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Problem 1.

(a) By Bayes rule, for any events A and B,

Pr(A|B) =
Pr(A) Pr(B|A)

Pr(B)
.

In this case, we wish to calculate the conditional probability of a1 given the channel
output. Thus we take the event A to the event that the source produced a1, and B to
be the event corresponding to one of the 8 possible output sequences. Thus Pr(A) =
1/2, and Pr(B|A) = εi(1−ε)3−i, where i is the number of ones in the received sequence.
Pr(B) can then be calculated as Pr(B) = Pr(a1) Pr(B|a1) + Pr(a2) Pr(B|a2). Thus
we can calculate

Pr(a1|000) =
1
2
(1− ε)3

1
2
(1− ε)3 + 1

2
ε3

Pr(a1|100) = Pr(a1|010) = Pr(a1|001) =
1
2
(1− ε)2ε

1
2
(1− ε)2ε+ 1

2
ε2(1− ε)

Pr(a1|110) = Pr(a1|011) = Pr(a1|101) =
1
2
(1− ε)ε2

1
2
(1− ε)ε2 + 1

2
ε(1− ε)2

Pr(a1|111) =
1
2
ε3

1
2
ε3 + 1

2
(1− ε)3

(b) If ε < 1/2, then the probability of a1 given 000,001,010 or 100 is greater than 1/2,
and the probability of a2 given 110,011,101 or 111 is greater than 1/2. Therefore, the
decoding rule above chooses the source symbol that has maximum probability given
the observed output. This is the maximum a posteriori decoding rule, and is optimal
in that it minimizes the probability of error. To see that this is true, let the input
source symbol be X, let the output of the channel be denoted by Y and the decoded
symbol be X̂(Y ). Then

Pr(E) = Pr(X 6= X̂)

=
∑
y

Pr(Y = y) Pr(X 6= X̂|Y = y)

=
∑
y

Pr(Y = y)
∑

x 6=x̂(y)

Pr(x|Y = y)

=
∑
y

Pr(Y = y) (1− Pr(x̂(y)|Y = y))

=
∑
y

Pr(Y = y)−
∑
y

Pr(Y = y) Pr(x̂(y)|Y = y)

= 1−
∑
y

Pr(Y = y) Pr(x̂(y)|Y = y)



and thus to minimize the probability of error, we have to maximize the second term,
which is maximized by choosing x̂(y) to the the symbol that maximizes the conditional
probability of the source symbol given the output.

(c) The probability of error can also be expanded

Pr(E) = Pr(X 6= X̂)

=
∑
x

Pr(X = x) Pr(X̂ 6= x|X = x)

= Pr(a1) Pr(Y = 011, 110, 101, or 111|X = a1)

+ Pr(a2) Pr(Y = 000, 001, 010 or 100|X = a2)

=
1

2

(
3ε2(1− ε) + ε3

)
+

1

2

(
3ε2(1− ε) + ε3

)
= 3ε2(1− ε) + ε3.

(d) By extending the same arguments, it is easy to see that the decoding rule that
minimizes the probability of error is the maximum a posteriori decoding rule, which
in this case is the same as the maximum likelihood decoding rule (since the two input
symbols are equally likely). So we choose the source symbol that is most likely to
have produced the given output. This corresponds to choosing a1 if the number of
1’s in the received sequence is n or less, and choosing a2 otherwise. The probability
of error is then equal to (by symmetry) the probability of error given that a1 was
sent, which is the probability that n+ 1 or more 0’s have been changed to 1’s by the
channel. This probability is

Pr(E) =
2n+1∑
i=n+1

(
2n+ 1

i

)
εi(1− ε)2n+1−i

This probability goes to 0 as n → ∞, since this is the probability that the number
of 1’s is n+ 1 or more, and since the expected proportion of 1’s is nε < n+ 1, by the
weak law of large numbers the above probability goes to 0 as n→∞.

Problem 2.

(a) Observe that with P3 defined as in the problem, whatever distribution we choose for
X, the random variables X, Y, Z form a Markov chain, i.e., given Y , the random
variables X and Z are independent. The data processing theorem then yields:

I(X;Z) ≤ I(X;Y ) ≤ C1

I(X;Z) ≤ I(Y ;Z) ≤ C2

and thus I(X;Z) ≤ min{C1, C2} for any distribution on X. We then conclude that
C3 = maxpX I(X;Z) ≤ min{C1, C2}.

(b) The statistician calculates Ỹ = g(Y ).

(b1) Since X → Y → Ỹ forms a Markov chain, we can apply the data processing
inequality. Hence for every distribution on X,

I(X;Y ) ≥ I(X; Ỹ ).
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Let p̃(x) be the distribution on x that maximizes I(X; Ỹ ). Then

C = max
p(x)

I(X;Y ) ≥ I(X;Y )p(x)=p̃(x) ≥ I(X; Ỹ )p(x)=p̃(x) = max
p(x)

I(X; Ỹ ) = C̃.

Thus, the statistician is wrong and processing the output does not increase
capacity.

