ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 32	Principles of Digital Communications
Solutions to Mock Final Exam	Jun. 03, 2016

Solution 1.

(a) The state diagram and detour flow graph are shown here. The states are labeled as (b_{j-1}, b_{j-2}) and the transitions with $b_j/x_{2j-1}, x_{2j}$.

(b) The output to $-1, -1, \ldots, -1$ will be $-1, -1, 1, -1, 1, 1, \ldots, 1$.

(c) Given the observation $y = (y_1, \ldots, y_{2n})$, the ML codeword is given by $\arg \max_{x \in \mathcal{C}} p(y|x)$ where \mathcal{C} represents the set of codewords (i.e., the set of all possible paths on the trellis). Alternately, the ML codeword is given by

$$\arg\max_{x\in\mathcal{C}}\sum_{i=1}^{2n}\log p(y_i|x_i).$$

Hence, a branch metric for the BSC is

$$\log p(y_i|x_i) = \begin{cases} \log \epsilon & \text{if } y_i \neq x_i, \\ \log(1-\epsilon) & \text{if } y_i = x_i. \end{cases}$$

The decoder chooses the path with the largest metric.

(d) The channel output will be 1, 1, ..., 1 (length 2n all-1 sequence). The decoder will clearly choose the path corresponding to the all-1 input sequence on the trellis and, hence, decode the maximum likelihood transmitted input sequence as 1, 1, ..., 1 (length n all-1 sequence).

Solution 2.

(a) Firstly we have

$$\psi_{\mathcal{F}}(f) = e^{-\pi f^2} (1 - e^{-j\pi f}) = 2j e^{-j\pi f/2} e^{-\pi f^2} \sin\left(\frac{\pi}{2}f\right).$$

Moreover, $\mathbb{E}[X_i] = 0$ and

$$K_X[k] = \mathbb{E}\left[X_{i+k}X_i^*\right] = \mathcal{E}\mathbb{1}\{k=0\}.$$

Thus,

$$S_X(f) = |\psi_{\mathcal{F}}(f)|^2 \sum_k K_X[k] e^{-j2\pi kf} = 4\mathcal{E}e^{-2\pi f^2} \sin^2\left(\frac{\pi}{2}f\right)$$

Therefore, $S_X(f) = 0$ for $\forall f = 2m, m \in \mathbb{Z}$.

(b) It is easy to check that still $\mathbb{E}[X_i] = 0$ and

$$K_X[k] = \mathbb{E} \left[X_{i+k} X_i^* \right]$$

= $s^2 \left(\mathbb{E} [D_{i+k} D_i] + \alpha \mathbb{E} [D_{i+k} D_{i-2}] + \alpha \mathbb{E} [D_{i+k-2} D_i] + \alpha^2 \mathbb{E} [D_{i+k-2} D_{i-2}] \right)$
= $s^2 \left((1 + \alpha^2) \mathbb{1} \{ k = 0 \} + \alpha \mathbb{1} \{ k = -2 \} + \alpha \mathbb{1} \{ k = 2 \} \right).$

In particular,

$$K_X[0] = \mathbb{E}[X_i^2] = s^2(1+\alpha^2) = \mathcal{E} \implies s = \pm \sqrt{\frac{\mathcal{E}}{1+\alpha^2}}.$$

Therefore,

$$S_X(f) = 4\frac{\mathcal{E}}{1+\alpha^2}e^{-2\pi f^2}\sin^2\left(\frac{\pi}{2}f\right)\left((1+\alpha^2) + 2\alpha\cos\left(4\pi f\right)\right)$$

Finally, if $|\alpha| \neq 1$, since $(1 + \alpha^2) + 2\alpha \cos(4\pi f)$ has no real zeros for f, $S_X(f) = 0$ for $\forall f = 2m, m \in \mathbb{Z}$. However, if $\alpha = 1$, solving $(1 + \alpha^2) + 2\alpha \cos(4\pi f) = 0$ for f gives additional zeros at $f = \frac{2m+1}{4}, m \in \mathbb{Z}$. Similarly if $\alpha = -1$ there will be additional nulls at frequencies $f = \frac{m}{2}, m \in \mathbb{Z}$.

