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Solution 1.

(a) The Cauchy–Schwarz inequality states

|〈x, y〉| ≤ ‖x‖ · ‖y‖

with equality if and only if x = αy for some scalar α. For our problem, we can write

|〈w, φ〉|2 ≤ ‖w‖2 · ‖φ‖2 = ‖w‖2

with equality if and only if φ = αw for some scalar α. Thus, the maximizing φ(t) is
simply a scaled version of w(t).

Remark. In two dimensions, we have |〈x, y〉| = ‖x‖ · ‖y‖ cosα, where α is the angle
between the two vectors. It is clear that the maximum is achieved when cosα = 1 ⇔
α = 0 (or α = k2π). Thus, x and y are colinear.

(b) The problem is
max
φ1,φ2

(c1φ1 + c2φ2) subject to φ2
1 + φ2

2 = 1

Thus, we can reduce by setting φ2 =
√

1− φ2
1 to obtain

max
φ1

(
c1φ1 + c2

√
1− φ2

1

)
This maximum is found by taking the derivative:

d

dφ1

(
c1φ1 + c2

√
1− φ2

1

)
= c1 − c2

φ1√
1− φ2

1

Setting this equal to zero yields c1 = c2
φ1√
1−φ21

, i.e,

c21 = c22
φ2
1

1− φ2
1

This immediately gives φ1 = c1√
c21+c

2
2

and thus φ2 = c2√
c21+c

2
2

, which are colinear to c1

and c2 respectively.

Note: the goal of this exercise was to display yet another way to derive the matched
filter.

(c) Passing an input w(t) through a filter with impulse response h(t) generates output
waveform y(t) =

∫
w(τ)h(t − τ)dτ . If this waveform y(t) is sampled at time t = T ,

then the output sample is

y(T ) =

∫
w(τ)h(T − τ)dτ (1)



An example signal w(τ) is shown below (top left). The filter is then the waveform
shown on the top right, and the convolution term of the filter on the bottom left.
Finally, the filter term h(T − τ) of Equation (1) is shown on the bottom right. One
can see that h(T − τ) = w(τ), so indeed

y(T ) =

∫
w(τ)h(T − τ)dτ =

∫
w2(τ)dτ =

∫ T

0

w2(τ)dτ

0 T
τ

w(τ)

0 T
τ

h(τ) = w(T − τ)

0 t
τ

h(t− τ)

0 T
τ

h(T − τ)

Solution 2.

(a) The binary hypothesis testing problem may be written as:

H = 0 : R(t) = w1(t) +N(t)

H = 1 : R(t) = w2(t) +N(t)

The impulse response of a matched filter is

h(t) =
w1(T − t)
‖w1(t)‖

and is shown below. We have normalized the impulse response of the matched filter to
have unit norm. Note that this does not affect the probability of error.

h(t)

t

√
3/T

T

The output of the matched filter sampled at t = T and t = T + Td is Y1 = 〈R(t), w1(t)
‖w1‖ 〉

and Y2 = 〈R(t), w2(t)
‖w2‖ 〉 respectively. The decision rule is

Y1
Ĥ=0

R
Ĥ=1

Y2

The block diagram of the system is shown below.
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R(t) h(t)

t = T

Y1

t = T + Td

Y2

(b) For Td ≥ T , the signals w1(t) and w2(t) are orthogonal to each other. Let

Es = ‖w1‖2 =
A2T

3

(The signal space representation of the constellation can be seen below.)

Y2

Y1√
Es

√
Es

The noise Z1, Z2 ∼ N
(
0, N0

2

)
and Z1 is independent of Z2. The probability of error

can be readily calculated as

Pe = Q

( √
2Es

2
√
N0/2

)
= Q

(√
Es
N0

)

For Td ≤ T we note that (since the receiver has not changed) still (Z1, Z2) ∼ N (0, N0

2
I)

and, hence, the error probability equals Q( d

2
√
N0/2

) where d is the distance between

two codewords. Therefore, we compute

‖w1(t)− w2(t)‖2 =

∫
(w1(t)− w2(t))

2dt

=

∫ Td

0

(
A

T

)2

t2dt+

∫ T

Td

(
Td
A

T

)2

dt+

∫ T+Td

T

(
A

T

)2

(t− Td)2dt

=

(
A

T

)2 [
T 3
d

3
+ T 2

d (T − Td) +
T 3 − (T − Td)3

3

]
(?)
=

(
A

T

)2
1

3
T 3δ(3− δ2)

= Esδ(3− δ2)

where in (?) we have defined δ = Td
T

. Given this, we can compute

Pe = Q

(√
Es
N0

√
δ(3− δ2)

2

)
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Solution 3.

