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Solution 1.

(a) σ2
a = 1; any invertible transform on the output — in particular multiplication by 2 —

does not change the error probability.

(b) σ2
b = 1

4
; Y = (±2) +W which is equivalent to Y ′ = 1

2
Y = (±1) + 1

2
W and Z = 1

2
W ∼

N (0, 1
4
).

(c) σ2
c = 2; Y = (±1)+W1+W2 andW1+W2 ∼ N (0, 2) (sinceW1 andW2 are independent).

(d) σ2
d = 1; Y1 is a sufficient statistic for decision.

(e) σ2
e = 1

2
; the observable is

(Y1, Y2) = ±(1, 1) + (W1,W2)

where (W1,W2) ∼ N (0, I2) and 1
2
(Y1 +Y2) = ±1+Z where Z = 1

2
(W1 +W2) ∼ N (0, 1

2
)

is a sufficient statistic for the decision.

Solution 2.

(a) Under the hypothesis H = +1, (Y1, . . . , Yn) is an i.i.d. sequence whose components are
Laplacian random variables with mean +1, namely

fY1,...,Yn|H(y1, . . . , yn|+ 1) =

(
1

2

)n

exp

{
−

n∑
k=1

|yk − 1|

}
.

Similarly,

fY1,...,Yn|H(y1, . . . , yn| − 1) =

(
1

2

)n

exp

{
−

n∑
k=1

|yk + 1|

}
.

The MAP decision rule is

fY1,...,Yn|H(y1, . . . , yn|+ 1)

fY1,...,Yn|H(y1, . . . , yn| − 1)

Ĥ=+1

R
Ĥ=−1

1− p
p

,

which, after canceling the common factors and taking the logarithm, becomes

n∑
k=1

(|yk + 1| − |yk − 1|)
Ĥ=+1

R
Ĥ=−1

ln
1− p
p

. (1)

(b) Since ∀α ∈ R : |α + 1| − |α − 1| ∈ [−2, 2], the left-hand-side of (1) lies in [−2n, 2n].
Therefore, if

2n < ln
1− p
p

⇐⇒ p <
1

1 + e2n
,

the receiver always chooses Ĥ = −1.

Similarly, if

−2n > ln
1− p
p

⇐⇒ p >
e2n

1 + e2n
,

the decision will always be Ĥ = +1 (regardless of the observation).



(c) T (y1, . . . , yn) =
∑n

k=1 (|yk + 1| − |yk − 1|) is the log-likelihood ratio and, hence, is a
sufficient statistic. We can prove this using Neyman–Fisher factorization theorem by
noting that (for a ∈ {−1,+1}),

fY |H(y1, . . . , yn|a) =

(
1

2

)n

exp

{
−1

2

n∑
k=1

(|yk − 1|+ |yk + 1|)

}
︸ ︷︷ ︸

h(y1,...,yn)

× exp

{
−a

2

n∑
k=1

(|yk − 1| − |yk + 1|)

}
︸ ︷︷ ︸

ga(T (y1,...,yn))

. (2)

(d) We have

fV1,...,Vn|H(v1, . . . , vn|+ 1) = exp

{
−

n∑
k=1

(vk − 1)

}
n∏

k=1

1{vk ≥ 1},

and

fV1,...,Vn|H(v1, . . . , vn| − 1) = exp

{
−

n∑
k=1

(vk + 1)

}
n∏

k=1

1{vk ≥ −1},

Simplifying the above we get (for a ∈ {−1,+1}),

fV1,...,Vn|H(v1, . . . , vn|a) = exp

{
−

n∑
k=1

vk

}
︸ ︷︷ ︸

h′(v1,...,vn)

× exp(na)1{min{v1, . . . , vn} ≥ a}︸ ︷︷ ︸
g′a(T

′(v1,...,vn))

, (3)

with T ′(v1, . . . , vn) = min{v1, . . . , vn}.
Since conditioned on H = a, a ∈ {−1,+1} the observables Y1, . . . , Yn and V1, . . . , Vn
are independent,

fY1,...,Yn,V1,...,Vn|H(y1, . . . , yn, v1, . . . , yn|a)

= fY1,...,Yn|H(y1, . . . , yn|a)× fV1,...,Vn|H(v1, . . . , yn|a)

= h(y1, . . . , yn)h′(v1, . . . , vn)× ga
(
T (y1, . . . , yn)

)
g′a
(
T ′(v1, . . . , vn)

)
where h, ga, h

′, and g′a are defined in (2) and (3). Therefore, using the factorization
theorem we conclude that

(
T (y1, . . . , yn), T ′(v1, . . . , vn)

)
is a sufficient statistic for the

hypothesis testing problem.

