x-polarized ray has an electric field

Ex = E0

cos θ0
0

Re ei(kz−ωt) (1.8)

and the intensity detected at Dx is proportional to E2
0 cos

2 θ, while the y-

polarized ray has a field

Ey = E0

 0

sin θ

0

Re ei(kz−ωt) (1.9)

and its intensity measured by Dy is proportional to E2
0 sin

2 θ. Both detectors

collect a fraction of the intensity,

Iout,x
Iin

= cos2 θ,
Iout,y
Iin

= sin2 θ (1.10)
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Figure 1.4 decomposition-recombination experiment

In this experiment absorption and reflection by the prism are negligible so that

the sum of the these two fractions equals 1.

Decomposition-recombination experiment.Once we have decomposed light

with a polarizing beam-splitter, we can recombine it with a symmetric prism.

We analyze the recombined beam with an analyzer-detector apparatus (see figure

1.4). Let us carefully review the situation. Before the first beam-splitter we have

one ray with electric field given by (1.5). The first beam-splitter splits the ray

in two parts with electric fields given by (1.8) and (1.9). After the second beam-

splitter the two rays interfere and the electric field of the recombined beam is

the sum of (1.8) and (1.9), which equals (1.5). The fraction of intensity collected

by the analyzer-detector system is

cos2(θ − α) (1.11)

a fact consistent with the first experiment.

1.2 Photons

The works of Planck (1900) on the spectrum of black-body radiation, of Einstein

(1905) on the photoelectric effect and Bohr (1913) on the atomic structure (and

spectral lines), taught us that the interaction of light with matter occurs through

discrete quanta (quantities) of energy and momentum that are absorbed and
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emitted. These quanta are called photons, and each photon carries an energy

ℏω and momentum ℏk (where ω = ck still holds). If we think of the beam

as a collection of independent photons, its intensity is ℏωcNV where N
V is the

number of photons per unit volume6. Identifying this quantity with (1.4) we find

a relation between the electric field and the number of photons associated to the

electromagnetic wave.

If we diminish sufficiently the intensity of the source we arrive at a situa-

tion where in principle photons are emitted one by one. We will repeat the

experiments with such a single photon source, that prepares them in a state of

polarization θ.

Analyzer-detector apparatus. Let us first discuss how the analyzer-detector

measurement apparatus works. We repeat the experiment of figure 1.2 and collect

photons at the detector D. When a photon hits the detector the later clicks (an

electric pulse is triggered) - we record this event as a 1, otherwise we record 0.

This experiment produces a sequence

1001111000101010011101... (1.12)

that looks random and where the empirical fraction of 1’s is cos2(θ − α). From

this experiment we infer

probability of detecting a photon = cos2(θ − α) (1.13)

In particular if α − θ = 0, π all photons are detected while if α − θ = ±π
2 no

photon is detected.

This experiment suggests that photons behave as particles which carry a po-

larization degree of freedom. Indeed if they would behave as waves, then a part

of the wave would be transmitted through the analyzer and some energy would

always be measured in the detector. However the event is discrete, the detec-

tor clicks or does not click. Moreover it seems impossible to predict the precise

polarization outcome for each individual photon: clicks are random. Note that

the statistics of the outcomes seems to satisfy a definite formula (1.13); and this

formula is the one found in the theory of electromagnetic waves (!).

The randomness of the outcome is a fundamental feature of the measurement

process for quantum systems and that it is not at all obvious to reconcile this

fact with our classical intuitions. One could attempt a classical interpretation7

by saying that the photon is a particle-like object that undergoes complicated

but otherwise deterministic collision processes within the analyzer, which result

in a probability cos2(θ − α) of being transmitted. Such attempts do not resist

the tests of other experiments.

Let us now repeat the two previous experiments with photons that are sent

one by one.

Polarizing beam-splitter experiment. Each single photon (polarized at an

angle θ) goes through the prism. We observe that either Dx clicks (the upper

detector register a 1 and the lower a 0) or Dy clicks (the upper detector registers
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a 0 and the upper a 1); but they never click simultaneously. We record two

random complementary sequences with respective fractions of 1 equal to cos2 θ

and sin2 θ. Empirically,

prob detect photon atDy = sin2 θ, prob detect photon atDx = cos2 θ (1.14)

The sum is equal to one which means that the photon has certainly passed

through the beam-splitter.

The fact that the detectors never click simultaneously suggest as above that the

photons behave as particles. Indeed, would they behave as waves, both detectors

would collect some energy at the same time.

One may attempt the same (wrong) classical interpretation as above. A photon

is a particle, which due to complicated but otherwise deterministic collisions with

the crystal, is deflected towards the lower path with probability sin2 θ or through

the upper path with probability cos2 θ. This turns out to be incompatible with

the next experiment.

Decomposition-recombination experiment. let us consider again the set-

ting of figure 1.4. When photons are sent one by one we again record a sequence

of random clicks, and we infer from this sequence

prob detect photon atD = cos2(θ − α) (1.15)

This should comes as a great surprise to the reader. Indeed this result is not

consistent with the particle-like picture of a photon, but rather with a wave-like

picture, as we now show.

Theoretical prediction of the particle picture. If a photon takes the lower

path in figure 1.4 its polarization is horizontal before the second beam-splitter

and comes out of it in a horizontal state. Therefore the probability of transmis-

sion of such a lower-path photon through the analyzer is cos2(π2 − α) = sin2 α.

Therefore

prob(D clicks | lower path) = sin2 α (1.16)

If the photon takes the upper path its polarization is vertical just before the

second beam-splitter and comes out in a state of vertical polarization. Therefore

the probability of transmission of such an upper-path photon is cos2(0−α) and

prob(D clicks | upper path) = cos2 α (1.17)

Now, we have

prob(D clicks) =prob(D clicks | lower path)prob(lower path)
+ prob(D clicks | upper path)prob(upper path) (1.18)

Thus because of (1.14), (1.16), (1.17)

prob detect photon atD = sin2 θ sin2 α+ cos2 θ cos2 α (1.19)

This contradicts the experimental result (1.15) and is therefore plain wrong !
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The term that is missing is precisely

2 cos θ cosα sin θ sinα (1.20)

which, in wave theory, appears because of the interference between the x and y

components of the electric field. This suggests that a single photon follows both

paths, just as a wave would do, and interferes with itself just as a wave would

do

Let us summarize. We face the following situation: the decomposition experi-

ment suggests that photons behaves in a particle-like manner, while he recombi-

nation experiment (1.4) suggests that photons behave in a wave-like fashion. As

for most dilemmas, the resolution offered by quantum theory teaches us that both

pictures are two faces of a more subtle reality that goes beyond this dichotomy.

One sometimes refers to this dual behavior of light, and all known forms of

matter, as the “particle-wave duality” or the “complementarity principle”.

1.3 The quantum setting: first encounter

In fact all known forms of matter8 display this particle/wave duality. As we

will now see quantum mechanics offers us a picture which accommodates both

behaviors and superseedes the classical pictures of wave and particle9.

We will illustrate how the rules of quantum theory consistently explain the

three experiments. The situation will be modeled in the simplest possible way

which retains the basic essence of quantum mechanics.

The state of a photon is described by two degrees of freedom, an orbital degree

of freedom and a polarization degree of freedom. Let us first concentrate on po-

larization. The state of polarization is described by a unit vector e perpendicular

to the direction of motion. Following Dirac we call these state vectors kets and

denote them as |e⟩. Since the polarization vector lies in the x, y plane it can

be described in a orthonormal basis | ↕⟩, | ↔⟩, corresponding to the two linear

states of polarization along x and y

|e⟩ = λ| ↕⟩+ µ| ↔⟩, |λ|2 + |µ|2 = 1 (1.21)

Here λ and µ are complex numbers. thus a general polarization state is a nor-

malized two component vector belonging to C2. The space C2 is our first and

simplest example of a space of quantum states.

