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Solution 1.

(a) At first look it may seem that the probability is uniformly distributed over the disk,
but in the next part we will show that this is not true.

(b) We know that R is uniformly distributed in [0, 1] and Φ is uniformly distributed in
[0, 2π), so we have fR(r) = 1 if 0 ≤ r ≤ 1 and fΦ(φ) = 1

2π
if 0 ≤ φ < 2π.

As these two random variables are independent, we have

fR,Φ(r, φ) =

{
1

2π
0 ≤ r ≤ 1 and 0 ≤ φ < 2π

0 otherwise.

It can be easily shown that the Jacobian determinant is det J = r =
√
x2 + y2. There-

fore, the probability distribution in cartesian coordinates is

fX,Y (x, y) =
1

| det J |
fR,Φ(r, φ)

=

{
1

2π
√
x2+y2

x2 + y2 ≤ 1

0 otherwise.

(c) We see that the probability distribution is not distributed uniformly. This makes sense
because rings of equal width have the same probability but not the same area.

Solution 2.

(a) Let the two hypotheses be H = 0 and H = 1 when c0 and c1 are transmitted, respec-
tively. The ML decision rule is

fY1Y2|H(y1, y2|1)
Ĥ=1

R
Ĥ=0

fY1Y2|H(y1, y2|0).

Because Z1 and Z2 are independent, we can write

1

2
e−|y1−1|1

2
e−|y2−1|

Ĥ=1

R
Ĥ=0

1

2
e−|y1+1|1

2
e−|y2+1|,

and, after taking the logarithm,

|y1 + 1|+ |y2 + 1|
Ĥ=1

R
Ĥ=0

|y1 − 1|+ |y2 − 1|.



(b) Because the hypotheses are equally likely and Z1 and Z2 have the same distribution, the
decision region for Ĥ = 0 contains the points closer to (−1,−1) and the decision region
for Ĥ = 1 contains the points closer to (1, 1). For this problem, the distance between
the points (y11, y12) and (y21, y22) is the Manhattan distance, |y11 − y21| + |y12 − y22|,
and not the Euclidian distance.

Let us first consider the points above the line y2 = −y1 in the figure below. It is easy
to notice that the points in the positive quadrant are closer to (1, 1) than to (−1,−1),
therefore they belong to R1 (Ĥ = 1). This is also true if {(y1 ≥ 0) ∩ (y2 ∈ (−1, 0))},
or if {(y2 ≥ 0) ∩ (y1 ∈ (−1, 0))}.

y1

y2

(1, 1)
(−1, 1)

(1,−1)
(−1,−1)

y
R?

R?

R1R1

R1

R0

R0 R0

Similar reasoning can be applied to the points below the diagonal to determine R0.

The points for which {(y1 ≤ −1) ∩ (y2 ≥ 1)} or {(y1 ≥ 1) ∩ (y2 ≤ −1)} are equally
distanced to (−1,−1) and (1, 1), therefore they can belong to either R0 or R1 with the
same probability. This region is named R?.

(c) The two hypotheses are equally probable for the region R?. Therefore, we can split this
region in any way between the decision regions and have the same error probability.
Because R1 is included in the region for which y2 > −y1 and R0 does not intersect
the region for which y2 > −y1, the error probability is minimized by deciding Ĥ = 1 if
(y1 + y2) > 0.

(d)

Pe(0) = Pr{Y1 + Y2 > 0|H = 0}
= Pr{Z1 + Z2 − 2 > 0}

=

∫ ∞
2

e−w

4
(1 + w) dw

=
−e−w

4
(w + 2)

∣∣∞
2

= e−2.

By symmetry, and considering that the messages are equally likely, Pe(0) = Pe(1) = Pe.
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Solution 3. The first basis vector is the first waveform after normalization. We first
compute ‖w0(t)‖.

‖w0(t)‖ =

√∫
|w0(t)|2 dt =

√∫ T

0

1 dt =
√
T

ψ0(t) =
w0(t)

‖w0(t)‖
=
w0(t)√
T

=

{
1√
T

if 0 ≤ t ≤ T

0 otherwise

We get the second basis vector as follows:

〈w1(t), ψ0(t)〉 =

∫ T
2

0

2√
T
dt =

√
T

α1(t) = w1(t)− 〈w1(t), ψ0(t)〉ψ0(t) = w1(t)− w0(t) =


1 if 0 ≤ t ≤ T

2

−1 if T
2
< t ≤ T

0 otherwise

ψ1(t) =
α1(t)

‖α1(t)‖
=


1√
T

if 0 ≤ t ≤ T
2

− 1√
T

if T
2
< t ≤ T

0 otherwise

Solution 4.

(a) We use the Gram-Schmidt procedure:

1) The first step is to normalize the function β0(t), i.e. the first function of the basis
that we are looking for is

ψ0(t) =
β0(t)

||β0(t)||
=

β0(t)√∫
β0(t)2 dt

=
β0(t)√∫ 1

0
4t2 dt

=

√
3

2
β0(t) =


0 if t < 0√

3t if 0 ≤ t ≤ 1

0 if t > 1

2) Next, we subtract from β1(t) the components that are in the span of the currently
established part of the basis, i.e. in the span of {ψ0(t)}. This can be achieved by
projecting β1(t) onto ψ0(t) and then subtracting this projection from β1(t), i.e.