(b2) We have equality (no decrease in capacity) in the above sequence of inequalities
only if we have equality in data processing inequality, i.e., for the distribution
that maximizes I(X; Ỹ ), we have X → Ỹ → Y forming a Markov chain, in
other words if given Ỹ , X and Y are independent.

Problem 3. Observe that H(Y )−H(Y |X) = I(X;Y ) = I(X;Z) = H(Z)−H(Z|X).

(a) Consider a channel with binary input alphabet X = {0, 1} with X uniformly dis-
tributed over X , output alphabet Y = {0, 1, 2, 3}, and probability law

PY |X(y|x) =



1
2
, if x = 0 and y = 0

1
2
, if x = 0 and y = 1

1
2
, if x = 1 and y = 2

1
2
, if x = 1 and y = 3

0, otherwise.

It is easy to verify H(Y |X) = 1. Since Y takes any value in Y with equal probability,
its entropy is H(Y ) = 2. Therefore I(X;Y ) = 1. Define the processor output to be
in alphabet Z and construct a deterministic processor g : y 7→ z = g(y) such that,

g : Y → Z = {0, 1}
0 7→ 0

1 7→ 0

2 7→ 1

3 7→ 1.

Clearly, H(Z|X) = 0 and H(Z) = 1. Therefore I(X;Z) = 1. We conclude that
I(X;Z) = I(X;Y ) and H(Z) < H(Y ).

(b) Consider an error-free channel with binary input alphabet X = {0, 1} with X uni-
formly distributed over X , binary output alphabet Y = {0, 1}, and probability law

PY |X(y|x) =

{
1, if x = y

0, otherwise.

Choose now Z = {0, 1, 2, 3} an construct a probabilistic processor G such that

G : Y → Z

0 7→ 0 with probability
1

2
or 1 with probability

1

2

1 7→ 2 with probability
1

2
or 3 with probability

1

2
.

Clearly, I(X;Y ) = 1 = I(X;Z) and H(Y ) = 1 < 2 = H(Z).
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Problem 4. Since given X, one can determine Y from Z and vice versa, H(Y |X) =
H(Z|X) = H(Z) = log 3, regardless of the distribution of X. Hence the capacity of the
channel is

C = max
pX

I(X;Y )

= max
pX

H(Y )−H(Y |X)

= log 11− log 3

which is attained when X has uniform distribution. The same result can also be seen by
observing that this channel is symmetric.

Problem 5.

(a) Since the channel is symmetric, the input distribution that maximizes the mutual
information is the uniform one. Therefore, C = 1 + ε log2(ε) + (1− ε) log2(ε) which is
equal to 0 when ε = 1

2
.

(b) We have

– I(Xn;Y n) = I(Xn
2 ;Y n−1) + I(Xn

2 ;Yn|Y n−1) + I(X1;Y
n|Xn

2 ).

– Xn
2 = Y n−1 and Y1, . . . , Yn are i.i.d. and uniform in {0, 1}, so I(Xn

2 ;Y n−1) =
H(Y n−1) = n− 1.

– Yn is independent of (Xn
2 , Y

n−1), so I(Xn
2 ;Yn|Y n−1) = 0.

– X1 is independent of (Y n, Xn
2 ), so I(X1;Y

n|Xn
2 ) = 0.

Therefore, I(Xn;Y n) = n− 1.

(c) W is independent of Y n, so I(W ;Y n) = 0 = nC.

Problem 6.

(a) Chain rule for mutual information.

(b) I(W,Y i−1;Yi) = I(Y i−1;Yi) + I(W ;Yi|Y i−1) ≥ I(W ;Yi|Y i−1).

(c) I(W,Xi, X
i−1, Y i−1;Yi) = I(W,Y i−1;Yi) + I(Xi, X

i−1;Yi|W,Y i−1) ≥ I(W,Y i−1;Yi).
Note that this inequality is in fact equality, unless the mapping fi is randomized.

(d) W → (Xi, X
i−1, Y i−1)→ Yi is a Markov chain. This follows from the following facts:

– For all 1 ≤ j ≤ i, Xj is a function of (W,Y j−1).

– For all 1 ≤ j ≤ i, Yj depends on (W,Xj, Y j−1) only through Xj since the channel
is memoryless.

This means that the joint probability distribution of (W,X i, Y i) can be written as
follows:

PW,Xi,Y i(w, xi, yi) = PW (w)× PX1|W (x1|w)PY1|X1(y1|x1)
× PX2|W,Y1(x2|w, y1)PY2|X2(y2|x2)× . . .× PXi|W,Y i−1(xi|w, xi−1)PYi|Xi

(yi|xi),

which can be rewritten as

PW,Xi,Y i(w, xi, yi) = PW (w)PXi,Xi−1,Y i−1|W (xi, x
i−1, yi−1|w)PYi|Xi

(yi|xi).
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(e) Since the channel is stationary and memoryless, (X i−1, Y i−1)→ Xi → Yi is a Markov
chain.

(f) From the definition of the capacity.

This proof still works even when the mappings fi are randomized. We conclude that
feedback does not increase the capacity even if we are allowed to use a randomized encoder.
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