(c) Since $d, d' \in \{-1, +1\}$, we can express f(d, d') as

$$f(d, d') = \frac{1}{2}(d - d').$$

Once again we have $\mathbb{E}[X_i] = 0$ and

$$K_X[k] = \mathbb{E} \left[X_{i+k} X_i^* \right]$$

= $\frac{s^2}{4} \left(\mathbb{E} [D_{i+k} D_i] - \mathbb{E} [D_{i+k} D_{i-1}] - \mathbb{E} [D_{i+k-1} D_i] + \mathbb{E} [D_{i+k-1} D_{i-1}] \right)$
= $\frac{s^2}{4} \left(2\mathbb{1} \{ k = 0 \} - \mathbb{1} \{ k = -1 \} - \mathbb{1} \{ k = 1 \} \right).$

Thus

$$K_X[0] = \frac{s^2}{2} = \mathcal{E} \implies s = \pm \sqrt{2\mathcal{E}},$$

and

$$S_X(f) = 4\mathcal{E}e^{-2\pi f^2} \sin^2\left(\frac{\pi}{2}f\right) \left(1 - \cos\left(2\pi f\right)\right)$$

(d) Using the precoder of (c) $S_X(f) = 0$ for $\forall f = m, m \in \mathbb{Z}$ (thus, in particular $S_X(1) = 0$). Using the precoding proposed in (b) we have

$$S_X(1) = 4 \frac{\mathcal{E}}{1+\alpha^2} e^{-2\pi} \left(1+\alpha\right)^2 = 0 \quad \Longleftrightarrow \quad \boxed{\alpha = -1}.$$

Solution 3.

- (a) Based on Nyquist's criterion we know that $B \ge \frac{1}{2}$.
- (b) If $B = \frac{1}{2}$, in order for $\psi(t)$ to be unit-norm and orthogonal to its 1-shifts we must have $|\psi_{\mathcal{F}}(f)|^2 = \mathbb{1}\{-\frac{1}{2} \leq f \leq \frac{1}{2}\}$. Therefore,

$$\psi_{\mathcal{F}}(f) = e^{-j2\pi f t_0} \mathbb{1}\left\{-\frac{1}{2} \le f \le \frac{1}{2}\right\} \quad \Leftrightarrow \quad \psi(t) = \operatorname{sinc}\left(t - t_0\right)$$

Finally solving for $\psi(0) = 0$ gives $t_0 = 0$. Thus $\psi(t) = \operatorname{sinc}(t)$.

(c) If $\theta = 0$,

$$\Re\{R_E(t)\} = \Re\{w_E(t)\} + N_R(t), \\ \Im\{R_E(t)\} = \Im\{w_E(t)\} + N_I(t),$$

where $N_R(t)$ and $N_I(t)$ are independent white Gaussian noise processes of power spectral density $\frac{N_0}{2}$.

A sufficient statistic to estimate X_j from the received signal is obtained by computing the (complex-valued) inner products

$$Y_j = \langle R_E(t), \psi(t-j) \rangle,$$

or equivalently, pairs of real-valued inner products

$$Y_{1,j} = \langle \Re\{R_E(t)\}, \psi(t-j)\rangle \text{ and } Y_{2,j} = \langle \Im\{R_E(t)\}, \psi(t-j)\rangle.$$

To this end, one in principle has to filter the outputs of the down-converter using matched filters of impulse response $\psi^*(-t)$ and sample the outputs of the filters at times $t = j, j \in \mathbb{Z}$. However, in this problem we see that a filter with impulse response $\psi^*(-t)$ is nothing but a low-pass filter with frequency response $\mathbb{1}\left\{-\frac{1}{2} \leq f \leq \frac{1}{2}\right\}$ which is already included in the down-converter. Thus, it is sufficient to sample the output of the down-converters directly to obtain the desired sufficient statistics.