(a) The matched filter is the filter whose impulse response is a delayed, time-reversed
version of wj(t), i.e.

hj(t) = wj(T − t) =

√
2

T
cos

(
2πnj(T − t)

T

)
1[0,T ](T − t)

=

√
2

T
cos

(
2πnjt

T

)
1[0,T ](t)

As an example, h5(t) is shown below.

h5(t)√
2/T

0

−
√
2/T

t
T

The receiver then processes the received signal R(t) through the matched filter hj(t)
to obtain (R ? hj)(t). This signal is sampled at time T to yield the value needed for
the MAP decision.

(b) We need m matched filters, one for each signal.

R(t) h0(t)

h1(t)

...

hm−1(t)

argmax
j

(R ? hj)(T ) j
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(c) The following matlab program computes the output of the matched filter h5(t).

T = 1;

Resolution = 1e-3;

t = 0:Resolution:T;

nj = 5;

wj = sqrt(2/T) * cos ( (2*pi*nj*t)/T );

hj = sqrt(2/T) * cos ( (2*pi*nj*t)/T );

output = conv(wj, hj);

(h5 ? w5)(t)

1

0

−1

t
T 2T

Note that the resulting signal is zero for t ≤ 0 and also for t ≥ 2T . The figure also
reveals why sampling at time t = T is a good idea: the value of the matched filter
output signal is maximal.

Solution 4. Note that the decision statistic Y is given by

Y =

{
(w ? h)(t0) + Z 1 is sent

Z 0 is sent,

where Z = (N ? h)(t0) ∼ N
(
0, N0

2
‖h‖2

)
.

(a) With the given choice of h(t) and t0, we find (w ? h)(t0) = 1
6

and ‖h‖2 = 4
3
, so the

decision statistic Y is given by

Y =

{
1
6

+ Z 1 is sent

Z 0 is sent,

and the ML rule will compare Y to the threshold 1
12

. The resulting error probability is
then

Pe = Q

 1

12

1√
N0

2
‖h‖2

 = Q

(
1

12

√
3

2N0

)
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(b) Yes. With the choice t0 = 4, we would be implementing the matched filter which we
know to be optimal. Indeed the decision statistic will be

Y =

{
4
3

+ Z 1 is sent

Z 0 is sent,

with Z as defined above. The error probability thus becomes

Pe = Q

2

3

1√
N0

2
‖h‖2

 = Q

(
2

3

√
3

2N0

)

(c) With this new choice of h(t) and t0, we find (w ? h)(t0) = 1 and ‖h‖2 = 2. The ML
rule will then compare Y to the threshold 1

2
and the resulting error probability will be

Pe = Q

1

2

1√
N0

2
‖h‖2

 = Q

(
1

2

√
1

N0

)

(d) We know that the matched filter hopt(t) = w(4 − t) gives the optimal statistic Yopt
when sampled at t0 = 4, but since we only have h(t) = 1[0,2](t), the best approximation
possible for hopt(t) is given by happrox(t) = h(4 − t) − h(2 − t). Sampling happrox(t) at
t0 = 4 to obtain the statistic Y is identical to sampling h(t) at t0 = 2 and t1 = 4 to
obtain Y0 and Y1 respectively, then form Y = Y0 − Y1. The decision statistic will be

Y =

{
2 + Z 1 is sent

Z 0 is sent,

with Z ∼ N
(
0, N0

2
‖h‖2 + N0

2
‖h‖2

)
. The error probability thus becomes

Pe = Q

(√
1

2N0

)
Solution 5.

(a) The third component of ci is zero for all i. Furthermore Z1, Z2 and Z3 are zero mean
i.i.d. Gaussian random variables. Hence,

fY |H(y|i) = fZ1(y1 − ci,1)fZ2(y2 − ci,2)fZ3(y3),

which is in the form gi(T (y))h(y) for T (y) = (y1, y2)
T and h(y) = fZ3(y3). Hence, by

the Fisher–Neyman factorization theorem, T (Y ) = (Y1, Y2)
T is a sufficient statistic.