A state of linear polarization along θ corresponds to λ = cos θ and µ = sin θ,

so that (1.21) becomes

|θ⟩ = cos θ| ↕⟩+ sin θ| ↔⟩ (1.22)

On the other hand for circular polarization the x and y components of the

polarization vector have a π
2 - phase difference. Two basis states with circular
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polarization are,

|L/R⟩ = 1√
2
(| ↕⟩ ± i| ↔⟩) (1.23)

Given a state vector |Φ⟩ its adjoint (also called hermitian conjugate) is obtained

by taking the complex conjugate and transposing |Φ⟩
T
. This is denoted as a bra

⟨Φ| = |Φ⟩
T

(1.24)

The usual inner product (defined over a complex vector space) is called the

bracket

⟨Ψ|Φ⟩ = (|Ψ⟩
T
) · (|Φ⟩) (1.25)

As an example consider the inner product between two polarization state vectors.

First the conjugate of a linearly polarized state is

⟨α| = ⟨↕ | cosα+ ⟨↔ | sinα (1.26)

The inner product with |θ⟩ then is

⟨α | θ⟩ = (⟨↕ | cosα+ ⟨↔ | sinα) · (cos θ| ↕⟩+ sin θ| ↔⟩)
= cosα cos θ + sinα sin θ

= cos(θ − α) (1.27)

To obtain the second equality one expands the braces into four terms, uses lin-

earity of the bracket and the orthonormality condition,

⟨p | p′⟩ = δpp′ (1.28)

This trivial calculation has been done in the linear polarization orthonormal

basis {| ↔⟩, | ↕⟩}. It is instructive to check that the circularly polarized states

{|L⟩, |R⟩} form another orthonormal basis of the two dimensional complex vector

space.

Let us now introduce the orbital degree of freedom in the picture. For a freely

moving photon, i.e a photon that does not interact with a material object, the

orbital state is entirely described once we know its momentum k, which has a

direction k/k and a norm k = ω
c . The state vector is now denoted as |k, e⟩. This

state freely evolves with time and for a photon of frequency ω the time evolution

simply amounts to a multiplicative phase factor, which does not change the

momentum and the polarization. The photon state at time t is

|Ψk,e(t)⟩ = e−iωt|k, e⟩ (1.29)

An explanation is in order here about the kets indexed by two degrees of freedom.

We will see in the next chapter that the mathematical rule to combine degrees

of freedom is the tensor product; this means that |k, e⟩ = |k⟩ ⊗ |e⟩ and that the

inner product is

⟨k′, e′ | k, e⟩ = ⟨k′ | k⟩ · ⟨e′ | e⟩ (1.30)
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Figure 1.5 measurement with initial state |Ψ⟩ and outcome |Φ⟩.

Finally the momentum vectors themselves form an orthonormal basis ⟨k′ | k⟩ =
δk′,k.

As we will see in the next chapter, in general, the time-evolution of isolated

systems is given by a unitary transformation. In (1.29) the unitary transforma-

tion is simply the multiplication by the phase factor. When the photon interacts

with matter (for example with the analyzer, the beam-splitter) one has in prin-

ciple to describe the unitary evolution of the total system (photon + analyzer

or photon + beam-splitter), which is then more complicated. Here we do not

have to discuss such issues as we consider only the in-going and out-going states

which are those of freely moving photons.

When we make a measurement on a system, the system that is observed can-

not be considered as isolated and the state is modified in a non-unitary way.

Explaining the measurement process is a subject that has been (and sometimes

is still) much debated since the early days of quantum mechanics. An operational

rule, to determine the outcome of a measurement is given by the so-called mea-

surement postulate (Born, Heisenberg, Bohr 1924-1927) in the form advocated

by what has been named the Copenhagen School10 (figure 1.5). Here we give it

in a rough form, and will be more precise in the next chapter.

If a system is initially prepared in the state |Ψ⟩ and the outcome of the measure-

ment is a state |Φ⟩, the probability of the transition |Ψ⟩ → |Φ⟩ is

Prob(|Ψ⟩ → |Φ⟩) = |⟨Φ | Ψ⟩|2 (1.31)

One cannot predict the outcome of the transition but only its frequency of occur-

rence during repeated identical experiments with identical initial states.

The transition between the initial and final state is also called ”reduction” or

”collapse” of the state. In a more precise formulation of the measurement pos-

tulate, in the next chapter, we will see that the transition probabilities of all

possible outcomes sum to one.

The re-interpretation of the experiments in the next section should make this

rather abstract postulate a bit more “natural”.
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1.4 Quantum interpretation of experiments.

Analyzer-detector apparatus. We assume that the source prepares single

photons in the linearly polarized, freely moving state

|Ψk,θ(t)⟩ = e−iωt|k, θ⟩ (1.32)

If the measurement apparatus is the analyzer-detector system of figure 1.2, the

measurement postulate tells us that the probability to find the photon in state

|k, α⟩ is

|⟨k, α | Ψk,θ(t)⟩|2 = |⟨α | θ⟩|2 = cos2(θ − α) (1.33)

This is consistent with the experimentally measured frequency of clicks in D.

Polarizing beam-splitter experiment. Before the beam-splitter the photon

state is (1.32), which is equal to

e−iωt(cos θ|k, ↕⟩+ sin θ|k,↔⟩) (1.34)

After the beam-splitter it becomes

e−iωt(cos θ|ku, ↕⟩+ sin θ|kl,↔⟩) (1.35)

where ku and kl label the upper and lower paths11. Notice that contrary to (1.34),

in (1.35) we cannot separate the orbital and polarization degrees of freedom into

a tensor product: it can be shown that for (1.35) this is an intrinsic property that

does not depend on the basis. We say that the orbital and polarization degrees

of freedom have been entangled by the beam-splitter. Entangled states depart

fundamentally from the classical picture and retain quantum correlations that

are missing in the classical interpretation. As we will see in this course they play

a very important role in quantum information and computation because they

may offer resources that are non-classical.

Now we consider the two detectors as our measurement apparatus. The mea-

surement postulate tells us that the probability to observe the photon in state

|ku, ↕⟩ is
|⟨ku, ↕| e−iωt(cos θ|ku, ↕⟩+ sin θ|kl,↔⟩)|2 = cos2 θ (1.36)

Similarly the probability to observe it in the state |kl,↔⟩ is

|⟨kl,↔| e−iωt(cos θ|ku, ↕⟩+ sin θ|kl,↔⟩)|2 = sin2 θ (1.37)

This is consistent with the experimental fractions of clicks at Dx and Dy.

Recombination experiment. The second polarizing beam-splitter transforms

the entangled state (1.35) back to (1.32). The later state enters the measurement

apparatus constituted by the analyzer-detector system. Therefore the probability

of observing |k, α⟩ is simply given by (1.33). This is the experimental frequency of

clicks at D ! The quantum interpretation does not loose track of the interference

term (1.20).
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1.5 Notion of quantum bit

There exist many quantum systems in nature that can be described by state

vectors which belong to the vector space C2, the two dimensional complex vector

space. If we call |0⟩ and |1⟩ two orthonormal basis states a general state vector

takes the form

|ψ⟩ = λ|0⟩+ µ|1⟩, |λ|2 + |µ|2 = 1 (1.38)

It will often be convenient to identify

|0⟩ =
[
1

0

]
(1.39)

and

|1⟩ =
[
0

1

]
(1.40)

and in quantum information theory it is customary to call this canonical basis

the computational basis. Of course one can represent the quantum bit |ψ⟩ in any

other basis, and one that we will often use one that is obtained by a standard

45 degree real rotation

|+⟩ = 1√
2
(|0⟩+ |1⟩), |−⟩ = 1√

2
(|0⟩ − |1⟩) (1.41)

This basis will be called the Hadamard basis. Since the vector space is complex

we can make more general unitary transformations. For example

|L⟩ = 1√
2
(|0⟩+ i|1⟩), |R⟩ = 1√

2
(|0⟩ − i|1⟩) (1.42)

We have already seen a physical realization of a quantum bit, namely the pho-

ton polarization. If we identify the computational basis with horizontal/vertical

polarized photon states, then the Hadamard basis corresponds to polarized states

at 45 degree angle, and the last basis obtained by a unitary transformation is

physically realized by circularly left/right polarized photons. A physically mean-

ingful parametrization of general polarization state is

|ψ⟩ = eiδx cos θ| ↕⟩+ eiδy sin θ| ↔⟩ (1.43)

If we rotate our reference frame (around z) by angle β, then the state vector is

obtained from the above expression by θ → θ − β. In particular if the reference

frame is rotated by 2π we recover the same state vector. These states form

ratgher trivial representations of the group of two-dimensional rotations (about

the z-axis say).

