ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 19
Principles of Digital Communications
Solutions to Midterm Exam
Apr. 22, 2016
Solution 1.
(a) $\sigma_{a}^{2}=1$; any invertible transform on the output - in particular multiplication by 2 does not change the error probability.
(b) $\sigma_{b}^{2}=\frac{1}{4} ; Y=(\pm 2)+W$ which is equivalent to $Y^{\prime}=\frac{1}{2} Y=(\pm 1)+\frac{1}{2} W$ and $Z=\frac{1}{2} W \sim$ $\mathcal{N}\left(0, \frac{1}{4}\right)$.
(c) $\sigma_{c}^{2}=2 ; Y=(\pm 1)+W_{1}+W_{2}$ and $W_{1}+W_{2} \sim \mathcal{N}(0,2)$ (since W_{1} and W_{2} are independent).
(d) $\sigma_{d}^{2}=1 ; Y_{1}$ is a sufficient statistic for decision.
(e) $\sigma_{e}^{2}=\frac{1}{2}$; the observable is

$$
\left(Y_{1}, Y_{2}\right)= \pm(1,1)+\left(W_{1}, W_{2}\right)
$$

where $\left(W_{1}, W_{2}\right) \sim \mathcal{N}\left(0, I_{2}\right)$ and $\frac{1}{2}\left(Y_{1}+Y_{2}\right)= \pm 1+Z$ where $Z=\frac{1}{2}\left(W_{1}+W_{2}\right) \sim \mathcal{N}\left(0, \frac{1}{2}\right)$ is a sufficient statistic for the decision.

Solution 2.
(a) Under the hypothesis $H=+1,\left(Y_{1}, \ldots, Y_{n}\right)$ is an i.i.d. sequence whose components are Laplacian random variables with mean +1 , namely

$$
f_{Y_{1}, \ldots, Y_{n} \mid H}\left(y_{1}, \ldots, y_{n} \mid+1\right)=\left(\frac{1}{2}\right)^{n} \exp \left\{-\sum_{k=1}^{n}\left|y_{k}-1\right|\right\} .
$$

Similarly,

$$
f_{Y_{1}, \ldots, Y_{n} \mid H}\left(y_{1}, \ldots, y_{n} \mid-1\right)=\left(\frac{1}{2}\right)^{n} \exp \left\{-\sum_{k=1}^{n}\left|y_{k}+1\right|\right\} .
$$

The MAP decision rule is

$$
\frac{f_{Y_{1}, \ldots, Y_{n} \mid H}\left(y_{1}, \ldots, y_{n} \mid+1\right)}{f_{Y_{1}, \ldots, Y_{n} \mid H}\left(y_{1}, \ldots, y_{n} \mid-1\right)} \stackrel{\hat{H}=+1}{\gtrless} \frac{1-p}{p},
$$

which, after canceling the common factors and taking the logarithm, becomes
(b) Since $\forall \alpha \in \mathbb{R}:|\alpha+1|-|\alpha-1| \in[-2,2]$, the left-hand-side of (1) lies in $[-2 n, 2 n]$. Therefore, if

$$
2 n<\ln \frac{1-p}{p} \quad \Longleftrightarrow \quad p<\frac{1}{1+e^{2 n}},
$$

the receiver always chooses $\hat{H}=-1$.
Similarly, if

$$
-2 n>\ln \frac{1-p}{p} \quad \Longleftrightarrow \quad p>\frac{e^{2 n}}{1+e^{2 n}},
$$

the decision will always be $\hat{H}=+1$ (regardless of the observation).
(c) $T\left(y_{1}, \ldots, y_{n}\right)=\sum_{k=1}^{n}\left(\left|y_{k}+1\right|-\left|y_{k}-1\right|\right)$ is the log-likelihood ratio and, hence, is a sufficient statistic. We can prove this using Neyman-Fisher factorization theorem by noting that (for $a \in\{-1,+1\}$),