(b) We have Y3 = Z3 = Z2. By observing Y3, we can remove the noise in the second
component of Y . Specifically, we have ci,2 = Y2 − Y3. If the second component is
different for each hypothesis, then the receiver can make an error-free decision which is
not possible using only (Y1, Y2)

T (see the next question for more on this). We can see
that Y3 contains very useful information and can’t be discarded. Therefore, (Y1, Y2)

T

is not a sufficient statistic.
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(c) If we have only (Y1, Y2)
T then the hypothesis testing problem will be

H = i : (Y1, Y2) = (ci,1, ci,2) + (Z1, Z2) i = {0, 1}

Using the fact that c0 = (1, 0, 0)T and c1 = (0, 1, 0)T, the ML test becomes

y1 − y2
Ĥ=0

R
Ĥ=1

0

Under H = 0, Y1 − Y2 is a Gaussian random variable with mean 1 and variance 2σ2,
and so Pe(0) = Q( 1√

2σ
). By symmetry Pe(1) = Q( 1√

2σ
), and so the error probability

will be Pe = 1
2
(Pe(0) + Pe(1)) = Q( 1√

2σ
).

Now assume that we have access to Y1, Y2 and Y3. Y3 contains Z3 = Z2 under both
hypotheses. Hence, Y2 − Y3 = ci,2 + Z2 − Z3 = ci,2. This shows that at the receiver
we can observe the second component of ci without noise. As the second component is
different under both hypotheses, we can make an error-free decision about H and the
decision rule will be:

Ĥ =

{
0 y2 − y3 = 0
1 y2 − y3 = 1

Clearly this decision rule minimizes the error probability. This shows once again that
(Y1, Y2)

T can’t be a sufficient statistic.

Solution 6.

(a) The optimal solution is to pass R(t) through the matched filter w(T − t) and sample
the result at t = T to get a sufficient statistic denoted by Y . (In this problem, T = 1.)
Note that Y = S + N , where S and N are random variables denoting the signal and
the noise components respectively. Under H = i, Y ∼ N (αi, N0/2), where α0, . . . , α3

are 3c, c, −c and −3c respectively.

Let X̂ be the recovered signal value at the receiver. Based on the nearest neighbor
decision rule, the receiver chooses the value of X̂ in the following fashion:

X̂ =


+3, Y ∈ [2c,∞)

+1, Y ∈ [0, 2c)

−1, Y ∈ [−2c, 0)

−3, Y ∈ [−∞,−2c)

(2)

(b) The probability of error is given by

Pe =
3∑
i=0

1

4
Pr{error|H = i}

=
1

4

[
Q

(
c√
N0/2

)
+ 2Q

(
c√
N0/2

)
+ 2Q

(
c√
N0/2

)
+Q

(
c√
N0/2

)]

=
3

2
Q

(
c√
N0/2

)
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(c) In this case under H = i , Y ∼ N (αi, N0/2), where α0, . . . , α3 are 9c
4

, 3c
4

, −3c
4

and −9c
4

respectively. Using the decision rule in (2), the probability of error is given by

Pe =
3∑
i=0

1

4
Pr{error|H = i}

=
1

4

[
Q

(
c/4√
N0/2

)
+Q

(
5c/4√
N0/2

)
+Q

(
3c/4√
N0/2

)

+Q

(
5c/4√
N0/2

)
+Q

(
3c/4√
N0/2

)
+ Q

(
c/4√
N0/2

)]

=
1

2

[
Q

(
c/4√
N0/2

)
+Q

(
3c/4√
N0/2

)
+Q

(
5c/4√
N0/2

)]

(d) The noise process N(t) is a stationary Gaussian random process. So the noise compo-
nent N (which is the sample of match-filter output at time T ) is a Gaussian random
variable with mean

E[N ] = E
[∫ ∞
−∞

N(t)w(t)dt

]
= E

[∫ 1

0

N(t)dt

]
= 0

Because the process N(t) is stationary, without loss of generality we choose the bound-
aries of the integral to be 0 and T where in this problem T = 1.

Now, let us calculate the noise variance.

var(N) = E[N2]− E[N ]2 = E[N2]

= E
[∫ ∞
−∞

N(t)w(t)dt

∫ ∞
−∞

N(v)w(v)dv

]
= E

[∫ 1

0

N(t)dt

∫ 1

0

N(v)dv

]
= E

[∫ 1

0

∫ 1

0

N(t)N(v)dtdv

]
=

∫ 1

0

∫ 1

0

KN(t− v)dtdv

=

∫ 1

0

∫ 1

0

1

4α
e−|t−v|/αdtdv

=
1

2

(
α
(
e−1/α − 1

)
+ 1
)

Thus the new probability of error is given by

Pe =
3∑
i=0

1

4
Pr{error|H = i}

=
1

4

[
Q

(
c√

var(N)

)
+ 2Q

(
c√

var(N)

)
+ 2Q

(
c√

var(N)

)
+Q

(
c√

var(N)

)]

=
3

2
Q

 c√
1
2

(α (e−1/α − 1) + 1)


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