Another very common but physically different quantum bit is the spin 1
2 . The

most famous elementary particle (of obvious importance in our everyday life

since it transports electricity, interacts with sunlight ...) that has spin 1
2 is the

electron12. There exist also many composite systems, such as nuclei or atoms

that carry a total spin of 1
2 . A very rough intuitive way of thinking about spin
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Figure 1.6 Bloch sphere. Computational (z), Hadamard (x), circular (y) basis states

is to view the particle (the electron say) as having intrinsic spinning motion. If

the particle spins about the z axis, its spin is (pointing) | ↑⟩ or | ↓⟩ according

to its direction of rotation. These two states form a basis and the most general

spin state is

|ψ⟩ = λ| ↑⟩+ µ| ↓⟩, |λ|2 + |µ|2 = 1 (1.44)

Spin 1
2 states are two dimensional (complex) representations of the group of

rotations in three dimensions. A meaningful parametrization of the states is

|ψ⟩ = ei
ϕ
2 cos

θ

2
| ↑⟩+ e−iϕ

2 sin
θ

2
| ↓⟩ (1.45)

These states can be represented by the tip of a vector on the Bloch sphere

(figure 1.6) with the usual spherical coordinates (θ, ϕ). We have the following

correspondence (up to phase factors):

θ = 0, π | ↑⟩, | ↓⟩, particle spin along z (1.46)

θ =
π

2
, ϕ = 0, π | ↑⟩ ± | ↓⟩, particle spin along x (1.47)

θ =
π

2
, ϕ = ±π

2
| ↑⟩ ± i| ↓⟩, particle spin along y (1.48)

The polarization and spin 1
2 quantum bits are different representations of the

rotation group in quantum mechanics (ultimately coming from the representa-

tions of the Lorentz group of relativity).

There exist also other realizations of the quantum bit that have nothing to do

with the representations of the rotation group. An example is given by the ben-

zene molecule C6H6 that can be in the two states that differ in the arrangement
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2 =1 =

Figure 1.7 possible arrangements of chemical bonds

of single and double electronic bonds (figure 1.7). But the molecule can also be

found in a resonating state such as

|ψ⟩ = 1√
2
(|1⟩+ |2⟩) (1.49)

What is the difference between a classical bit and a quantum bit ? A classical

bit is an abstraction of a physical quantity that can be reasonably well described

by a two valued quantity. Examples are the charge in a capacitor, a voltage dif-

ference, or the magnetization of a Weiss domain. Classical information theory is

sufficiently universal so that it does not have to account for the detailed physical

properties of the classical bits. The only underlying assumption is that these

exist in two definite values 0 or 1 (let us pretend that noise is absent). Suppose a

classical bit is given to you and that you have no information whatsoever about

its value. To gain information about its value you can observe it (measure the

charge, the voltage difference) and its value is then discovered. By discovered we

mean that it already had the observed value before the measurement, and that

the measurement has not destroyed it.

A quantum bit is also an abstraction of physical as the above examples have

shown. It is well described by a two dimensional complex vector. In the same

spirit than in the classical case, quantum information theory is sufficiently uni-

versal so that many of its aspects are independent of the concrete physical re-

alization. However the important point is that it takes into account the general

underlying laws of quantum mechanics. This means in particular that extracting

information from quantum bits is quite different than in the classical case. Sup-

pose that a quantum bit is given to you in some state |ψ⟩ on which you do not

have any information whatsoever. In order to determine |ψ⟩, we have to observe

it (agree ?). To perform a measurement we have to select an apparatus, in other

words an orthonormal basis {|b1⟩, |b2⟩}. The measurement process then reduces

the quantum bit to |b1⟩ or to |b2⟩. So we have lost the original state (forever)

and have not gained any knowledge (of the initial state) because the final state

depends on our own choice of basis. Note however that if we are given many

copies of |ψ⟩ we can measure all of them in the same basis and get a hold of the

probabilities |⟨b1 | ψ⟩|2, |⟨b2 | ψ⟩|2.
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Figure 1.8 semi-transparent mirror

1.6 A random number generator

At this point the reader may well wonder if quantum laws offer any useful re-

source in order to process information. In this course we will see that this is

so. Here we illustrate this with a very simplified model for a random number

generator.

A source sends a beam of photons on a semi-transparent mirror (figure 1.8).

The later splits the beam in two parts, the transmitted and reflected beams. If

the source is classical we observe that the two detectors each collect a fraction of

the incoming intensity of the beam. Assuming that the semi-transparent mirror

is perfect each detector collects half of the intensity.

When the intensity of our source is lowered sufficiently so that it becomes a sin-

gle photon source. Photons go through the mirror one at a time, we observe that

either DH or DV clicks, never the two at the same time. We obtain a sequence of

clicks 01000111010101000110111100 that looks Bernoulli with parameter p = 1
2 .

The interpretation of this experimental setup, in the framework of quantum

mechanics, is as follows. We drop the polarization index as it plays no role here.

A single photon is incoming in the semi-transparent mirror and the state of the

photon after the mirror is,

eiωt 1√
2
(|kH⟩+ |kV ⟩) (1.50)

This state is a superposition. The outcome of the measurement by the detectors

cannot be predicted. The probability that the photon is observed in state |kH⟩
is

|⟨kH | eiωt 1√
2
(|kH⟩+ |kV ⟩)|2 =

1

2
(1.51)

and similarly the probability that it is observed in state kV is

|⟨kV | eiωt 1√
2
(|kH⟩+ |kV ⟩)|2 =

1

2
(1.52)
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! H H !

Figure 1.9 Hadamard gate as a model for a semi-transparent mirror

So the measurement process produces a perfectly random sequence.

What do we mean by ”perfectly random sequence”? Of course, the sequence is

perfectly random only in principle, because in the real experiment there are im-

perfections, for example, the source is only approximately a single photon source

and the semi-transparent mirror has a small bias etc.... But the point here is

that, according to the standard interpretation of quantum mechanics, the mea-

surement process produces ”true randomness” and not ”pseudo-randomness”:

the clicks are not the result of some underlying deterministic process. This point

has been much debated by the founding fathers of 20-th century physics and no-

tably by Einstein and Bohr. According to Einstein ”God does not play dice”, a

view that Bohr dismissed. Until today, no other theoretical framework has, suc-

cessfully described as many phenomena as quantum theory does, and we have so

far no experiment that forces us to abandon the standard quantum framework.

It is in this sense that we declare the sequence perfectly random.

A slightly more abstract representation in quantum information theory lan-

guage of this experiment is depicted on figure 1.9. We prepare and measure states

in the computational basis |0⟩, |1⟩. The initial state |0⟩ goes through a Hadamard

gate

H =
1√
2

[
1 1

1 −1

]
(1.53)

which produces the state

H|0⟩ = 1√
2
(|0⟩+ |1⟩) (1.54)

When we perform a measurement on this state the outcome is |0⟩ with probability

|⟨0|H|0⟩|2 =
1

2
(1.55)

or |1⟩ with probability

|⟨1|H|0⟩|2 =
1

2
(1.56)

We note that quantum random number generators based on these principles have

been realized and are even commercialized. See for example http://www.idquantique.com/true-

random-number-generator/products-overview.html



2 Mathematical formalism of
quantum mechanics

Quantum mechanics is the best theory that we have to explain the physical phe-

nomena (if we exclude gravity). The elaboration of the theory has been guided by

experimental discoveries, as well as thought experiments and conceptual ideas

of a great generation of physicist. Milestones of the development of quantum

theory are from 1900 to 1930 are: Planck on black body spectrum (1900), Ein-

stein on the photon (1905), Bohr on the atom (1913), De Broglie on the wave

function (1924), Schroedinger on the wave function evolution (1926), Born on

the interpretation of the wave function (1926), Heisenberg on matrix mechanics

(1925), Dirac on relativistic QM (1930). Some never completely accepted their

own ideas, although these still form the best theory that we have today. The

mathematical form of the theory that we find in textbooks has been put for-

ward by Dirac and von Neumann in the 30’s Since then the quantum laws of

physics have been used unchanged1 to successfully describe an impressive range

of phenomena ranging from macroscopic solid state, molecular to atomic, nuclear,

sub-nuclear and particle physics scales.