$$
\begin{align*}
f_{Y \mid H}\left(y_{1}, \ldots, y_{n} \mid a\right)= & \underbrace{\left(\frac{1}{2}\right)^{n} \exp \left\{-\frac{1}{2} \sum_{k=1}^{n}\left(\left|y_{k}-1\right|+\left|y_{k}+1\right|\right)\right\}}_{h\left(y_{1}, \ldots, y_{n}\right)} \\
& \times \underbrace{\exp \left\{-\frac{a}{2} \sum_{k=1}^{n}\left(\left|y_{k}-1\right|-\left|y_{k}+1\right|\right)\right\}}_{g_{a}\left(T\left(y_{1}, \ldots, y_{n}\right)\right)} . \tag{2}
\end{align*}
$$

(d) We have

$$
f_{V_{1}, \ldots, V_{n} \mid H}\left(v_{1}, \ldots, v_{n} \mid+1\right)=\exp \left\{-\sum_{k=1}^{n}\left(v_{k}-1\right)\right\} \prod_{k=1}^{n} \mathbb{1}\left\{v_{k} \geq 1\right\}
$$

and

$$
f_{V_{1}, \ldots, V_{n} \mid H}\left(v_{1}, \ldots, v_{n} \mid-1\right)=\exp \left\{-\sum_{k=1}^{n}\left(v_{k}+1\right)\right\} \prod_{k=1}^{n} \mathbb{1}\left\{v_{k} \geq-1\right\}
$$

Simplifying the above we get (for $a \in\{-1,+1\}$),

$$
\begin{equation*}
f_{V_{1}, \ldots, V_{n} \mid H}\left(v_{1}, \ldots, v_{n} \mid a\right)=\underbrace{\exp \left\{-\sum_{k=1}^{n} v_{k}\right\}}_{h^{\prime}\left(v_{1}, \ldots, v_{n}\right)} \times \underbrace{\exp (n a) \mathbb{1}\left\{\min \left\{v_{1}, \ldots, v_{n}\right\} \geq a\right\}}_{g_{a}^{\prime}\left(T^{\prime}\left(v_{1}, \ldots, v_{n}\right)\right)}, \tag{3}
\end{equation*}
$$

with $T^{\prime}\left(v_{1}, \ldots, v_{n}\right)=\min \left\{v_{1}, \ldots, v_{n}\right\}$.
Since conditioned on $H=a, a \in\{-1,+1\}$ the observables Y_{1}, \ldots, Y_{n} and V_{1}, \ldots, V_{n} are independent,

$$
\begin{aligned}
& f_{Y_{1}, \ldots, Y_{n}, V_{1}, \ldots, V_{n} \mid H}\left(y_{1}, \ldots, y_{n}, v_{1}, \ldots, y_{n} \mid a\right) \\
& \quad=f_{Y_{1}, \ldots, Y_{n} \mid H}\left(y_{1}, \ldots, y_{n} \mid a\right) \times f_{V_{1}, \ldots, V_{n} \mid H}\left(v_{1}, \ldots, y_{n} \mid a\right) \\
& \quad=h\left(y_{1}, \ldots, y_{n}\right) h^{\prime}\left(v_{1}, \ldots, v_{n}\right) \times g_{a}\left(T\left(y_{1}, \ldots, y_{n}\right)\right) g_{a}^{\prime}\left(T^{\prime}\left(v_{1}, \ldots, v_{n}\right)\right)
\end{aligned}
$$

where h, g_{a}, h^{\prime}, and g_{a}^{\prime} are defined in (2) and (3). Therefore, using the factorization theorem we conclude that $\left(T\left(y_{1}, \ldots, y_{n}\right), T^{\prime}\left(v_{1}, \ldots, v_{n}\right)\right)$ is a sufficient statistic for the hypothesis testing problem.
The MAP decision rule (in terms of T and T^{\prime}) is