The MAP decision rule (in terms of T and T ′) is

g+1(T )g′+1(T
′)× p

Ĥ=+1

R
Ĥ=−1

g−1(T )g′−1(T
′)× (1− p). (4)

Now if T ′ = min{v1, . . . , vn} ∈ (−1, 1) we see that g′+1(T
′) = 0 thus the MAP rule

always chooses Ĥ = −1. Otherwise (i.e., when min{v1, . . . , vn} ≥ 1) (4) reduces to

T (y1, . . . , yn) =
n∑

k=1

(|yk + 1| − |yk − 1|)
Ĥ=+1

R
Ĥ=−1

ln
1− p
p
− 2n. (5)

Thus, the decision regions are:
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T

T ′

−2n 2nln 1−p
p − 2n −1

1

Ĥ = −1

Ĥ = 1

T

T ′

−2n 2n−1

1

Ĥ = −1

Ĥ = 1

p < 1
2

p ≥ 1
2

(note that T ∈ [−2n, 2n] as we discussed in (b) and T ′ ≥ −1).

(e) From the decision regions of (d) it is clear that if p ≥ 1
2

the optimal decision depends
only on T ′ which, in turn, is only a function of (V1, . . . , Vn). Therefore, if p ≥ 1

2
the

receiver that only observes (V1, . . . , Vn) can perform as well as the optimal receiver.

Solution 3.

(a) Since the space spanned by {w0, w1} is the same as the space spanned by {v0, w1}, we
can obtain v1 by applying the Gram–Schmidt procedure on {v0, w1}:

w1 − 〈w1, v0〉v0 = w1 −
〈
w1,

w0 − w1

‖w0 − w1‖

〉
w0 − w1

‖w0 − w1‖

= w1 −
〈w0, w1〉 − ‖w1‖2

‖w0 − w1‖2
· (w0 − w1)

= w1 −
〈w0, w1〉 − ‖w1‖2

‖w0‖2 + ‖w1‖2 − 2〈w0, w1〉
· (w0 − w1)

= w1 −
〈w0, w1〉 − E

2E − 2〈w0, w1〉
· (w0 − w1)

= w1 +
1

2
(w0 − w1) =

1

2
· (w0 + w1).

Therefore,

v1 =
w1 − 〈w1, v0〉v0
‖w1 − 〈w1, v0〉v0‖

=
w0 + w1

‖w0 + w1‖
.

(b) Let Z0 = 〈N, v0〉 and Z1 = 〈N, v1〉. Z0 and Z1 are independent because v0 and v1 are
orthogonal. We have:

U1 = 〈R, v1〉 =

{
〈w0,

w0+w1

‖w0+w1‖〉+ Z1 if 0 is sent,

〈w1,
w0+w1

‖w0+w1‖〉+ Z1 if 1 is sent.

=

{
‖w0‖2+〈w0,w1〉
‖w0+w1‖ + Z1 if 0 is sent,

〈w1,w0〉+‖w0‖2
‖w0+w1‖ + Z1 if 1 is sent.

=

{
E+〈w0,w1〉
‖w0+w1‖ + Z1 if 0 is sent,
E+〈w0,w1〉
‖w0+w1‖ + Z1 if 1 is sent.

This shows that the distribution of U1 is independent from the transmitted bit (and
from U0). Therefore, U1 can be thrown away. Hence, U0 is sufficient statistics for the
hypothesis testing problem.
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(c) We have:

U0 = 〈R, v0〉 =

{
〈w0,

w0−w1

‖w0−w1‖〉+ Z0 if 0 is sent,

〈w1,
w0−w1

‖w0−w1‖〉+ Z0 if 1 is sent.

=

{
‖w0‖2−〈w0,w1〉
‖w0−w1‖ + Z0 if 0 is sent,

〈w1,w0〉−‖w0‖2
‖w0−w1‖ + Z0 if 1 is sent.

=

{
E−〈w0,w1〉
‖w0−w1‖ + Z0 if 0 is sent,
〈w0,w1〉−E
‖w0−w1‖ + Z0 if 1 is sent.

Note that ‖w0 − w1‖2 = ‖w0‖2 + ‖w1‖2 − 2〈w0, w1〉 = 2E − 2〈w0, w1〉. Therefore,

U0 =

{
‖w0−w1‖2
2‖w0−w1‖ + Z0 if 0 is sent,
−‖w0−w1‖2
2‖w0−w1‖ + Z0 if 1 is sent.

=

{
1
2
‖w0 − w1‖+ Z0 if 0 is sent,

−1
2
‖w0 − w1‖+ Z0 if 1 is sent.

Now since Z0 = 〈N, v0〉 ∼ N (0, N0

2
), the probability of error of the MAP decoder is

given by

Pe = Q

 1
2
‖w0 − w1‖√

N0

2

 = Q

(
‖w0 − w1‖√

2N0

)
.