The arena of QM is Hilbert space so we begin with some mathematical re-

minders on linear algebra in such spaces. Our goal is also to carefully introduce

the reader to Dirac’s bra and ket notation. Then we introduce 5 basic principles

that define QM. We also discuss two genuine quantum notions, namely, entangled

states and the no-cloning theorem.

2.1 Linear algebra in Dirac notation

A Hilbert space H is a vector space over the field of complex numbers C, with

an inner product. For a finite dimensional Hilbert space that is all. For an infi-

nite dimensional Hilbert space we require that it is complete and separable2. In

quantum information theory we will almost always deal with Hilbert spaces of

quantum bits which are discrete by nature, hence our Hilbert spaces are finite

dimensional and we do not have to worry about completeness and separability.

The vectors will be denoted |ψ⟩ (pronounced ket psi). The hermitian conjugate

(transpose and complex conjugate) is denoted by ⟨ψ| (pronounced bra psi). The

inner product is denoted ⟨ϕ|ψ⟩. This is the inner product of the vectors |ϕ⟩ and
|ψ⟩ and is called a bracket (for bra-ket). The inner product must satisfy:
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1. Positivity: ⟨ϕ|ϕ⟩ ≥ 0 with equality if and only if |ϕ⟩ = 0.

2. Linearity: ⟨ϕ|(α|ψ1⟩+ β|ψ2⟩) = α⟨ϕ|ψ1⟩+ β⟨ϕ|ψ2⟩, α, β ∈ C

3. Skew symmetry: ⟨ϕ|ψ⟩ = ⟨ψ|ϕ⟩ where the bar denotes complex conjugation.

A ray is an equivalence class of vectors of the form λ|ψ⟩ where λ ∈ C and |ψ⟩
is a specified vector. This specified vector is a representative of the ray.

Example 1: Qbit or two level system. H = C2 =

{(
α

β

)
with α, β ∈ C

}
.

The inner product is (γ, δ)

(
α

β

)
= γα+ δβ. In Dirac notation we have

(
α

β

)
= α|0⟩+ β|1⟩

where |0⟩ =
(
1

0

)
, |1⟩ =

(
0

1

)
. Moreover

(γ̄, δ̄) = γ̄⟨0|+ δ̄⟨1|

and

(γ̄⟨0|+ δ̄⟨1|)(α|0⟩+ β|1⟩) = γα⟨0|0⟩+ γβ⟨0|1⟩+ δα⟨1|0⟩+ δβ⟨1|1⟩ = γα+ δ̄β

Example 2: particle in three dimensional space.H = L2(R3) = {f : R3 →
C,

∫
d3x|f(x)|2 < ∞}. The inner product is ⟨f |g⟩ =

∫
d3xf(x)g(x) and the

induced norm ||f ||2 = ⟨f |f⟩1/2 =
∫
d3x|f(x)|2. This space plays a fundamental

role in quantum mechanics but we will not need it in this course, since we deal

only with discrete degrees of freedom.

We will need the notion of tensor product. Let H1 and H2 be two Hilbert

spaces with two finite basis. Let the basis of the first space be |i⟩1, i = 1, ..., n1,

dimH1 = n1 and that of the second space |j⟩2, j = 1, ..., n2, dimH2 = n2. We

can form the tensor product space

H1 ⊗H2

which is simply the new Hilbert space spanned by the basis vectors

|i⟩1 ⊗ |j⟩2

(also denoted |i, j⟩ or |i⟩1|j⟩2). There are n1n2 such vectors so

dimH1 ⊗H2 = n1n2

A general element of the tensor product space is of the form

|ψ⟩ =
n1∑
i=1

n2∑
j=1

cij |i, j⟩ =
n1∑
i=1

n2∑
j=1

cij |i⟩1 ⊗ |j⟩2
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Lastly we have to say what is the inner product in the product space:

⟨i′, j′|i, j⟩ = (⟨i′|1 ⊗ ⟨j′|2)(|i⟩1 ⊗ |j⟩2) = ⟨i′|i⟩1⟨j′|j⟩2

Example 3. For one Qbit the Hilbert space is C2. We will see that the Hilbert

space of two Qbits is C2 ⊗ C2. The basis vectors of C2 ⊗ C2 are {|0⟩ ⊗ |0⟩,
|0⟩ ⊗ |1⟩, |1⟩ ⊗ |0⟩, |1⟩ ⊗ |1⟩} or {|0, 0⟩, |0, 1⟩, |1, 0⟩, |1, 1⟩}. A general state is

|ψ⟩ = α00|0, 0⟩+ α01|0, 0⟩+ α10|0, 0⟩+ α11|1, 1⟩

We have dimC2 ⊗C2 = 4 and of course C2 ⊗C2 is isomorphic to C4: However

it is important to stress that in QM the meaning of the first representation is

really that two Qbits are involved : in general it is too difficult (meaningless in

some sense) to do physics in a bad representation. Here a few inner products are

⟨0, 0|0, 0⟩ = ⟨0|0⟩⟨0|0⟩ = 1, ⟨0, 1|0, 1⟩ = ⟨0|0⟩⟨1|1⟩ = 1, ⟨0, 1|1, 1⟩ = ⟨0|1⟩⟨1|1⟩ = 0

etc... From these one can compute the inner product of |ψ⟩ and |ϕ⟩ = β00|0, 0⟩+
β01|0, 0⟩ + β10|0, 0⟩ + β11|1, 1⟩. We find the natural product of C4, ⟨ϕ|ψ⟩ =

β00α00 + β01α01 + β10α10 + β11α11. It is often useful to work in the canonical

basis of C4 
1

0

0

0

0

 = |0, 0⟩


0

1

0

0

0

 = |0, 1⟩


0

0

1

0

0

 = |1, 0⟩


0

0

0

0

1

 = |1, 1⟩

Once this (conventional) correspondence is fixed we can infer the rules for ten-

soring vectors in their coordinate representation

(
1

0

)
⊗

(
1

0

)
=


1

0

0

0

 ,

(
1

0

)
⊗
(
0

1

)
=


0

1

0

0



(
0

1

)
⊗

(
1

0

)
=


0

0

1

0

 ,

(
0

1

)
⊗
(
0

1

)
=


0

0

0

1


You can see that in this course the convention is that you multiply the first set

of coordinates by the second vector . All these rules generalize to C2 ⊗C2 ⊗C2

etc...

Cauchy-Schwarz inequality. As usual:

|⟨ϕ|ψ⟩| ≤ ⟨ϕ|ϕ⟩1/2⟨ψ|ψ⟩1/2

Closure relation. Let |i⟩, i = 1, ..., n be an orthonormal basis of the n-dimensional
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Hilbert space. Any vector |ϕ⟩ can be expanded as

|ϕ⟩ =
n∑

i=1

ci|i⟩, ci = ⟨i|ϕ⟩

where the components ci are obtained by projecting |ϕ⟩ over the basis vectors.