α1(t) = β1(t)− 〈β1(t), ψ0(t)〉ψ0(t) = β1(t)−
(∫

β1(t)ψ0(t) dt

)
ψ0(t)

= β1(t)−

(√
3

2

)(
4

3

)
ψ0(t)

= β1(t)− 2√
3
ψ0(t)

= β1(t)− β0(t).

From this, we find the second basis element as

ψ1(t) =
α1(t)

||α1(t)||
=


0 if t < 1

−
√

3(t− 2) if 1 ≤ t ≤ 2

0 if t > 2

3



3) Again, we subtract from β2(t) the components that are in the span of the currently
established part of the basis, i.e. in the span of {ψ0(t), ψ1(t)}. This can be achieved
by projecting β2(t) onto ψ0(t) and ψ1(t) and then subtracting both these projections
from β2(t). For this step, it is essential that the basis elements {ψ0(t), ψ1(t)} be
orthonormal. Continuing the derivation, we obtain

α2(t) = β2(t)− 〈β2(t), ψ0(t)〉ψ0(t)− 〈β2(t), ψ1(t)〉ψ1(t)

= β2(t)−
(∫

β2(t)ψ0(t) dt

)
ψ0(t)−

(∫
β2(t)ψ1(t) dt

)
ψ1(t)

= β2(t)− 0− α1(t)

= β2(t) + β0(t)− β1(t),

and from this, we find the third basis element as

ψ2(t) =
α2(t)

||α2(t)||
=


0 if t < 2

−
√

3(t− 2) if 2 ≤ t ≤ 3

0 if t > 3

(b) By definition we can write w0(t) and w1(t) as follows

w0(t) = 3ψ0(t)− ψ1(t) + ψ2(t) =


3
√

3t if 0 ≤ t < 1√
3(t− 2) if 1 < t < 2

−
√

3(t− 2) if 2 < t ≤ 3

and

w1(t) = −ψ0(t) + 2ψ1(t) + 3ψ2(t) =


−
√

3t if 0 ≤ t < 1

−2
√

3(t− 2) if 1 < t < 2

−3
√

3(t− 2) if 2 < t ≤ 3

t

w0(t)

−
√
3

3
√
3

1

2 3 t

w1(t)

−
√
3

2
√
3

−3
√
3

1

2

3
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(c)

〈c0, c1〉 = −3 · 1− 1 · 2 + 1 · 3 = −2.

We know that w0(t) and w1(t) are both real, thus

〈w0(t), w1(t)〉 =

∫
w0(t)w1(t) dt =

∫ 1

0

−9t2 dt+

∫ 2

1

−6(t− 2)2 dt+

∫ 3

2

9(t− 2)2 dt

= −
∫ 2

1

6(t− 2)2 dt = −2.

We see that the inner products are equal as expected.

(d)

‖c0‖ =
√
〈c0, c0〉 =

√
11,

‖w0‖2 =

∫
|w0(t)|2 dt =

∫ 1

0

27t2 dt+

∫ 3

1

3(t− 2)2 dt = 9 + 2 = 11.

We see that the norms are also equal.

Solution 5.

(a)

‖gi‖ =
√
T , i = 1, 2, 3.

(b) Z1 and Z2 are independent since g1 and g2 are orthogonal. Hence Z is a Gaussian
random vector ∼ N (0, σ2I2), where σ2 = N0

2
T.

(c)

Pa = Pr{Z1 ∈ [1, 2] ∩ Z2 ∈ [1, 2]} = Pr{Z1 ∈ [1, 2]}Pr{Z2 ∈ [1, 2]}

=

[
Q

(
1

σ

)
−Q

(
2

σ

)]2

,

where σ2 = N0

2
T .

(d) Pb = Pa, since one obtains the square (b) from the square (a) via a rotation.

(e) Z3 = −Z1. U = Z1(1,−1)T, and thus U can never be in (a), hence Qa = 0.

(f) U is in square (c) if and only if Z1 ∈ [1, 2]. Hence Qc = Q
(

1
σ

)
−Q

(
2
σ

)
, where σ2 = N0

2
T .

Solution 6.

(a) An orthonormal basis for the signal space spanned by the waveforms is1:

ψ0(t)

t

1

2

ψ1(t)

t

1

2

1this can be obtained using the Gram-Schmidt procedure or simply by looking at the waveforms.
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(b) The codewords representing the waveforms are

c0 = (
√
E , 0)

c1 = (0,
√
E)

c2 = (−
√
E , 0)

c3 = (0,−
√
E)

(c) As we have seen in the lecture, if R(t) is the noisy received waveform, (Y0, Y1) =
(〈R,ψ0〉, 〈R,ψ1〉) is a sufficient statistic for decision. Hence, we have the following
hypothesis testing problem: Under H = i, i = 0, 1, 2, 3,

Yi = ci + Z,

where Z ∼ N (0, N0

2
I2). One can check that ci, i = 0, 1, 2, 3 represent the QPSK

codewords, and the decision regions for the ML receiver will be as follows:

y1

y2

c0

c1

c2

c3

R0

R1

R2

R3

The distance between two adjacent codewords (say c0 and c1) is d =
√

2E and the error
probability of the receiver is

Pe = 2Q

(
d

2σ

)
−Q2

(
d

2σ

)
= 2Q

( √
2E

2
√
N0/2

)
−Q2

( √
2E

2
√
N0/2

)

= 2Q

(√
E
N0

)
−Q2

(√
E
N0

)
.
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