(d) The Cauchy–Schwarz inequality gives |〈w0, w1〉| ≤ ‖w0‖·‖w1‖ = E . Therefore, 〈w0, w1〉 ≥
−E . Hence,

‖w0 − w1‖2 = 2E − 2〈w0, w1〉 ≤ 2E + 2E = 4E .

We conclude that ‖w0 − w1‖ ≤ 2
√
E . Therefore, the probability of error of the MAP

decoder is lower-bounded as follows:

Pe = Q

(
‖w0 − w1‖√

2N0

)
(?)

≥ Q

(
2
√
E√

2N0

)
= Q

(√
2E
N0

)
.

Moreover, (?) becomes an equality when 〈w0, w1〉 = −E = −‖w0‖ · ‖w1‖, which is true
if w1 = −w0.

Solution 4.

(a) Looking at the waveforms we realize that the four signals ψ1(t) = 1{0 ≤ t ≤ 1},
ψ2(t) = ψ1(t− 1), ψ3(t) = ψ1(t− 2), and ψ3(t) = ψ1(t− 2) form an orthonormal basis
for the signal space spanned by the waveforms. In this basis w1(t), w2(t), w3(t), and
w4(t) correspond to the codewords c1 = (2, 1, 3, 2), c2 = (1, 0, 2, 1), c3 = (0,−1, 1, 0)
and c4 = (−1,−2, 0,−1) respectively.

An ML receiver (which is optimal because of equiprobable hypotheses) first projects
the received signal R(t) = wi(t) + N(t) onto the orthonormal basis and forms the 4-
tuple (Y1, Y2, Y3, Y4) with Yk = 〈R(t), ψk(t)〉, k = 1, 2, 3, 4. This reduces the problem
to the hypothesis testing problem in discrete additive white Gaussian noise channel,

under H = i, i = 1, 2, 3, 4: Y = ci + Z
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where ci’s are defined above and Z ∼ N (0, N0

2
I4). We know that the ML receiver

should chose Ĥ = arg mini ‖Y − ci‖.
We finally realize that since h(t) = ψ1(1 − t) and the remaining basis vectors are the
shifted versions of ψ1(t), the n-tuple former can be implemented by sampling the output
of a single filter at times t = 1, 2, 3 and 4 to compute Y1, Y2, Y3, and Y4 respectively:

R(t) = wi(t) +N(t) 1{0 ≤ t ≤ 1} argmin ‖Y − ci‖ Ĥ

t = 1
Y1

t = 2
Y2

t = 3

Y3

t = 4

Y4

(b) The union bound gives

Pr{error|wi is sent} ≤
∑
j 6=i

Q

(
di,j√
2N0

)
where di,j = ‖wi − wj‖ = ‖ci − cj‖. In the following table we have computed those
values

di,j 1 2 3 4
1 0 2 4 6
2 2 0 2 4
3 4 2 0 2
4 6 4 2 0

Consequently,

Pr{error|w1 is sent} = Pr{error|w4 is sent} = Q

(
2√
2N0

)
+Q

(
4√
2N0

)
+Q

(
6√
2N0

)
,

and

Pr{error|w2 is sent} = Pr{error|w3 is sent} = 2Q

(
2√
2N0

)
+Q

(
4√
2N0

)
.

Therefore,

Pr{error} =
4∑

i=1

Pr{wi is sent}Pr{error|wi is sent}

≤ 3

2
Q

(
2√
2N0

)
+Q

(
4√
2N0

)
+

1

2
Q

(
6√
2N0

)
.

(c) The minimum energy signal set is obtained by subtracting from each signal the average
1
4
[w1(t) + w2(t) + w3(t) + w4(t)] which is depicted below
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1
4 [w1(t) + w2(t) + w3(t) + w4(t)]

t

1

2

3 4

Therefore the minimum energy signal set is

w̃1(t)

t

1

2

1 2 3 4

w̃2(t)

t

1

2

1 2 3 4

w̃3(t)

t

−1

−2

1 2 3 4
w̃4(t)

t

−2

−1

1 2 3 4

(d) It is easy to verify that the new signal set spans a one-dimensional space with basis
ψ̃(t) = 1

2
1{0 ≤ t ≤ 4}. Indeed, the new signal set corresponds to 4-PAM constellation

−3 −2 −1 0 1 2 3

c1c2c3c4

For the 4-PAM constellation,

Pr{error|w1 is sent} = Pr{error|w4 is sent} = Q

(
2√
2N0

)
,

and

Pr{error|w2 is sent} = Pr{error|w3 is sent} = 2Q

(
2√
2N0

)
,

which yields

Pr{error} =
3

2
Q

(
2√
2N0

)
.

(e) Since translation is an isometric transform and does not change the probability of error,

the probability of error for the receiver in part (a) will also be equal to 3
2
Q
(

2√
2N0

)
.
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