Now if $T^{\prime}=\min \left\{v_{1}, \ldots, v_{n}\right\} \in(-1,1)$ we see that $g_{+1}^{\prime}\left(T^{\prime}\right)=0$ thus the MAP rule always chooses $\hat{H}=-1$. Otherwise (i.e., when $\min \left\{v_{1}, \ldots, v_{n}\right\} \geq 1$) (4) reduces to

$$
\begin{equation*}
T\left(y_{1}, \ldots, y_{n}\right)=\sum_{k=1}^{n}\left(\left|y_{k}+1\right|-\left|y_{k}-1\right|\right) \underset{\hat{H}=-1}{\stackrel{\hat{H}=+1}{<}} \ln \frac{1-p}{p}-2 n . \tag{5}
\end{equation*}
$$

Thus, the decision regions are:

(note that $T \in[-2 n, 2 n]$ as we discussed in (b) and $T^{\prime} \geq-1$).
(e) From the decision regions of (d) it is clear that if $p \geq \frac{1}{2}$ the optimal decision depends only on T^{\prime} which, in turn, is only a function of $\left(V_{1}, \ldots, V_{n}\right)$. Therefore, if $p \geq \frac{1}{2}$ the receiver that only observes $\left(V_{1}, \ldots, V_{n}\right)$ can perform as well as the optimal receiver.

Solution 3.

(a) Since the space spanned by $\left\{w_{0}, w_{1}\right\}$ is the same as the space spanned by $\left\{v_{0}, w_{1}\right\}$, we can obtain v_{1} by applying the Gram-Schmidt procedure on $\left\{v_{0}, w_{1}\right\}$:

$$
\begin{aligned}
w_{1}-\left\langle w_{1}, v_{0}\right\rangle v_{0} & =w_{1}-\left\langle w_{1}, \frac{w_{0}-w_{1}}{\left\|w_{0}-w_{1}\right\|}\right\rangle \frac{w_{0}-w_{1}}{\left\|w_{0}-w_{1}\right\|} \\
& =w_{1}-\frac{\left\langle w_{0}, w_{1}\right\rangle-\left\|w_{1}\right\|^{2}}{\left\|w_{0}-w_{1}\right\|^{2}} \cdot\left(w_{0}-w_{1}\right) \\
& =w_{1}-\frac{\left\langle w_{0}, w_{1}\right\rangle-\left\|w_{1}\right\|^{2}}{\left\|w_{0}\right\|^{2}+\left\|w_{1}\right\|^{2}-2\left\langle w_{0}, w_{1}\right\rangle} \cdot\left(w_{0}-w_{1}\right) \\
& =w_{1}-\frac{\left\langle w_{0}, w_{1}\right\rangle-\mathcal{E}}{2 \mathcal{E}-2\left\langle w_{0}, w_{1}\right\rangle} \cdot\left(w_{0}-w_{1}\right) \\
& =w_{1}+\frac{1}{2}\left(w_{0}-w_{1}\right)=\frac{1}{2} \cdot\left(w_{0}+w_{1}\right) .
\end{aligned}
$$

Therefore,

$$
v_{1}=\frac{w_{1}-\left\langle w_{1}, v_{0}\right\rangle v_{0}}{\left\|w_{1}-\left\langle w_{1}, v_{0}\right\rangle v_{0}\right\|}=\frac{w_{0}+w_{1}}{\left\|w_{0}+w_{1}\right\|} .
$$

