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Solution 1.

(a)

Rξ(τ) =

∫ ∞
−∞

ξ(t+ τ)ξ∗(t) dt = 〈ξ(t+ τ), ξ(t)〉

(1)

≤ ‖ξ(t+ τ)‖ · ‖ξ(t)‖ = ‖ξ‖ · ‖ξ‖ = ‖ξ‖2 (2)
= Rξ(0),

where (1) follows from the Cauchy–Schwarz inequality and (2) from the fact that

Rξ(0) =

∫ ∞
−∞

ξ(t)ξ∗(t) dt = ||ξ||2.

(b)

Rξ(−τ) =

∫ ∞
−∞

ξ(t− τ)ξ∗(t) dt

=

(∫ ∞
−∞

ξ(t)ξ∗(t− τ)dt

)∗
t→t+τ

= R∗ξ(τ).

(c)

Rξ(τ) =

∫ ∞
−∞

ξ(t+ τ)ξ∗(t) dt

t→t−τ
=

∫ ∞
−∞

ξ(t)ξ∗(t− τ) dt

= ξ(τ) ? ξ∗(−τ).

(d) By Parseval’s identity, we have

Rξ(τ) = 〈ξ(t+ τ), ξ(t)〉
= 〈ξF(f)ej2πfτ , ξF(f)〉

=

∫ ∞
−∞

ξF(f)ξ∗F(f)ej2πfτ df

=

∫ ∞
−∞
|ξF(f)|2ej2πfτ df,

which is the inverse Fourier transform of |ξF(f)|2.



Solution 2.

(a) We have

y(t) =

∫ ∞
−∞

w(τ)ψ(τ − t)dτ.

The samples of this waveform at multiples of T are

y(mT ) =

∫ ∞
−∞

w(τ)ψ(τ −mT )dτ

=

∫ ∞
−∞

[
K∑
k=1

dk ψ(τ − kT )

]
ψ(τ −mT )dτ

=
K∑
k=1

dk

∫ ∞
−∞

ψ(τ − kT )ψ(τ −mT )dτ

=
K∑
k=1

dk1{k = m}

= dm.

(b) Let w̃(t) be the channel output. Then, ỹ(t) is w̃(t) filtered by ψ(−t). We have

w̃(t) = w(t) + ρw(t− T )

and

ỹ(t) =

∫ ∞
−∞

w̃(τ)ψ(τ − t)dτ.

The samples of this waveform at multiples of T are

ỹ(mT ) =

∫ ∞
−∞

w̃(τ)ψ(τ −mT )dτ

=

∫ ∞
−∞

[w(τ) + ρw(τ − T )]ψ(τ −mT )dτ

=

∫ ∞
−∞

[
K∑
k=1

dk ψ(τ − kT )

]
ψ(τ −mT )dτ +

ρ

∫ ∞
−∞

[
K∑
k=1

dk ψ(τ − T − kT )

]
ψ(τ −mT )dτ

=
K∑
k=1

dk1{k = m}+ ρ
K∑
k=1

dk1{k = m− 1}

= dm + ρdm−1.

(c) From the symmetry of the problem, we have

Pe = Pe(1) = Pe(−1).
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Pe(1) = Pr{D̂k = −1|Dk = 1, Dk−1 = −1}Pr{Dk−1 = −1}+

Pr{D̂k = −1|Dk = 1, Dk−1 = 1}Pr{Dk−1 = 1}

=
1

2
(Pr{Yk < 0|Dk = 1, Dk−1 = −1}+ Pr{Yk < 0|Dk = 1, Dk−1 = 1})

=
1

2
(Pr{1− α + Zk < 0}+ Pr{1 + α + Zk < 0})

=
1

2
(Pr{Zk < −1 + α}+ Pr{Zk < −1− α})

=
1

2

[
Q

(
1− α
σ

)
+Q

(
1 + α

σ

)]
.

Solution 3.

(a) We can easily see that

E[Xi|Xi−1] =
1

2
Xi−1 +

1

2
(−Xi−1) = 0.

Consequently (using the law of total expectation)

E[Xi] = E[E[Xi|Xi−1]] = 0.