The above expansion can be rewritten as

|ϕ⟩ =
n∑

i=1

|i⟩⟨i|ϕ⟩

Note that |i⟩⟨i| is the projection operator on vector |i⟩. We can view
∑n

i=1 |i⟩⟨i|
as the identity operator acting on |ϕ⟩, thus we have the closure relation

n∑
i=1

|i⟩⟨i| = I

This turns out to be a very useful identity for doing practical calculations in

Dirac notation. Note that this identity is simply the spectral decomposition of

the identity.

Observables. In QM observable quantities are represented by linear operators

(matrices) on H. Let us briefly review a few important facts. The map A : H →
H, |ψ⟩ → A|ψ⟩ is linear if

A(α|ϕ1⟩+ β|ϕ2⟩) = α(A|ϕ1⟩) + β(A|ϕ2⟩)

The matrix elements of A in a basis {|i⟩, i = 1, ..., n} of H are denoted by ⟨i|A|j⟩
or Aij . Given A, the adjoint of A is denoted A† and defined by

⟨ϕ|A†|ψ⟩ = ⟨ψ|A|ϕ⟩

So the adjoint (or hermitian conjugate) is the operator which has transposed

and conjugate matrix elements. We say that A is self-adjoint (or hermitian) if

A = A†. The later type of operators play a very central role in QM because

observable quantities are represented by self-adjoint operators: the reader can

guess that this must be so because any physical measurement is expressed by a

real number (why ?) and self-adjoint operators have real eigenvalues. The reader

can check that (A+B)† = A† +B† and (AB)† = B†A†.

We will also need the following notations for the commutator

[A,B] = AB −BA

and the anticommutator

{A,B} = AB +BA

Projectors in Dirac notation. The linear operator |i⟩⟨i| = Pi is the projector
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on the basis vector |i⟩. To check that Pi is a projector we need to verify that

P †
i = Pi and P

2
i = Pi. Here is how one does it in Dirac notation

P †
i = (|i⟩⟨i|)† = (⟨i|)†(|i⟩)† = |i⟩⟨i| = Pi

P 2
i = (|i⟩⟨i|)(|i⟩⟨i|) = |i⟩⟨i|i⟩⟨i| = |i⟩⟨i| = Pi

Since |i⟩ and |j⟩ are orthogonal for i ̸= j we have PiPj = PjPi = 0. Indeed

PiPj(|i⟩⟨i|)(|j⟩)(⟨j|) = |i⟩⟨i|j⟩⟨j|) = 0

PjPi(|j⟩⟨j|)(|i⟩⟨i|) = |j⟩⟨j|i⟩⟨i|) = 0

Note that if |ϕ⟩ is any vector of the Hilbert space, then Pϕ = |ϕ⟩⟨ϕ| is the

projector on |ϕ⟩.

Spectral decomposition. Hermitian operators (matrices) on a Hilbert space

have a spectral decomposition or spectral representation,

A =
∑
n

anPn

where an ∈ R are the eigenvalues and Pn the eigenprojectors ofA. The eigenspaces

of A are spanned by the orthonormal eigenvectors |ϕnj⟩ associated to the eigen-

value an:

A|ϕnj⟩ = an|ϕnj⟩, Pn =
∑
j

|ϕnj⟩⟨ϕnj |

The index j takes into account the possible degeneracy of an. From the orthonor-

mality of the eigenvectors one sees that PnPm = PmPn = 0 for n ̸= m. Note that

for given n one always has the liberty to rotate the basis {|ϕnj⟩} in the subspace

of Pn. Moreover we have the closure relation

I =
∑
n

Pn =
∑
n,j

|ϕn,j⟩⟨ϕnj |

We will often write the spectral decomposition as

A =
∑
n,j

an|ϕnj⟩⟨ϕnj |

In the non-degenerate case this becomes simply A =
∑

n an|ϕn⟩⟨ϕn|.

2.2 Principles of quantum mechanics

In this paragraph we explain the 5 basic principles of QM. In a nutshell:

• isolated systems are described by states of a Hilbert space,

• they evolve unitarily with time,

• observable quantities are described by hermitian matrices,
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• measurement is a distinct process from time evolution: it is a random projec-

tion,

• systems can be brought together and composed: their Hilbert space is a tensor

product space.

Their meaning, interpretation and soundness has been debated over the first

half of the 20-th century by the founding fathers of QM and by their followers,

specially the measurement postulate.

Principle 1: states. The state of a quantum system - that is isolated from the

rest of the universe - is completely described by a ray in a Hilbert space. We

require that the representative vector |ψ⟩ ∈ H is normalized to one, ⟨ψ|ψ⟩ = 1.

Example 4.

• To describe the polarization of the photon we take H = C2. States are vectors

in C2, |ψ⟩ = α|0⟩+β|1⟩, |α|2+ |β|2 = 1. For a linearly polarized state |θ⟩ =
cos θ|0⟩+ sin θ|1⟩, for a circularly polarized state |θ̃⟩ = cos θ|0⟩+ i sin θ|1⟩,
and for elliptic polarization cos θ|0⟩+ eiδ sin θ|1⟩.

• The spin 1
2 of an electron (say) is described by the same Hilbert space.

• For a Benzene molecule the Hilbert space is again the same and is spanned

by the two valence bond states (see chapter 1):

|ψ⟩ = α|1⟩+ β|2⟩

• For a particle in R3 we have H = L2(R3) as explained before. These are called

wave functions and are normalized
∫
d3x|ψ(x)|2 = 1.

Remark. If |ψ⟩ is a description of a system then eiλ|ψ⟩ is an equally good

description. The global phase λ ∈ R is not an observable quantity and can be

fixed arbitrarily. This is why QM states should really be defined as rays. However

the relative phase of states is observable through interference effects. You might

also wonder what is the difference between spin one-half and photon polarization.

In fact photon polarization states and spin one-half states behave very differently

under spatial rotations of the coordinate system (or the lab). Under a rotation of

the reference frame the state of polarization of a photon behaves like a vector. In

particular under a 2π rotation we recover the same state. On the other hand for

spin one-half behaves as a spinor (sometimes called half-vector) under a rotation

of the reference frame. In particular, under a 2π rotation we recover the opposite

state. In QM the representations of the rotation group (and any other group) on

the Hilbert space does not have to satisfy R(2π) = 1, precisely because states

are rays. Therefore a phase is allowed for R(2π)|ψ⟩ = eiλ|ψ⟩. All these aspects

of QM will not mater too much in this course so we omit more explanations on

what ”spin” and ”photon polarization” really are. A more profound discussion of

these aspects would require to explain the representation theory of the Lorentz

group of special relativity.
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Principle 2: time evolution. An isolated quantum system evolves with time

in a unitary fashion. This means that if |ψ⟩ is the state at time 0, the state at

time t is of the form Ut|ψ⟩ where Ut is a unitary operator from H → H. Here

unitary means that U†
t Ut = UtU

†
t = 1 or equivalently U−1

t = U†
t .

Unitary time evolution forms a group (it is a representation of translations

along the time axis) in the sense that

Ut=0 = I, Ut1Ut2 = Ut1+t2

QM tells us how to compute Ut for a given system: one has to solve the Schroedinger

equation or the Heisenberg equations of motion. These are equivalent in fact. The

first one is the quantum mechanical version of the Hamilton-Jacobi equation of

classical mechanics while the second is the quantum version of the Hamilton

equations of motion. In quantum computation (at least in theory) we do not

bother too much about these equations : we optimistically assume that if we

need a specified Ut then somebody (a physicist, an engineer) will be able to con-

struct a device (an electronic or optical device for example) which realizes the

time evolution U . For us a specified time evolution is a gate that will ultimately

be part of a quantum circuit.

It is very important to realize that time evolution is linear: this is quite sur-

prising because in the classical regime one should get back the classical equations

of motion which are generally non-linear3.