(b) Let $Z_{0}=\left\langle N, v_{0}\right\rangle$ and $Z_{1}=\left\langle N, v_{1}\right\rangle . Z_{0}$ and Z_{1} are independent because v_{0} and v_{1} are orthogonal. We have:

$$
\begin{aligned}
U_{1}=\left\langle R, v_{1}\right\rangle & = \begin{cases}\left\langle w_{0}, \frac{w_{0}+w_{1}}{\left\|w_{0}+w_{1}\right\|}\right\rangle+Z_{1} & \text { if } 0 \text { is sent }, \\
\left\langle w_{1}, \frac{w_{0}+w_{1}}{\left\|w_{0}+w_{1}\right\|}\right\rangle+Z_{1} & \text { if } 1 \text { is sent. }\end{cases} \\
& = \begin{cases}\frac{\left\|w_{0}\right\|^{2}+\left\langle w_{0}, w_{1}\right\rangle}{\left\|w_{0}+w_{1}\right\|}+Z_{1} & \text { if } 0 \text { is sent }, \\
\frac{\left\langle w_{1}, w_{0}+\left\|w_{0}\right\|^{2}\right.}{\left\|w_{0}+w_{1}\right\|}+Z_{1} & \text { if } 1 \text { is sent. }\end{cases} \\
& = \begin{cases}\frac{\mathcal{E}+\left\langle w_{0}, w_{1}\right\rangle}{\left\|w_{0}+w_{1}\right\|}+Z_{1} & \text { if } 0 \text { is sent, } \\
\frac{\mathcal{E}\left\langle w_{0}, w_{1}\right\rangle}{\left\|w_{0}+w_{1}\right\|}+Z_{1} & \text { if } 1 \text { is sent. }\end{cases}
\end{aligned}
$$

This shows that the distribution of U_{1} is independent from the transmitted bit (and from U_{0}). Therefore, U_{1} can be thrown away. Hence, U_{0} is sufficient statistics for the hypothesis testing problem.
(c) We have:

$$
\begin{aligned}
U_{0}=\left\langle R, v_{0}\right\rangle & = \begin{cases}\left\langle w_{0}, \frac{w_{0}-w_{1}}{\left\|w_{0}-w_{1}\right\|}\right\rangle+Z_{0} & \text { if } 0 \text { is sent }, \\
\left\langle w_{1}, \frac{w_{0}-w_{1}}{\left\|w_{0}-w_{1}\right\|}\right\rangle+Z_{0} & \text { if } 1 \text { is sent. }\end{cases} \\
& = \begin{cases}\frac{\left\|w_{0}\right\|^{2}-\left\langle w_{0}, w_{1}\right\rangle}{\left\|w_{0}-w_{1}\right\|}+Z_{0} & \text { if } 0 \text { is sent }, \\
\frac{\left.w_{1}, w_{0}\right\rangle-\left.\left\|w_{0}\right\|\right|^{2}}{\left\|w_{0}-w_{1}\right\|}+Z_{0} & \text { if } 1 \text { is sent. }\end{cases} \\
& = \begin{cases}\frac{\mathcal{E}-\left\langle w_{0}, w_{1}\right\rangle}{\left\|w_{0}-w_{1}\right\|}+Z_{0} & \text { if } 0 \text { is sent }, \\
\frac{\left\langle w_{0}, w_{1}\right\rangle-\mathcal{E}}{\left\|w_{0}-w_{1}\right\|}+Z_{0} & \text { if } 1 \text { is sent. }\end{cases}
\end{aligned}
$$

Note that $\left\|w_{0}-w_{1}\right\|^{2}=\left\|w_{0}\right\|^{2}+\left\|w_{1}\right\|^{2}-2\left\langle w_{0}, w_{1}\right\rangle=2 \mathcal{E}-2\left\langle w_{0}, w_{1}\right\rangle$. Therefore,

$$
\begin{aligned}
U_{0} & = \begin{cases}\frac{\left\|w_{0}-w_{1}\right\|^{2}}{2\left\|w_{0}-w_{1}\right\|}+Z_{0} & \text { if } 0 \text { is sent } \\
\frac{\left\|w_{0}-w_{1}\right\|^{2}}{2\left\|w_{0}-w_{1}\right\|}+Z_{0} & \text { if } 1 \text { is sent. }\end{cases} \\
& = \begin{cases}\frac{1}{2}\left\|w_{0}-w_{1}\right\|+Z_{0} & \text { if } 0 \text { is sent } \\
-\frac{1}{2}\left\|w_{0}-w_{1}\right\|+Z_{0} & \text { if } 1 \text { is sent. }\end{cases}
\end{aligned}
$$