Therefore,
KX [k] = E[(Xi − E[Xi])(Xi−k − E[Xi−k])

∗] = E[XiX
∗
i−k]

Moreover, using the fact that Xi = Xi−1 × (−1)Di repeatedly, we can write

Xi = Xi−k ×
i∏

j=i−k+1

(−1)Dj

Thus,

KX [k] = E[XiX
∗
i−k]

= E

[
Xi−k

i∏
j=i−k+1

(−1)DjX∗i−k

]
(a)
= E[Xi−kX

∗
i−k]

i∏
j=i−k+1

E[(−1)Dj ]

= E
i∏

j=i−k+1

E[(−1)Dj ]

(b)
=

{
E if k = 0,

0 otherwise.

where (a) follows from the independence of data bits {Di} and (b) since E[(−1)Di ] = 0.

(b) By sampling the signal at the output of the matched filter, Y (t), at multiples of T , we
obtain

Y (iT ) = Xi + Zi,
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where Zi is normally distributed with zero mean and variance N0/2. By looking at the
definition of Xi, we see that it is equal to Xi−1 if Di = 0 and equal to −Xi−1 if Di = 1.
Therefore a simple decoder estimates that D̂i = 0 if Yi and Yi−1 have the same sign,
and D̂i = 1 otherwise. This is equivalent to

YiYi−1
D̂i=0

R
D̂i=1

0.

(c) We first compute the error probability when Di = 0. If Xi−1 =
√
E , then Xi =

√
E .

When we decode, we will make an error if the signal (Yi−1, Yi)
T is in the second or

fourth quadrants (shaded regions in the following figure).

Xi−1

Xi

(
√
E ,
√
E)T

Due to the symmetry of the problem, the probability for this to happen is two times
the probability for (Yi−1, Yi)

T to be in the second quadrant:

Pr{Zi−1 < −
√
E ∩ Zi > −

√
E} = Q

(√
E

N0/2

)
Q

(
−

√
E

N0/2

)
,

so,

Pe(Di = 0|Di−1 = 0) = 2Q

(√
E

N0/2

)
Q

(
−

√
E

N0/2

)
.

Again, due to the symmetry of the problem,

Pe(Di = 0|Di−1 = 1) = Pe(Di = 0|Di−1 = 0) = Pe(Di = 0),

and
Pe(Di = 1) = Pe(Di = 0);

hence

Pe = 2Q

(√
E

N0/2

)
Q

(
−

√
E

N0/2

)
.

Solution 4. Because ψ(t) is real, its Fourier transform is conjugate symmetric (ψF(f) =
ψ∗F(−f)).

From the condition
∫
ψ(t−kT )ψ(t− lT )dt = 1{k = l} for every pair k, l, it follows that

|ψF(f)|2 satisfies Nyquist’s criterion with parameter T ,
∑

k∈Z |ψF(f − k/T )|2 = T . On the
other hand, since ψF(f) = 0 for |f | > 1

T
, |ψF(f)|2 must have band-edge symmetry.

Putting everything together, we obtain the complete plot of |ψF(f)|2.
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Solution 5. From Theorem 5.6, we know that {ψ(t− jT )}∞j=−∞ is an orthonormal set if
and only if ∑

k∈Z

|ψF(f − k

T
)|2 = T.

(a) ∑
k∈Z

T1[ k
T
− 1

2T
, k
T
+ 1

2T ](f) = T ⇒ The Nyquist criterion is satisfied

⇒ ψ(t) is orthonormal to its time-translates by multiples of T .

(b) ∑
k∈Z

T

2
1[ k−1

T
, k+1

T ](f) = T ⇒ The Nyquist criterion is satisfied

⇒ ψ(t) is orthonormal to its time-translates by multiples of T .

(c) Because |ψF(f)|2 vanishes outside
[
− 1
T
, 1
T

]
, we verify whether the band-edge symmetry

is fulfilled, which is the case. Hence, the Nyquist criterion is satisfied and ψ(t) is
orthonormal to its time-translates by multiples of T . Note: the same reasoning can be
applied to (b).

(d) ψF(f) is a sinc function, therefore ψ(t) is a box function, equal to 1
T
1[−T

2
,T
2 ](t). This

is orthogonal to its time-translates by multiples of T , but does not have unit norm
(unless T = 1):

∫∞
−∞ |ψ(t)|2 dt = 1

T
.
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