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Solution 1.

(a) The state diagram and detour flow graph are shown here. The states are labeled as
(bj−1, bj−2) and the transitions with bj/x2j−1, x2j.
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(b) The output to −1,−1, . . . ,−1 will be −1,−1, 1,−1, 1, 1, . . . , 1.



(c) Given the observation y = (y1, . . . , y2n), the ML codeword is given by arg maxx∈C p(y|x)
where C represents the set of codewords (i.e., the set of all possible paths on the trellis).
Alternately, the ML codeword is given by

arg max
x∈C

2n∑
i=1

log p(yi|xi).

Hence, a branch metric for the BSC is

log p(yi|xi) =

{
log ε if yi 6= xi,

log(1− ε) if yi = xi.

The decoder chooses the path with the largest metric.

(d) The channel output will be 1, 1, . . . , 1 (length 2n all-1 sequence). The decoder will
clearly choose the path corresponding to the all-1 input sequence on the trellis and,
hence, decode the maximum likelihood transmitted input sequence as 1, 1, . . . , 1 (length
n all-1 sequence).

Solution 2.

(a) Firstly we have

ψF(f) = e−πf
2

(1− e−jπf ) = 2je−jπf/2e−πf
2

sin
(π

2
f
)
.

Moreover, E[Xi] = 0 and

KX [k] = E [Xi+kX
∗
i ] = E1{k = 0}.

Thus,

SX(f) = |ψF(f)|2
∑
k

KX [k]e−j2πkf = 4Ee−2πf2 sin2
(π

2
f
)
.

Therefore, SX(f) = 0 for ∀f = 2m, m ∈ Z.

(b) It is easy to check that still E[Xi] = 0 and

KX [k] = E [Xi+kX
∗
i ]

= s2
(
E[Di+kDi] + αE[Di+kDi−2] + αE[Di+k−2Di] + α2E[Di+k−2Di−2]

)
= s2

(
(1 + α2)1{k = 0}+ α1{k = −2}+ α1{k = 2}

)
.

In particular,

KX [0] = E[X2
i ] = s2(1 + α2) = E =⇒ s = ±

√
E

1 + α2
.

Therefore,

SX(f) = 4
E

1 + α2
e−2πf

2

sin2
(π

2
f
) (

(1 + α2) + 2α cos (4πf)
)
.

Finally, if |α| 6= 1, since (1 + α2) + 2α cos (4πf) has no real zeros for f , SX(f) = 0 for
∀f = 2m, m ∈ Z. However, if α = 1, solving (1 + α2) + 2α cos (4πf) = 0 for f gives
additional zeros at f = 2m+1

4
, m ∈ Z. Similarly if α = −1 there will be additional

nulls at frequencies f = m
2
, m ∈ Z.
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(c) Since d, d′ ∈ {−1,+1}, we can express f(d, d′) as

f(d, d′) =
1

2
(d− d′).

Once again we have E[Xi] = 0 and

KX [k] = E [Xi+kX
∗
i ]

=
s2

4
(E[Di+kDi]− E[Di+kDi−1]− E[Di+k−1Di] + E[Di+k−1Di−1])

=
s2

4
(21{k = 0} − 1{k = −1} − 1{k = 1}) .

Thus

KX [0] =
s2

2
= E =⇒ s = ±

√
2E ,

and

SX(f) = 4Ee−2πf2 sin2
(π

2
f
)

(1− cos (2πf)) .

(d) Using the precoder of (c) SX(f) = 0 for ∀f = m, m ∈ Z (thus, in particular SX(1) = 0).
Using the precoding proposed in (b) we have

SX(1) = 4
E

1 + α2
e−2π (1 + α)2 = 0 ⇐⇒ α = −1 .

Solution 3.

(a) Based on Nyquist’s criterion we know that B ≥ 1
2

.

(b) If B = 1
2
, in order for ψ(t) to be unit-norm and orthogonal to its 1-shifts we must have

|ψF(f)|2 = 1{−1
2
≤ f ≤ 1

2
}. Therefore,

ψF(f) = e−j2πft01{−1

2
≤ f ≤ 1

2
} ⇔ ψ(t) = sinc (t− t0)

Finally solving for ψ(0) = 0 gives t0 = 0. Thus ψ(t) = sinc(t) .

