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Problem 1.

(a) For all x, y ∈ R, choosing α ∈ [0, 1], we use the convexity of each fi, 1 ≤ i ≤ n, to get

f(αx+ (1− α)y) =
n∑
i=1

cifi(αx+ (1− α)y)

≤
n∑
i=1

ci (αfi(x) + (1− α)fi(y))

= α

n∑
i=1

cifi(x) + (1− α)
n∑
i=1

cifi(y)

= αf(x) + (1− α)f(y).

(b) For all x = (x1, x2, . . . , xn) ∈ Rn and y = (y1, y2, . . . , yn) ∈ Rn, choosing α ∈ [0, 1],
observe first that αx+(1−α)y = (αx1+(1−α)y1, αx2+(1−α)y2, . . . , αxn+(1−α)yn).
We then use the convexity of each fi, 1 ≤ i ≤ n, to get

g(αx+ (1− α)y) =
n∑
i=1

cifi(αxi + (1− α)yi)

≤
n∑
i=1

ci (αfi(xi) + (1− α)fi(yi))

= α

n∑
i=1

cifi(xi) + (1− α)
n∑
i=1

cifi(yi)

= αg(x) + (1− α)g(y).

Problem 2. For all x̃ ∈ D, f(x̃) = supi∈I fi(x) iff (i) f(x̃) ≥ fi(x̃) for all i ∈ I and (ii)
any s ∈ R satisfying s < f(x̃) is such that there exists i ∈ I satisfying s < fi(x̃).

Choose x, y ∈ D and α ∈ [0, 1].
First, pick i ∈ I. With the definition of f (point (i)) and the convexity of each fi, i ∈ I,

we get
fi(αx+ (1− α)y) ≤ αfi(x) + (1− α)fi(y) ≤ αf(x) + (1− α)f(y).

Second, since the inequality fi(αx+ (1−α)y) ≤ αf(x) + (1−α)f(y) holds for all i ∈ I,
we use the definition of f (point (ii)) to claim

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y).

To see this, observe that, if it was not the case, then s = αf(x) + (1 − α)f(y) < f(αx +
(1− α)y) would give the contradiction s < fi(x̃) with x̃ = αx+ (1− α)y.



Problem 3. Choose x, y ∈ U and α ∈ [0, 1]. The convexity if f associated to the fact that
h is an increasing function over [a, b] shows

g(αx+ (1− α)y) = h
(
f (αx+ (1− α)y)

)
≤ h

(
αf(x) + (1− α)f(y)

)
.

The convexity of h gives finally

g(αx+ (1− α)y) ≤ αh(f(x)) + (1− α)h(f(y)) = αg(x) + (1− α)g(y).

Problem 4. Let us show that the function g : λ 7→ f(λv1 + (1 − λ)v2) is convex (in λ).
Choosing λx, λy ∈ [0, 1] and α ∈ [0, 1], we use the convexity of f in v to write

g(αλx + (1− α)λy) = f
(
(αλx + (1− α)λy)v1 + (1− (αλx + (1− α)λy))v2

)
= f

(
αλxv1 + (1− α)λyv1 + v2 − αλxv2 − (1− α)λyv2

)
= f

(
αλxv1 + (1− α)λyv1 +

(
α + (1− α)

)
v2 − αλxv2 − (1− α)λyv2

)
= f

(
α(λxv1 + (1− λx)v2) + (1− α)(λyv1 + (1− λy)v2)

)
≤ αf(λxv1 + (1− λx)v2) + (1− α)f(λyv1 + (1− λy)v2)
= αg(λx) + (1− α)g(λy).

Problem 5.

(a) By the chain rule

I(U, T ;V ) = I(U ;V ) + I(T ;V |U) = I(U ;V ),

since I(T ;V |U) = 0 from the Markov property. Also,

I(U, T ;V ) = I(T ;V ) + I(U ;V |T ) ≥ I(U ;V |T ),

from the non-negativity of the mutual information. These together imply that I(U ;V ) ≥
I(U ;V |T ).

(b)
I(X;Y |W ) = Pr{W = 1}I(X;Y |W = 1) + Pr{W = 2}I(X;Y |W = 2)

Conditional on W = k, the distribution of (X, Y ) is pk(x)p(y|x), thus

I(X;Y |W ) = λI1 + (1− λ)I2.

(c) We obtain p(x) by summing p(w, x, y) over y and w. This gives

p(x) = λp1(x) + (1− λ)p2(x).

(d) Note that
p(w, x, y) = p(w)p(x|w)p(y|x),

that is Y is independent of W when X is given. Thus from (a)

I(X;Y ) ≥ I(X;Y |W ). (1)

Letting f(pX) denote the value of I(X;Y ) as a function of the distribution of X we
can rewrite (1) as

f(λp1 + (1− λ)p2) ≥ λf(p1) + (1− λ)f(p2),

which says that f is concave.
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Problem 6. Since X and Z are both in the interval [−1, 1], their sum X + Z lies in the
interval [−2,+2]. If we could choose the distribution of X + Z as we wished (without the
constraint that it has to be the sum of two independent random variables, one of which is
uniform) we would have chosen it to be uniform on the interval [−2,+2] to have the largest
entropy. Observe now that if we choose X as the random variable that equals +1 with
probability 1/2 and −1 with probability 1/2, then X + Z is uniform in [−2,+2] and thus
this distribution maximizes the entropy. An alternate derivation is as follows: note that
since X and Z are independent, the moment generating functions of the random variables
involved satisfy E[es(X+Z)] = E[esX ]E[esZ ]. Now, we know that E[esZ ] =