(d) We have the following hypothesis testing problem:

under
$$H = i$$
: $Y = c_i + Z$,

where $Z \sim \mathcal{N}(0, \frac{N_0}{2}I_2)$ and $c_1 = [1, 0], c_2 = [0, 1], c_3 = [-1, 0], \text{ and } c_4 = [0, -1].$

For an AWGN setting, the ML decision rule will be the minimum distance decision rule with the following decision regions:

This is a 4-PSK constellation and the probability of error of an ML decoder for such a constellation is

$$P_e = 2Q\left(\frac{1}{\sqrt{N_0}}\right) - Q\left(\frac{1}{\sqrt{N_0}}\right)^2$$

(e) Using the trigonometric identity $\cos(a + b) = \cos(a)\cos(b) - \sin(a)\sin(b)$ we can see that the output of the top modulator, in presence of the phase difference, is

$$R(t)\cos(\theta) \times \sqrt{2}\cos(2\pi f_c t) - R(t)\sin(\theta) \times \sqrt{2}\sin(2\pi f_c t).$$

Thus, as the low-pass filter is a linear system, the output of the top low-pass filter is:

 $\Re\{R_E(t)\} = \Re\{w_E(t)\}\cos(\theta) + \Im\{w_E(t)\}\sin(\theta) + \cos(\theta)N_R(t) + \sin(\theta)N_I(t).$

Similarly, we can show that the output of the bottom low-pass filter is:

$$\Im\{R_E(t)\} = \Im\{w_E(t)\}\cos(\theta) - \Re\{w_E(t)\}\sin(\theta) + \cos(\theta)N_I(t) - \sin(\theta)N_R(t).$$

Therefore, the observable $Y = [Y_1, Y_2]$ (under H = i) is now equal to

$$Y = R_{\theta}c_i + R_{\theta}Z$$

where

$$R_{\theta} = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}$$

is the rotation matrix, the codewords c_i are as in part (d), and $Z \sim \mathcal{N}(0, \frac{N_0}{2}I_2)$. Moreover, we know that $V = R_{\theta}Z$ has the same statistics as Z. Thus, we can write the observable Y as

under
$$H = i$$
: $Y = R_{\theta}c_i + V$

with $V \sim \mathcal{N}(0, \frac{N_0}{2}I_2)$.

Using the above diagram, we can see that the probability of error of the receiver is

$$P_e = Q\left(\frac{\sin(\frac{\pi}{4}-\theta)}{\sqrt{N_0/2}}\right) + Q\left(\frac{\cos(\frac{\pi}{4}-\theta)}{\sqrt{N_0/2}}\right) - Q\left(\frac{\sin(\frac{\pi}{4}-\theta)}{\sqrt{N_0/2}}\right)Q\left(\frac{\cos(\frac{\pi}{4}-\theta)}{\sqrt{N_0/2}}\right)$$

(f) If $|\theta| > \frac{\pi}{4}$, the constellation will be rotated in such a way that each codeword will be moved out of its corresponding decision region (e.g. c_1 will be moved to the decision region \mathcal{R}_2 , c_2 to \mathcal{R}_3 , ...). Therefore, in the absence of noise the decoder always decodes the sent codeword incorrectly (error probability is 1). As the noise variance increases the error probability decreases (there is a higher chance for the noise to move the observable Y into the correct decision region). In particular if the noise variance goes to infinity the observable Y will be a point chosen on the \mathbb{R}^2 plane uniformly at random. Thus, with probability $\frac{1}{4}$ it will be in the decoding region corresponding to the transmitted codeword which means the error probability will be decreased to $\frac{3}{4}$.