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Solution 1. In Section 5.3, it is shown that the power spectral density is
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where KX [k] is the auto-covariance of Xi and ψF(f) is the Fourier transform of ψ(t).
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Therefore,
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Solution 2.

(a) When i = j, E[XiXj] equals

E[X2
i ] = E[1] = 1.

Remember that the Bi are i.i.d. Bernoulli(1
2
) random variables. Hence, we find imme-

diately

KX [1] = E[X2nX2n+1] = E[BnBn−2BnBn−1Bn−2]

= E[B2
nBn−1B

2
n−2]

= E[Bn−1] = 0,



and also

KX [2] = E[X2nX2n+2] = E[BnBn−2Bn+1Bn−1]

= E[Bn]E[Bn−2]E[Bn+1]E[Bn−1] = 0.

By continuing this argument we find

KX [i] = 1{i = 0}.

Hence,

SX(f) =
Es
Ts
|ψF(f)|2.

This means that by choosing ψ(t) appropriately, we can control the bandwidth con-
sumption of our communications scheme.

(b) We know that
|ψF(f)|2 = Ts sinc2(Tsf).

It follows that
SX(f) = Es sinc2(Tsf).

A plot of SX(f) is shown below:
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Solution 3.

(a)
Xi = Bi − 2Bi−1

From this, we can draw the following trellis:
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(b) We have Y = X + Z, where Z = (Z1, . . . , Z6) is a sequence of i.i.d. components with
Zi ∼ N (0, σ2). Our maximum likelihood decoder is a minimum distance decoder. We
have to minimize ‖y − x‖2 or equivalently, maximize 2〈y, x〉 − ‖x‖2. We thus have
f(x, y) =

∑6
i=1(2yixi− x2i ) whose maximization with respect to x leads to a maximum

likelihood decision on X.
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(c) We label our trellis with the edge metric 2yixi − x2i and then trace back the decoding
path.
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We see that the two sequences 1,1,0,0,0 and 1,1,0,1,1 are equally likely, so the decoder
would choose either of the two.

Solution 4. The trellis representing the encoder is shown below:
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We display the diagram labeled with edge-metric according to the received sequence and
state-metric of the survivor path. We also indicate the survivor paths and the decoding
path.
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From the figure we can read the decoded sequence 1, 1,−1, 1, 1.

Solution 5. The output of encoder (a) is

T (x̄2j−1) = T (b̄j + b̄j−2) = T (b̄j)T (b̄j−2) = bjbj−2

T (x̄2j) = T (b̄j + b̄j−1 + b̄j−2) = T (b̄j)T (b̄j−1)T (b̄j−2) = bjbj−1bj−2,

which is identical to the output of encoder (b).
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