Example 5. A semi-transparent mirror decomposes an incident ray into a re-

flected and a transmitted part (see chapter 1). Let H = C2 the Hilbert space

with basis |T ⟩, |R⟩. The semi-transparent mirror acts in a unitary way

|T ⟩ → H → H|T ⟩ = 1√
2
(|T ⟩+ |R⟩)

|R⟩ → H → H|R⟩ = 1√
2
(|T ⟩ − |R⟩)

The unitary matrix H is called a Hadamard gate

H =
1√
2

(
1 1

1 −1

)
One checks that HH† = H†H = 1. If we put two semi-transparent mirrors in

series (see exercises)

|ψ⟩ → H → H → H2|ψ⟩ = |ψ⟩

the output is equal to the input because H2 =

(
1 0

0 1

)
. In other words if the

input state is |T ⟩ then the output is also |T ⟩. If we wish to take more seriously

into account the effect of the perfect mirrors in-between the semi-transparent



28 Mathematical formalism of quantum mechanics

mirrors, we insert between the two Hadamard matrices the gate X =

(
0 1

1 0

)
|ψ⟩ = α|T ⟩+ β|R⟩ → H → X → H → HXH|ψ⟩ = α|T ⟩ − β|R⟩

Principle 3: observable quantities. In quantum mechanics an observable

quantity (energy, magnetic moment, position, momentum,...) is represented by

a linear self-adjoint operator4 on H. For us this just means a hermitian matrix.

Examples 6.

• Position x, momentum p = ℏ
i

∂
∂x , energy or Hamiltonian p2

2m + V (x). We will

not need these.

• However we will need things like the polarization of a photon. Suppose we

send a photon in a polarized beam-splitter (see chapter 1). If Dy clicks we

record a −1 while if Dx clicks we record a +1. Our observations can be

described by the observable

P = (+1)|x⟩⟨x|+ (−1)|y⟩⟨y|

This is the self-adjoint matrix

(
1 0

0 −1

)
(in the |x⟩, |y⟩ basis).

• General observables in H = C2 can always be represented by 2× 2 hermitian

matrices

A =

(
α β

β γ

)
or in Dirac notation

A = α|0⟩⟨0|+ β|0⟩⟨1|+ β|1⟩⟨0|+ γ|1⟩⟨1|

All such matrices can be written as linear combinations of

I =

(
1 0

0 1

)
, X =

(
0 1

1 0

)
, Y =

(
0 −i
i 0

)
Z =

(
1 0

0 −1

)
,

The observables (hermitian matrices !) X, Y , Z are called Pauli matrices.

One of their uses is the description of the spin observable for spin 1
2 par-

ticles: this is a ”vector” with 3 components Σ = (X,Y, Z). In the physics

literature the notation is Σ = (σx, σy, σz). Important properties of these

matrices are

X2 = Y 2 = Z2 = I, XY = −Y X, XZ = −ZX, Y Z = −ZY

and

[X,Y ] = 2iZ, [Y,Z] = 2iX, [Z,X] = 2iY

This algebra is a special example of spin or Clifford algebras which play an

important role in QM.
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Principle 4: measurement postulate. This is the most disturbing postulate:

it requires a rather big leap of intuition (or stroke of genius) which goes back

to Max Born (one also speaks of the Born interpretation of the wave function).

Let a system be prepared in a state |ψ⟩. The system is to be measured with an

apparatus. The apparatus is modeled by a set of orthonormal projectors {Pn}
satisfying

∑
n Pn = I. A single measurement reduces5 the state ψ of the system

to

|ϕn⟩ =
Pn|ψ⟩

||Pn|ψ⟩||
=

Pn|ψ⟩
⟨ψ|Pn|ψ⟩1/2

For a single measurement there is no way to predict what will be the specific

outcome n: it is random. If the experiment is repeated many times (assuming

this is a reproducible experiment) one finds that the probability (in a frequentist

interpretation of the term) of the outcome n is

Prob(outcome n) = |⟨ϕn|ψ⟩|2 = ⟨ψ|Pn|ψ⟩

Remark 1. Since
∑

j Pj = I and |ψ⟩ are normalized we have
∑

j Prob(outcome j) =

1.

Remark 2. When the eigenprojectors are not degenerate these formulas are

slightly simpler. If Pj = |j⟩⟨j| the probability of the outcome j is

Prob(outcome j) = ⟨ψ|Pj |ψ⟩ = |⟨j|ψ⟩|2

and the state just after the measurement is |j⟩.

Consequences for the measurement of observables. This is a very im-

portant point because ultimately one really measures physical quantities. The

above measurement apparatus {Pn} gives the value of any observable of the

form A =
∑

j ajPj . The measurement makes |ψ⟩ → |ϕn⟩ for some n. Since

A|ϕn⟩ = an|ϕn⟩ the value of A given by the measurement is precisely an when

the outcome is n. In particular we can know simultaneously the value of many

observables, by measuring them with the same appratus, as long as they have

the same eigenspaces. Such observables commute and are sometimes said to be

compatible.

The average value that the measurement, on the state |ψ⟩, will yield can be

calculated from the probability distribution above. One finds∑
j

aj⟨ψ|Pj |ψ⟩ = ⟨ψ|A|ψ⟩

and the variance is∑
j

a2j ⟨ψ|Pj |ψ⟩ − (
∑
j

aj⟨ψ|Pj |ψ⟩)2 = ⟨ψ|A2|ψ⟩ − ⟨ψ|A|ψ⟩2

In practice one uses the right hand side of these two formulas. That is basically

all that a theorist can predict.
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After a measurement the state vector is reduced |ψ⟩ → |ϕn⟩, for some n, and

thus the expectation value in the new state (i.e |ϕn⟩) becomes an and the variance

0. This means that if we repeat the same measurement on the same state we will

get precisely the value an again and again.

We will return to this point when we will consider the Heisenberg uncertainty

principle.

Example 7: measurement of photon polarization. Suppose we want to

measure the observable P = |x⟩⟨x| − |y⟩⟨y| For this we use the apparatus con-

stituted of an analyzer oriented along x and a detector. This apparatus is the

physical realization of the measurement basis. If a photon is detected the state

just after the measurement is |x⟩ and if a photon is not detected (it has been

absorbed by the analyzer) the state just after the measurement is |y⟩. The prob-
abilities of these outcomes are

Prob(outcome + 1) = |⟨x|ψ⟩|2, Prob(outcome − 1) = |⟨y|ψ⟩|2

If the initial preparation of the beam is |ψ⟩ = cos θ|x⟩+sin θ|y⟩ these probabilities
are simply cos2 θ and sin2 θ. Suppose that now we rotate the analyzer by an angle

γ. This means that we wish to measure the observable P = |γ⟩⟨γ| − |γ⊥⟩⟨γ⊥|.
then we can compute again the probabilities of the outcomes

Prob(outcome + 1) = |⟨γ|ψ⟩|2 = cos2(θ − γ)

Prob(outcome − 1) = |⟨γ⊥|ψ⟩|2 = sin2(θ − γ)

Finally let us note that in the first case the measured observable in matrix form

is

P = Z =

(
1 0

0 −1

)
and in the second

P =

(
cos 2γ sin 2γ

sin 2γ − cos 2γ

)
= (cos 2γ)Z + (sin 2γ)X

Uncertainty principle Suppose that we have a system in a state ψ and we

consider two observables A and B. We assume that these have spectral repre-

sentations

A =
∑
j

ajPj , B =
∑
j

bjQj

As discussed previously in a general state |ψ⟩ each of these is not fixed but has an

average value ⟨ψ|A|ψ⟩, ⟨ψ|B|ψ⟩ and a standard deviation ∆A =

√
⟨ψ|A2|ψ⟩ − ⟨ψ|A|ψ⟩2,

∆B =

√
⟨ψ|B2|ψ⟩ − ⟨ψ|B|ψ⟩2. The Heisenberg uncertainty relation states that

∆A ·∆B ≥ 1

2
⟨ψ|[A,B]|ψ⟩
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The interpretation of this inequality as first discussed by Heisenberg is that when

[A,B] ̸= 0 it is not possible to measure A and B simultaneously with infinite

precision. If we manage to make ∆A = 0 then we will have ∆B = ∞. The

prototypical and most striking example is A = x (position) and B = p = ℏ
i

∂
∂x

(momentum). In this case ∆x∆p ≥ h
4π and we cannot measure simultaneously

with infinite precision the position and the momentum of a particle: this is not

a technological limitation but ultimately a “God given” limitation.

