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Solution 1. First we compute Ts, which is the duration of one bit:

Ts =
1

1 Mbps
= 10−6 s.

Now, we can calculate the energy of the signal (i.e. the energy per bit), which is the same
for every j:

Eb = b2Ts.

The bit error probability is given by Q
(√
Eb
σ

)
. In our case σ =

√
N0/2 = 10−1, thus we

need to solve

10−5 = Q

(
10−3 × b

10−1

)
= Q

(
10−2 × b

)
,

hence b = Q−1(10−5)× 102 ≈ 426.5.

Solution 2.

(a) There are various possibilities to choose an orthogonal basis. One is φ1(t) = w0(t)
‖w0‖ =√

1
Ts
w0(t) and φ2(t) = w2(t)

‖w2‖ =
√

1
Ts
w2(t). Another choice, that we prefer and will be

our choice in this solution is

ψ1(t) =

√
2

Ts
1[0,Ts

2
](t)

ψ2(t) =

√
2

Ts
1[Ts

2
,Ts]

(t).

With the latter choice the signal space is

w0 =

√
Ts
2

(1, 1)T w2 =

√
Ts
2

(1,−1)T

w1 =

√
Ts
2

(−1,−1)T w3 =

√
Ts
2

(−1, 1)T

ψ1

ψ2

√
Ts
2

√
Ts
2

w0

w1 w2

w3



(b) U0 ∈ {±1} and U1 ∈ {±1} are mapped into

U0

√
Ts
2
ψ1(t) + U1

√
Ts
2
ψ2(t).

The mapping is shown below:

√
Ts
2

√
Ts
2

(1, 1)

(−1,−1) (1,−1)

(−1, 1)

The mapping is such that neighboring points differ by one bit. This minimizes the bit-
error probability since when we make an error chances are that we choose a neighbor
of the correct symbol. Notice that we may decode each bit independently. In fact the
first bit is decoded to a 1 iff the observation is to the right of the vertical axis and the
second bit is 1 iff it is above the horizontal axis. The bit error probability is therefore

Pb = Q

(√
Ts/2√
N0/2

)
= Q

(√
Ts
N0

)
.

(c) Notice that ψ2(t) = ψ1(t− Ts
2

). Hence one matched filter is enough. The receiver block
diagram is:

R(t) ψ1

(
Ts
2 − t

) t = Ts/2 Y1

t = Ts Y2

threshold
at 0

Û1

Û2

(d) Eb = Es
2

= Ts
2

and the power is Es
Ts

= 1.

Solution 3.

(a) Using the identity cos2(a) = 1
2
[1 + cos(2a)], the average energy can be computed as∫ ∞

−∞
|wi(t)|2 dt =

2E
T

∫ T

0

cos2(2π(fc + i∆f)t) dt

=
2E
T

[
t

2
+

sin(4π(fc + i∆f)t)

8π(fc + i∆f)

]T
0

= E
[
1 +

sin(4πi∆fT )

4π(fc + i∆f)

]
≈ E . (∗)

The last approximation follows since fc � ∆f implies the second term in the square
brackets is negligible.
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(b) Orthogonality requires

E 2

T

∫ T

0

cos(2π(fc + i∆f)t) cos(2π(fc + j∆f)t) dt = 0,

for every i 6= j. Using the trigonometric identity cos(α) cos(β) = 1
2

cos(α+β)+ 1
2

cos(α−
β), an equivalent condition is

E
T

∫ T

0

[cos(2π(i− j)∆ft) + cos(2π(2fc + (i+ j)∆f)t)] dt = 0.

Integrating we obtain

E
T

[
sin(2π(i− j)∆fT )

2π(i− j)∆f
+

sin(2π(2fc + (i+ j)∆f)T )

2π(2fc + (i+ j)∆f)

]
= 0.

As fcT is assumed to be an integer, the result can be simplified to

E
T

[
sin(2π(i− j)∆fT )

2π(i− j)∆f
+

sin(2π(i+ j)∆fT )

2π(2fc + (i+ j)∆f)

]
= 0.

As i and j are integer, this is satisfied for i 6= j if and only if 2π∆fT is an integer
multiple of π. Hence, we obtain the minimum value of ∆f if 2π∆fT = π which gives
∆f = 1

2T
. Note that once ∆f is an integer multiple of 1

2T
the approximate equality in

(∗) will be exact.

(c) Proceeding similarly, we will have orthogonality if and only if

E
T

[
sin(2π(i− j)∆fT + θi − θj)− sin(θi − θj)

2π(i− j)∆f

+
sin(2π(i+ j)∆fT + θi + θj)− sin(θi + θj)

2π(2fc + (i+ j)∆f)

]
= 0.

In this case we see that both parts become zero if and only if 2π∆fT is an even
multiple of π, meaning that the smallest ∆f is ∆f = 1

T
which is twice the minimum

frequency separation needed in the previous part. Hence, the cost of phase uncertainty
is a bandwidth expansion by a factor of 2.

(d) The condition for essential orthogonality is that

E
T

[
sin(2π(i− j)∆fT + θi − θj)− sin(θi − θj)

2π(i− j)∆f

]
+
E
T

[
sin(2π(2fc(i+ j)∆fT ) + θi + θj)− sin(θi + θj)

2π(2fc + (i+ j)∆f)

]
is small compared to the signal’s energy E . The first term vanishes if ∆f = 1

T
. The

second term is very small compared to E if fcT � 1.