Now since $Z_{0}=\left\langle N, v_{0}\right\rangle \sim \mathcal{N}\left(0, \frac{N_{0}}{2}\right)$, the probability of error of the MAP decoder is given by

$$
P_{e}=Q\left(\frac{\frac{1}{2}\left\|w_{0}-w_{1}\right\|}{\sqrt{\frac{N_{0}}{2}}}\right)=Q\left(\frac{\left\|w_{0}-w_{1}\right\|}{\sqrt{2 N_{0}}}\right) .
$$

(d) The Cauchy-Schwarz inequality gives $\left|\left\langle w_{0}, w_{1}\right\rangle\right| \leq\left\|w_{0}\right\| \cdot\left\|w_{1}\right\|=\mathcal{E}$. Therefore, $\left\langle w_{0}, w_{1}\right\rangle \geq$ $-\mathcal{E}$. Hence,

$$
\left\|w_{0}-w_{1}\right\|^{2}=2 \mathcal{E}-2\left\langle w_{0}, w_{1}\right\rangle \leq 2 \mathcal{E}+2 \mathcal{E}=4 \mathcal{E}
$$

We conclude that $\left\|w_{0}-w_{1}\right\| \leq 2 \sqrt{\mathcal{E}}$. Therefore, the probability of error of the MAP decoder is lower-bounded as follows:

$$
P_{e}=Q\left(\frac{\left\|w_{0}-w_{1}\right\|}{\sqrt{2 N_{0}}}\right) \stackrel{(\star)}{\geq} Q\left(\frac{2 \sqrt{\mathcal{E}}}{\sqrt{2 N_{0}}}\right)=Q\left(\sqrt{\frac{2 \mathcal{E}}{N_{0}}}\right)
$$

Moreover, (\star) becomes an equality when $\left\langle w_{0}, w_{1}\right\rangle=-\mathcal{E}=-\left\|w_{0}\right\| \cdot\left\|w_{1}\right\|$, which is true if $w_{1}=-w_{0}$.

Solution 4.

(a) Looking at the waveforms we realize that the four signals $\psi_{1}(t)=\mathbb{1}\{0 \leq t \leq 1\}$, $\psi_{2}(t)=\psi_{1}(t-1), \psi_{3}(t)=\psi_{1}(t-2)$, and $\psi_{3}(t)=\psi_{1}(t-2)$ form an orthonormal basis for the signal space spanned by the waveforms. In this basis $w_{1}(t), w_{2}(t), w_{3}(t)$, and $w_{4}(t)$ correspond to the codewords $c_{1}=(2,1,3,2), c_{2}=(1,0,2,1), c_{3}=(0,-1,1,0)$ and $c_{4}=(-1,-2,0,-1)$ respectively.

An ML receiver (which is optimal because of equiprobable hypotheses) first projects the received signal $R(t)=w_{i}(t)+N(t)$ onto the orthonormal basis and forms the 4tuple $\left(Y_{1}, Y_{2}, Y_{3}, Y_{4}\right)$ with $Y_{k}=\left\langle R(t), \psi_{k}(t)\right\rangle, k=1,2,3,4$. This reduces the problem to the hypothesis testing problem in discrete additive white Gaussian noise channel,

$$
\text { under } H=i, i=1,2,3,4: \quad Y=c_{i}+Z
$$

where c_{i} 's are defined above and $Z \sim \mathcal{N}\left(0, \frac{N_{0}}{2} I_{4}\right)$. We know that the ML receiver should chose $\hat{H}=\arg \min _{i}\left\|Y-c_{i}\right\|$.
We finally realize that since $h(t)=\psi_{1}(1-t)$ and the remaining basis vectors are the shifted versions of $\psi_{1}(t)$, the n-tuple former can be implemented by sampling the output of a single filter at times $t=1,2,3$ and 4 to compute Y_{1}, Y_{2}, Y_{3}, and Y_{4} respectively:

(b) The union bound gives

$$
\operatorname{Pr}\left\{\operatorname{error} \mid w_{i} \text { is sent }\right\} \leq \sum_{j \neq i} Q\left(\frac{d_{i, j}}{\sqrt{2 N_{0}}}\right)
$$

where $d_{i, j}=\left\|w_{i}-w_{j}\right\|=\left\|c_{i}-c_{j}\right\|$. In the following table we have computed those values

$d_{i, j}$	1	2	3	4
1	0	2	4	6
2	2	0	2	4
3	4	2	0	2
4	6	4	2	0

Consequently,
$\operatorname{Pr}\left\{\operatorname{error} \mid w_{1}\right.$ is sent $\}=\operatorname{Pr}\left\{\operatorname{error} \mid w_{4}\right.$ is sent $\}=Q\left(\frac{2}{\sqrt{2 N_{0}}}\right)+Q\left(\frac{4}{\sqrt{2 N_{0}}}\right)+Q\left(\frac{6}{\sqrt{2 N_{0}}}\right)$, and

$$
\operatorname{Pr}\left\{\operatorname{error} \mid w_{2} \text { is sent }\right\}=\operatorname{Pr}\left\{\text { error } \mid w_{3} \text { is sent }\right\}=2 Q\left(\frac{2}{\sqrt{2 N_{0}}}\right)+Q\left(\frac{4}{\sqrt{2 N_{0}}}\right) .
$$

Therefore,

$$
\begin{aligned}
\operatorname{Pr}\{\text { error }\}=\sum_{i=1}^{4} \operatorname{Pr}\left\{w_{i} \text { is sent }\right\} & \operatorname{Pr}\left\{\text { error } \mid w_{i} \text { is sent }\right\} \\
& \leq \frac{3}{2} Q\left(\frac{2}{\sqrt{2 N_{0}}}\right)+Q\left(\frac{4}{\sqrt{2 N_{0}}}\right)+\frac{1}{2} Q\left(\frac{6}{\sqrt{2 N_{0}}}\right) .
\end{aligned}
$$

(c) The minimum energy signal set is obtained by subtracting from each signal the average $\frac{1}{4}\left[w_{1}(t)+w_{2}(t)+w_{3}(t)+w_{4}(t)\right]$ which is depicted below

$$
\frac{1}{4}\left[w_{1}(t)+w_{2}(t)+w_{3}(t)+w_{4}(t)\right]
$$

Therefore the minimum energy signal set is

(d) It is easy to verify that the new signal set spans a one-dimensional space with basis $\tilde{\psi}(t)=\frac{1}{2} \mathbb{1}\{0 \leq t \leq 4\}$. Indeed, the new signal set corresponds to 4-PAM constellation

For the 4-PAM constellation,

$$
\operatorname{Pr}\left\{\operatorname{error} \mid w_{1} \text { is sent }\right\}=\operatorname{Pr}\left\{\operatorname{error} \mid w_{4} \text { is sent }\right\}=Q\left(\frac{2}{\sqrt{2 N_{0}}}\right),
$$

and

$$
\operatorname{Pr}\left\{\operatorname{error} \mid w_{2} \text { is sent }\right\}=\operatorname{Pr}\left\{\operatorname{error} \mid w_{3} \text { is sent }\right\}=2 Q\left(\frac{2}{\sqrt{2 N_{0}}}\right),
$$

which yields

$$
\operatorname{Pr}\{\text { error }\}=\frac{3}{2} Q\left(\frac{2}{\sqrt{2 N_{0}}}\right) .
$$

(e) Since translation is an isometric transform and does not change the probability of error, the probability of error for the receiver in part (a) will also be equal to $\frac{3}{2} Q\left(\frac{2}{\sqrt{2 N_{0}}}\right)$.