Note that if [A,B] = 0 then there exist a common basis of the Hilbert space

in which A and B are both diagonal. Then by measuring in this basis, the

measurement postulate tells us that both observables can be determined with

infinite precision. There is no clash with the uncertainty relation because the

right hand side of the inequality vanishes.

There is a related principle called the ”entropic uncertainty principle” which

we now state. Suppose A and B have non degenerate eigenvalues

A =
∑
na

ana |na⟩⟨na|

B =
∑
mb

bmb
|mb⟩⟨mb|

Set

H(A) = −
∑
na

p(na) ln p(na), H(B) = −
∑
mb

p(mb) ln p(mb)

where

p(na) = |⟨na|ψ⟩|2, p(mb) = |⟨mb|ψ⟩|2

We have

H(A) +H(B) ≥ −2 ln
(1 + maxna,mb

|⟨na|mb⟩|
2

)
Principle 5: composite quantum systems. Suppose we have two systems

A and B with Hilbert spaces HA and HB. The Hilbert space of the composite

system AB is given by the tensor product space

HA ⊗HB

The states of AB are vectors |ψ⟩ ∈ HA ⊗HB. The previous postulates apply to

the composite system.

This is also a highly non trivial postulate as will be seen from its consequences

throughout the course. In a famous paper Einstein, Podolsky, Rosen were the

first to make a sharp analysis of its consequences. This has ultimately led to Bell

inequalities and to important primitive protocols of quantum information such

as teleportation and dense coding.
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Example 8. Two photons with polarization degrees of freedom have Hilbert

space C2 ⊗C2. Examples of states are |x⟩A ⊗ |y⟩B or |x⟩A ⊗ |y⟩B + |θ⟩A ⊗ |θ⟩B.
N Qbits live in the space

C2 ⊗C2 ⊗C2 ⊗ ...⊗C2︸ ︷︷ ︸
N copies

If |0⟩, |1⟩ is a canonical basis for C2, a basis for the composite system is given by

|b1⟩ ⊗ |b2⟩...⊗ |bN ⟩ = |b1, ..., bN ⟩

where bi = {0, 1}. There are 2N such states and they are in one to one corre-

spondence with the 2N classical bit strings of length N . A general N Qbit state

is a linear superposition of the basis states:

|ψ⟩ =
∑

b1,...,bN

cb1,...,bN |b1, ..., bN ⟩

where the coefficients cb1...bN satisfy∑
b1,...,bN

|cb1,...,bN |2

2.3 Tensor product versus entangled states

States of a composite system AB lie in HA⊗HB. We say that a state is a tensor

product state (or is not entangled) if it can be written as

|ψ⟩ = |ϕ⟩A ⊗ |χ⟩B

An entangled state |ψ⟩ ∈ HA ⊗ HB is one for which it is impossible to find

|ϕ⟩A ∈ HA and |χ⟩B ∈ HB such that ψ is of the tensor product form.

Entangled states have very special correlations between their parts A and B.
These are genuine quantum correlations with no classical counterpart and as

we will see later in the course they play a very important role (for example in

teleportation). These definitions generalize to multipartite systems.

example 9. Two Qbit system with A⊗B = C2⊗C2. Some product states are :

|0⟩A ⊗ |0⟩B = |0, 0⟩, |0⟩A ⊗ |1⟩B = |0, 1⟩, |1⟩A ⊗ |0⟩B = |1, 0⟩, |1⟩A ⊗ |1⟩B = |1, 1⟩.
Two less trivial ones are

1√
2
(|0⟩A + |1⟩B)⊗ |0⟩B =

1

2
(|0, 0⟩+ |1, 0⟩)

and

1√
2
(|0⟩A + |1⟩B)⊗

1√
2
(|0⟩B − |1⟩B) =

1

2
(|0, 0⟩ − |0, 1⟩+ |1, 0⟩ − |1, 1⟩)
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In the same space there are also entangled states that simply cannot be written

as a tensor product form. For example,

1√
2
(|0⟩A ⊗ |0⟩B + |1⟩A ⊗ |1⟩B) =

1√
2
(|0, 0⟩+ |1, 1⟩)

1√
2
(|0⟩A ⊗ |0⟩B − |1⟩A ⊗ |1⟩B) =

1√
2
(|0, 0⟩ − |1, 1⟩)

1√
2
(|1⟩A ⊗ |0⟩B + |0⟩A ⊗ |1⟩B) =

1√
2
(|1, 0⟩+ |0, 1⟩)

1√
2
(|0⟩A ⊗ |0⟩B − |1⟩A ⊗ |0⟩B) =

1√
2
(|0, 1⟩+ |1, 0⟩)

As we will see these four particular states play a special role and are called Bell

states. The reader can check that they form a basis of the 2 Qbit space.

Production of entangled states. Suppose we have a composite system in

an initial tensor product state |ϕ⟩A ⊗ |χ⟩B. These could for example be two

electrons in the spin state | ↑⟩ ⊗ | ↓⟩. If we let them evolve separately and

without interaction, the unitary operator for the time evolution is of the form

UA ⊗ UB and

UA ⊗ UB(| ↑⟩ ⊗ | ↓⟩) = UA| ↑⟩ ⊗ UB| ↓⟩

so that the system remains in a tensor product state.

Thus to produce entangled states systems A and B must interact at some

point in time in order to have an evolution UAB ̸= UA⊗UB. With an appropriate

interaction we might be able to achieve

UAB(| ↑⟩ ⊗ | ↓⟩)

All known physical interactions are local: this means that in order to interact (in

a non-negligible way) two systems must be ”close in space-time”. In particular

if we are presented with an entangled state we know that the two parties have

interacted in the past, i.e they have been ”sufficiently close in the past”.

2.4 No cloning theorem

Classical bits can be copied. For example any latex file can be duplicated or any

text can be copied with a (universal) Xerox machine.

Suppose we have a set of quantum states |ψ⟩ ∈ H and we want to build a

(universal) ”quantum Xerox machine” to copy |ψ⟩. This machine should be able

to copy any state of H. A quantum Xerox machine should be described by some

unitary operator U (this is true for any physical process except measurement).
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The Hilbert space is composite HA ⊗ HB where A is the quantum file to be

copied and B the duplicated file. We start from the state

|ψ⟩ ⊗ |blank⟩

and we feed it in the Xerox machine

|ψ⟩ ⊗ |blank⟩ → U → |ψ⟩ ⊗ |ψ⟩

In mathematical terms the question is: can one find a unitary operator such that

for a reasonably large set of ψ

U(|ψ⟩ ⊗ |blank⟩) = |ψ⟩ ⊗ |ψ⟩

The answer is NO and this is sometimes called the ”no cloning theorem”. However

it is possible to copy a set of orthogonal states with an appropriate U depending

on the set.

Proof of no-cloning theorem. Suppose there exists U such that U†U =

UU† = 1 with

U(|ϕ1⟩ ⊗ |blank⟩) = |ϕ1⟩ ⊗ |ϕ1⟩

U(|ϕ2⟩ ⊗ |blank⟩) = |ϕ2⟩ ⊗ |ϕ2⟩

conjugating the second equation

(⟨ϕ2| ⊗ ⟨blank|)U† = ⟨ϕ2| ⊗ ⟨ϕ2|

Taking the inner product with the first equation

⟨ϕ2| ⊗ ⟨blank|U†U |ϕ1⟩ ⊗ |blank⟩ = (ϕ2| ⊗ ⟨ϕ2|)(|ϕ1⟩ ⊗ |ϕ1⟩)

which implies

⟨ϕ2|ϕ1⟩⟨blank|blank⟩ = ⟨ϕ2|ϕ1⟩2

so

⟨ϕ2|ϕ1⟩ = 0 or ⟨ϕ2|ϕ1⟩ = 1

We conclude that we cannot copy states |ϕ1⟩ and |ϕ2⟩ that are not identical or

orthogonal, with the same U . In fact it is possible to copy a given orthogonal

basis . To see this the reader has to construct a unitary operation that does the

job.