(e) We have m signals separated by ∆f . The approximate bandwidth is m∆f . This means

bandwidth 2k

2T
without random phase, and bandwidth 2k

T
with random phase. We see

that in both cases, WT is proportional to 2k, i.e. it grows exponentially with k.

Solution 4.
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(a) The block diagram is shown below:

R(t) w0(T − t)
t = T Y

Y
Ĥ=0
≷
Ĥ=1

0 Ĥ

(b) Given A = a, the distance of signals is 2a
√
Eb, hence

Pe(a) = Q

(
a

√
2Eb
N0

)
.

(c)

Pf = E[Pe(a)] =

∫ ∞
0

Q

(
a

√
2Eb
N0

)
2ae−a

2

da.

We integrate by parts, noting that
∫

2ae−a
2
da = −e−a2 :

Pf = −Q

(
a

√
2Eb
N0

)
e−a

2

∣∣∣∣∣
∞

0

+

∫ ∞
0

Q′

(
a

√
2Eb
N0

)
e−a

2

da.

Taking the derivative of an integral with respect to the lower boundary gives the
negative of the value of the integrand evaluated at the lower boundary, i.e.,

Q′(x) = − 1√
2π
e−

x2

2 .

Thus, for the derivative of Q
(
a
√

2Eb
N0

)
with respect to a, we can write

d

da
Q

(
a

√
2Eb
N0

)
= − 1√

2π
e
−a

2Eb
N0

√
2Eb
N0

.

Plugging this in, we find

Pf =
1

2
−
∫ ∞
0

1√
2π

√
2Eb
N0

e
−a2

(
Eb
N0

+1
)
da,

which we now reshape to make it an integral over a Gaussian density, as follows:

Pf =
1

2
−
√

2Eb
N0

1√
2
(
Eb
N0

+ 1
) ∫ ∞

0

1√
π(

Eb
N0

+1
) exp

− a2

2 1

2
(

Eb
N0

+1
)
 da.

Now, it is clear that the integral evaluates to one half (since the integral is only over
half of the real line), and we find

Pf =
1

2
− 1

2

√
Eb/N0

1 + Eb/N0

=
1

2

(
1−

√
Eb/N0

1 + Eb/N0

)
.
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(d) Let σ = 1√
2
, then

m = E[A] =

∫ ∞
0

2a2e−a
2

a. = 2
√
π

∫ ∞
0

a2
1

σ
√

2π
e−

a2

2σ2 da =
√
πσ2 =

√
π

2
.

Thus, using the formula from part (b):

Pe(m) = Q

(
m

√
2Eb
N0

)
= Q

(√
π

2

√
Eb
N0

)
.

For the given example we get

Eb
N0

=
2 (Q−1(10−5))

2

π
≈ 10.6 dB.

For the fading we use the result of part (c) to get

Eb
N0

=
(1− 2 · 10−5)

2

1− (1− 2×−5)2
≈ 44 dB.

The difference is quite significant! It is clear that this behaviour is fundamentally
different from the non-fading case.

Solution 5.

(a) We pass R(t) through a whitening filter h(t) such that the output R′(t) looks like the
output of an AWGN channel. After this step we are facing a familiar situation and can
implement a matched filter receiver. The receiver architecture is shown below:

w′0(T − t)

w′1(T − t)

w′i(T − t)

h(t)
R(t) R′(t)

...

t = T Y1

t = T Y2

t = T Yi

Select
argmaxi Yi −

‖w′
i‖2
2

Ĥ...
...

Let N ′(t) =
∫
N(α)h(t− α) dα be the noise at the output of the whitening filter. We

want to select the filter h(t) such that N0

2
= G(f)|hF(f)|2, i.e.,

|hF(f)|2 =
N0

2G(f)
.

The output of the filter is

R′(t) =

∫
R(α)h(t− α) dα =

∫
wi(α)h(t− α) dα +

∫
N(α)h(t− α) dα

= w′i(t) +N ′(t),

where N ′(t) is white Gaussian noise and w′i(t) =
∫
wi(α)h(t−α) dα. We need to design

the matched filter for the signals w′i(t).
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(b) To minimize both the noise and the energy of the signal, we need to select an antipodal
signal pair that is frequency-limited to [a, b] and has energy E .

Solution 6.

(a) Clearly,
ECs (k) = 22k − 1.

(b)

a = Q−1
(

10−5

2

)
≈ 4.42.

(From the suggested approximation we get a ≈ 4.80.)

(c) For comparison, see the following table.

k EPs (k) ECs (k)
1 19.54 3
2 97.68 15
4 1660 255

(d) We see that
ECs (k + 1)

ECs (k)
=
EPs (k + 1)

EPs (k)
=

22(k+1) − 1

22k − 1
,

thus

lim
k→∞

ECs (k + 1)

ECs (k)
= lim

k→∞

EPs (k + 1)

EPs (k)
= 4.

(e) If we send one bit per symbol, then coding allows us to significantly reduce the required
energy per symbol. For every additional bit per symbol we need to multiply Es by
roughly 4 (exactly 4 asymptotically) with or without coding. So as the number of bits
per symbol increases, there is essentially a constant gap (in dB) between the energy
per symbol required by (uncoded) PAM and that required by the best possible code.

Notice that to keep the error probability at a constant level, we need to increase Es/σ2

exponentially with the number k of bits per symbol. In Example 4.3 in the book we
increase it linearly with k (hence the error probability goes to 1).
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