(c) If θ = 0,

<{RE(t)} = <{wE(t)}+NR(t),

={RE(t)} = ={wE(t)}+NI(t),

where NR(t) and NI(t) are independent white Gaussian noise processes of power spec-
tral density N0

2
.

A sufficient statistic to estimate Xj from the received signal is obtained by computing
the (complex-valued) inner products

Yj = 〈RE(t), ψ(t− j)〉,

or equivalently, pairs of real-valued inner products

Y1,j = 〈<{RE(t)}, ψ(t− j)〉 and Y2,j = 〈={RE(t)}, ψ(t− j)〉.
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To this end, one in principle has to filter the outputs of the down-converter using
matched filters of impulse response ψ∗(−t) and sample the outputs of the filters at
times t = j, j ∈ Z. However, in this problem we see that a filter with impulse response
ψ∗(−t) is nothing but a low-pass filter with frequency response 1{−1

2
≤ f ≤ 1

2
} which

is already included in the down-converter. Thus, it is sufficient to sample the output
of the down-converters directly to obtain the desired sufficient statistics.

R(t)

×

×

1{−B ≤ f ≤ B}

1{−B ≤ f ≤ B}

√
2 cos(2πfct+ θ)

−
√
2 sin(2πfct+ θ)

Y1,j

Y2,j

<{RE(t)}
t = j

={RE(t)}
t = j

(d) We have the following hypothesis testing problem:

under H = i : Y = ci + Z,

where Z ∼ N (0, N0

2
I2) and c1 = [1, 0], c2 = [0, 1], c3 = [−1, 0], and c4 = [0,−1].

For an AWGN setting, the ML decision rule will be the minimum distance decision
rule with the following decision regions:

Y1

Y2

c1
c3

c2

c4

R1

R2

R3

R4

This is a 4-PSK constellation and the probability of error of an ML decoder for such a
constellation is

Pe = 2Q

(
1√
N0

)
−Q

(
1√
N0

)2

.

(e) Using the trigonometric identity cos(a + b) = cos(a) cos(b) − sin(a) sin(b) we can see
that the output of the top modulator, in presence of the phase difference, is

R(t) cos(θ)×
√

2 cos(2πfct)−R(t) sin(θ)×
√

2 sin(2πfct).

Thus, as the low-pass filter is a linear system, the output of the top low-pass filter is:

<{RE(t)} = <{wE(t)} cos(θ) + ={wE(t)} sin(θ) + cos(θ)NR(t) + sin(θ)NI(t).
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Similarly, we can show that the output of the bottom low-pass filter is:

={RE(t)} = ={wE(t)} cos(θ)−<{wE(t)} sin(θ) + cos(θ)NI(t)− sin(θ)NR(t).

Therefore, the observable Y = [Y1, Y2] (under H = i) is now equal to

Y = Rθci +RθZ

where

Rθ =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
is the rotation matrix, the codewords ci are as in part (d), and Z ∼ N (0, N0

2
I2).

Moreover, we know that V = RθZ has the same statistics as Z. Thus, we can write
the observable Y as

under H = i : Y = Rθci + V

with V ∼ N (0, N0

2
I2).

Y1

Y2

c1

c2

c3

c4

sin
(
π
4
−
θ)

cos( π
4 −

θ)

θ

R1
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R3

R4

Using the above diagram, we can see that the probability of error of the receiver is

Pe = Q

(
sin(π

4
− θ)√

N0/2

)
+Q

(
cos(π

4
− θ)√

N0/2

)
−Q

(
sin(π

4
− θ)√

N0/2

)
Q

(
cos(π

4
− θ)√

N0/2

)
.

(f) If |θ| > π
4
, the constellation will be rotated in such a way that each codeword will be

moved out of its corresponding decision region (e.g. c1 will be moved to the decision
region R2, c2 to R3, . . . ). Therefore, in the absence of noise the decoder always
decodes the sent codeword incorrectly (error probability is 1). As the noise variance
increases the error probability decreases (there is a higher chance for the noise to move
the observable Y into the correct decision region). In particular if the noise variance
goes to infinity the observable Y will be a point chosen on the R2 plane uniformly at
random. Thus, with probability 1

4
it will be in the decoding region corresponding to

the transmitted codeword which means the error probability will be decreased to 3
4
.
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