Non orthogonal states cannot be perfectly distinguished. There are many

variants and refinements of the no-cloning theorem. let us just show one such

variant. Suppose we have two states |ψ⟩ and |ϕ⟩ and we want to build a (unitary)

machine to distinguish them. We seek a U such that

U |ψ⟩ ⊗ |a⟩ = |ψ⟩ ⊗ |v⟩

U |ϕ⟩ ⊗ |a⟩ = |ϕ⟩ ⊗ |v′⟩
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where the outputs |v⟩ and |v′⟩ give some information about |ψ⟩ and |ϕ⟩. Taking
the inner product of these two equations yields

⟨ϕ| ⊗ ⟨a|U†U |ψ⟩ ⊗ |a⟩ = (⟨ϕ| ⊗ ⟨v′|)(|ψ⟩⟩ ⊗ |v⟩)

This implies

⟨ϕ|ψ⟩⟨a|a⟩ = ⟨ϕ|ψ⟩⟨v′|v⟩

If |ϕ⟩ is not orthogonal to |ψ⟩ we have ⟨ϕ|ψ⟩ ̸= 0 thus

⟨v′|v⟩ = ⟨a|a⟩ = 1

Thus |v⟩ = |v′⟩ so there is no information in |v⟩ and |v′⟩ distinguishing |ψ⟩ and
|ϕ⟩.
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3 Problems

Problem 1: Mach-Zehnder interferometer. A beam splitter (see figure ??)

is a semi transparent mirror which separates a beam of light in two equal intensity

beams. Here is a simple quantum mechanical model of this device. Suppose each

photon lives in a two dimensional Hilbert space spanned by the basis states |T ⟩,
|R⟩ corresponding to the transmitted and reflected beam. When a photon in

the state |T ⟩ (see picture) hits the beam splitter the electrons of the material

absorb it and re-emit it in the the new state 1√
2
|T ⟩+ 1√

2
|R⟩. We know that this

purely dynamical process is modeled by a unitary ”time evolution” or ”transition

matrix”.

T

R

mirror

beam splitter

A

B

Figure 3.1 beam splitter and Mach-Zehnder interferometer

a) Write down the unitary matrix in the basis |T ⟩, |R⟩. In QIT this matrix is

called a Hadamard gate and is denoted by H.

b) Take a general incoming state |ψ⟩ = α|T ⟩ + β|R⟩ and compute the outgoing

state. For incoming light where all photons are in the state |ψ⟩ what are the

intensities of the outgoing light beams ?

Consider the following setup (Mach-Zehnder interferometer). An incoming hor-

izontal beam is splitted in two equal intensity beams which are then recollected

thanks to perfectly reflecting mirrors and splitted again in two equal intensity

beams (here we suppose the mirrors do not affect the states of the photons).

Two detectors DA and DB click each time a photon hits them.

c) If you reason ”classically” what is the probability that DA clicks ? And that

of DB ?

d) Now do the quantum mechanical computation. One way to proceed is to
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first find out the unitary transition matrix between the incoming state and the

outgoing state.

e) Now take another kind of beam splitters such that |T ⟩ → 1√
2
|T ⟩+ i√

2
|R⟩ (find

the other transition) and compute again the probabilities of hearing clicks at DA

and DB.

f) Now we introduce a ”phase shifter” on the upper arm of the interferometer.

This is a unitary device S|R⟩ = eiΦ|R⟩, S|T ⟩ = |T ⟩. Compute the intensities

measured by DA and DB .

Problem 2: Quantum parallelism. Suppose we want to compute all possible

values of the map f : {0, 1} → {0, 1} using a quantum unitary evolution. The

idea is to store the argument of f in some Qbit |x⟩ (x = 0, 1) and the result in

another Qbit |y⟩. Our Hilbert space is spanned by the four basis states {|x⟩⊗|y⟩}
where ⊗ means the tensor product (or Kronecker product). Prove that

Uf |x⟩ ⊗ |y⟩ = |x⟩ ⊗ |y ⊕ f(x)⟩

is a unitary map of the four dimensional Hilbert space to itself. Consider the

quantum circuit where H = 1√
2

(
1 1

1 −1

)
is the Hadamard gate acting on the

first Qbit.

a) What does this circuit do to the input state |0⟩ ⊗ |0⟩ ?

b) Suppose we have a way to do a measurement. What is the probability of

observing f(0) and f(1).

The following is a problem first posed by David Deutsch. We want to determine

if the function f is constant, f(0) = f(1), or not. Classically the only way to

do that is to evaluate f(0) and f(1) and observe each value separately: two

evaluations are required. Quantum mechanically only one evaluation is needed.

Find out why, by looking at the quantum operation of figure ??.

x

y

H

U
f

|Psi>

output
|x> |y>

input

||0> ||0>

H

H

H

H

U
f

Figure 3.2 Deutsch illustration of quantum parallelism



Notes

Chapter 1

1 The most important theoretical milestones from 1900 to 1930 are: Planck on black
body radiation (1900), Einstein on the photon (1905), Bohr on the atom (1910),
De Broglie on the wave function (1920 ?) , Schroedinger on the wave function
evolution (1926), Born on the interpretation of the wave function (?), Heisenberg
on his matrix mechanics (?), Dirac on the equivalence of Schroedinger and
Heisenberg mechanics and then on relativistic QM(1930)

2 In fact so-called absorptive polarizers are made of sheets of anisotropic crystals
allowing electron motion preferentially in the θ⊥ direction. The θ⊥ component of
the electric field sets electrons into a state of oscillation which produces the
emission of an emitted anti-phase electromagnetic wave polarized along θ⊥. The
later cancels the progressive θ⊥ component of the wave so that the net effect is to
leave out a θ transmitted component and a θ⊥ reflected component.

3 This can be a photoelectric cell which transforms the electromagnetic energy into
a current.

4 Malus law.
5 These are made of quartz or calcite crystals whose refraction index are different

for polarization perpendicular to, versus into, the incidence plane. Such crystals
are called birefringent, one ray is called ordinary because the direction of
refraction obeys the usual Snell law, while the other ray is called extraordinary.

6 cN
V

is the number of photons per unit time per unit surface that hit a detector.
7 in the spirit of statistical mechanics, say
8 For example photons, electrons, nuclei and their constituents ...
9 According to modern physics, matter is described by relativistic quantum fields.

There are underlying quantum fields (e.g. the quantum electromagnetic field, the
quantum electronic field, the quark field etc...) which may manifest themselves in
a wave-like or particle-like fashion depending on the situation.

10 Einstein never agreed that this rule is the final story. In his words “I, at any rate,
am convinced that He (God) does not throw dice”. Bohr replied “Einstein, don’t
tell God what to do”. In any case, this rule has not been challenged by experiment
so far, and there is hardly any more satisfying theoretical framework to date. In
this course we stick to this rule !

11 Here we may imagine that the paths are not quite in the same direction so that
these two labels are different. In principle one should make a more complete
description of the orbital part of the state that takes into account the finite width
of the beams.

12 Constituents of nuclei, protons and neutrons also have spin 1
2
. In particular the
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interaction of the nuclear spins with magnetic fields is at the basis of Nuclear
Magnetic Resonance, used for example in medical imaging.

Chapter 2

1 Combined with special relativity when needed
2 Complete means that all Cauchy sequences converge in the norm induced by the

inner product and separable that there is a contable orthonormal basis.
3 The study of this sort of reduction has led to a whole discipline called quantum

chaos. Let us also point out that non-linear versions of the Schroedinger equation
may arise when some degrees of freedom are integrated out, in other words for
non-isolated systems.

4 There is a ”correspondence principle” which is a rule of thumb on how to construct
the appropriate self-adjoint operator from the classical one; in fact this procedure
may sometimes be a bit ambiguous due to non-commutativity of operators

5 physicist are used to say that “the wave function collapses”