∫
eszfZ(z) dz =∫ +1

−1
1
2
esz dz = [es− e−s]/(2s). Similarly, if we want X +Z to be uniform on [−2, 2], we can

compute E[es(X+Z)] = [e2s−e−2s]/(4s). This then requires E[esX ] = 1
2
[e2s−e−2s]/[es−e−s] =

1
2
[es + e−s] which is the moment generating function of a random variable which takes on

the values +1 and −1, each with probability 1/2.
Similarly, under the constraint XZ lies in the interval [−1,+1], and the best we could

hope is that XZ is uniform on this interval. But this can be achieved by making sure that
X only takes on the values +1 or −1.

Problem 7. Taking the hint:

0 ≤ D(q‖p)

=

∫
q(x) log

q(x)

p(x)
dx

=

∫
q(x) log q(x) dx+

∫
q(x) log

1

p(x)
dx

= −h(q) +

∫
q(x) log

1

p(x)
dx.

Now, note that log[1/p(x)] is of the form α+βx, and since densities p and q have the same
mean, we conclude that∫

q(x) log
1

p(x)
dx =

∫
p(x) log

1

p(x)
dx = h(p).

Thus, 0 ≤ −h(q) + h(p), yielding the desired conclusion.

Problem 8.

First Method

(a) It suffices to note that H(X|Y ) = H(X + f(Y )|Y ) for any function f .

(b) Since among all random variables with a given variance the gaussian maximizes
the entropy, we have

H(X − αY ) ≤ 1

2
log 2πeE((X − αY )2) .

(c) From (a) and (b) we have

I(X;Y ) = H(X)−H(X − αY |Y )

≥ H(X)−H(X − αY )

≥ H(X)− 1

2
log 2πeE((X − αY )2) .
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(d) We have that dE((X−αY )2)
dα

= 0 is equivalent to E(Y (X − αY )) = 0. Hence
dE((X−αY )2)

dα
is equal to zero for α = α∗ = E(XY )

E(Y 2)
. Now on the one hand E(XY ) =

E(X(X + Z)) = E(X2) +E(XZ) and because of the independence between X
and Z and the fact that Z has zero mean we have that E(XZ) = 0, and hence
E(XY ) = P . On the other hand E(Y 2) = E((X + Z)2) = E(X2) + 2E(XZ) +
E(Z2) = P + 0 + σ2. Therefore α∗ = P/(P + σ2).

Then observing that E((X − αY )2) is a convex function of α we deduce that
E((X − αY )2) is minimized for α = α∗. Finally an easy computation yields to
E((X − α∗Y )2) = σ2P

σ2+P
.

(e) Since X is gaussian from (c) and (d) we deduce that

I(X;Y ) ≥ 1

2
log 2πeP − 1

2
log 2πe

σ2P

σ2 + P

=
1

2
log

(
1 +

P

σ2

)
. (2)

with equality if and only if Z is gaussian with covariance σ2.

Second Method

(a) This is by the definition of mutual information once we note that pY |X(y|x) =
pZ(y − x).

(b) Note that pX(x)pZ(y− x) is simply the joint distribution of (x, y), and thus the
integral ∫∫

pX(x)pZ(y − x) ln
Nσ2(y − x)

Nσ2+P (y)
dxdy.

is an expectation, namely

E ln
Nσ2(Y −X)

Nσ2+P (Y )
.

Substituting the formula for N , this in turn, is

E ln
Nσ2(Y −X)

Nσ2+P (Y )

=
1

2
ln
(
1 + P/σ2

)
+

1

2(σ2 + P )
E[Y 2]− 1

2σ2
E[(Y −X)2]

=
1

2
ln
(
1 + P/σ2

)
+

1

2(σ2 + P )
E[(X + Z)2]− 1

2σ2
E[Z2]

=
1

2
ln
(
1 + P/σ2

)
+

1

2(σ2 + P )
E[X2 + Z2 + 2XZ]− 1

2

=
1

2
ln
(
1 + P/σ2

)
+

1

2(σ2 + P )
(P + σ2 + 0)− 1

2

=
1

2
ln
(
1 + P/σ2

)
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(c) The steps we need to justify read

ln(1 + P/σ2)− I(X;Y ) =

∫∫
pX(x)pZ(y − x) ln

Nσ2(y − x)pY (y)

Nσ2+P (y)pZ(y − x)
dxdy

≤
∫∫

pX(x)Nσ2(y − x)pY (y)

Nσ2+P (y)
dxdy − 1

=

∫
pY (y) dy − 1

= 0.

The first equality is by substitution of parts (a) and (b). The inequality is by
ln(x) ≤ x− 1. The next equality is by noting that∫

pX(x)Nσ2(y − x)dx = (pX ∗ Nσ2)(y) = (NP ∗ Nσ2)(y) = NP+σ2(y).

The last equality is because any density function integrates to 1.

(d) The conclusion is made by noting that the right hand side of the first equality
in (c) is equal to zero if pZ = Nσ2 .
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