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Problem 1.

(a) We have H
(
f(U)

)
≤ H

(
f(U), U

)
= H(U) +H

(
f(U)

∣∣U) = H(U) + 0 = H(U).

(b) Notice that U −−◦ V −−◦ f(V ) is a Markov chain. The data processing inequality implies
that H(U) − H

(
U
∣∣f(V )

)
= I

(
U ; f(V )

)
≤ I(U ;V ) = H(U) − H(U |V ). Therefore,

H(U |V ) ≤ H
(
U
∣∣f(V )

)
.

Problem 2.

(a) We have:

H(U |Û) ≤ H(U,W |Û) = H(W |Û) +H(U |Û ,W ) ≤ H(W ) +H(U |Û ,W )

= H(W ) +H(U |Û ,W = 0) · P[W = 0] +H(U |Û ,W = 1) · P[W = 1]

(∗)
≤ h2(pe) + 0 · (1− pe) + log(|U| − 1) · pe = h2(pe) + pe log(|U| − 1),

where (∗) follows from the following facts:

– H(W ) = h2(pe).

– H(U |Û ,W = 0) = 0: conditioned on W = 0, we know that U = Û and so the
conditional entropy H(U |Û ,W = 0) is equal to 0.

– H(U |Û ,W = 1) ≤ log(|U| − 1): conditioned on W = 1, we know that U 6= Û
and so there are at most |U|−1 values for U . Therefore, the conditional entropy
H(U |Û ,W = 0) is at most log(|U| − 1).

(b) Let Û = f(V ). We have H(U |Û) ≤ h2(pe) + pe log(|U| − 1) from (a). On the other
hand, from Problem 1(b) we have H(U |V ) ≤ H

(
U
∣∣f(V )

)
= H(U |Û). We conclude

that H(U |V ) ≤ h2(pe) + pe log(|U| − 1).

Problem 3.

(a) Since

P (U = u, Z = z) =

{
p(u) if z = 1,

q(u) if z = 2,

one can immediately see that the distribution of U is r(u) = θp(u) + (1− θ)q(u).

(b) H(U) = h(r), and

H(U |Z) =
∑
z

P (Z = z)H(U |Z = z) = θh(p) + (1− θ)h(q).

The last equality follows since given z = 1 (resp. z = 2) U has distribution p (resp. q).

Since H(U) ≥ H(U |Z), we have proved that h(r) ≥ θh(p) + (1− θ)h(q).



Problem 4.

(a) We have:

S =
∑
u∈U

max{P1(u), P2(u)}
(∗)
≤
∑
u∈U

(P1(u) + P2(u))

=
∑
u∈U

P1(u) +
∑
u∈U

P2(u) = 1 + 1 = 2,

It is easy to see from (∗) that S = 2 if and only if max{P1(u), P2(u)} = P1(u)+P2(u)
for all u ∈ U , which is equivalent to say that there is no u ∈ U for which we have
P1(u) > 0 and P2(u) > 0. In other words, S = 2 if and only if

{u ∈ U : P1(u) > 0} ∩ {u ∈ U : P2(u) > 0} = ø.

(b) Let li = dlog2
S

max{P1(ai),P2(ai)}e, and let us compute the Kraft sum:

M∑
i=1

2−li ≤
M∑
i=1

2
− log2

S
max{P1(ai),P2(ai)} =

M∑
i=1

max{P1(ai), P2(ai)}
S

= 1.

Since the Kraft sum is at most 1, there exists a prefix-free code where the length of
the codeword associated to ai is li.

(c) Since the code constructed in (b) is prefix free, it must be the case that l ≥ H(U).
In order to prove the upper bounds, let P ∗ be the true distribution (which is either
P1 or P2). It is easy to see that P ∗(ai) ≤ max{P1(ai), P2(ai)} for all 1 ≤ i ≤M . We
have:

l =
M∑
i=1

P ∗(ai).li =
M∑
i=1

P ∗(ai).
⌈

log2

S

max{P1(ai), P2(ai)}

⌉
<

M∑
i=1

P ∗(ai).
(

1 + log2

S

max{P1(ai), P2(ai)}

)
=

M∑
i=1

P ∗(ai).
(

1 + logS + log2

1

max{P1(ai), P2(ai)}

)
= 1 + logS +

M∑
i=1

P ∗(ai). log2

1

max{P1(ai), P2(ai)}

(∗)
≤ 1 + logS +

M∑
i=1

P ∗(ai). log2

1

P ∗(ai)
= H(U) + logS + 1 ≤ H(U) + 2,

where the inequality (∗) uses the fact that P ∗(ai) ≤ max{P1(ai), P2(ai)} for all 1 ≤
i ≤M .

(d) Now let li = dlog2
S

max{P1(ai),...,Pk(ai)}
e, and let us compute the Kraft sum:

M∑
i=1

2−li ≤
M∑
i=1

2
− log2

S
max{P1(ai),...,Pk(ai)} =

M∑
i=1

max{P1(ai), . . . , Pk(ai)}
S

= 1.
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Since the Kraft sum is at most 1, there exists a prefix-free code where the length of the
codeword associated to ai is li. Since the code is prefix free, it must be the case that
l ≥ H(U). In order to prove the upper bounds, let P ∗ be the true distribution (which
is either P1 or . . . or Pk). It is easy to see that P ∗(ai) ≤ max{P1(ai), . . . , Pk(ai)} for
all 1 ≤ i ≤M . We have:

l =
M∑
i=1

P ∗(ai).li =
M∑
i=1

P ∗(ai).
⌈

log2

S

max{P1(ai), . . . , Pk(ai)}

⌉
<

M∑
i=1

P ∗(ai).
(

1 + log2

S

max{P1(ai), . . . , Pk(ai)}

)
=

M∑
i=1

P ∗(ai).
(

1 + log2 S + log2

1

max{P1(ai), . . . , Pk(ai)}

)
= 1 + log2 S +

M∑
i=1

P ∗(ai). log2

1

max{P1(ai), . . . , Pk(ai)}

(∗)
≤ 1 + log2 S +

M∑
i=1

P ∗(ai). log2

1

P ∗(ai)
= H(U) + log2 S + 1,

where the inequality (∗) uses the fact that P ∗(ai) ≤ max{P1(ai), . . . , Pk(ai)} for
all 1 ≤ i ≤ M . Now notice that max{P1(ai), . . . , Pk(ai)} ≤

∑k
j=1 Pj(ai) for all

1 ≤ i ≤M . Therefore, we have

S =
M∑
i=1

max{P1(ai), . . . , Pk(ai)} ≤
M∑
i=1

k∑
j=1

Pj(ai) =
k∑

j=1

M∑
i=1

Pj(ai) =
k∑

j=1

1 = k.

We conclude that H(U) ≤ l ≤ H(U) + logS + 1 ≤ H(U) + log k + 1.

Problem 5.

(a) We prove the identity by induction on n ≥ 1. For n = 1, the identity is trivial. Let
n > 1 and suppose that the identity is true up to n− 1. We have:

I(Y n−1
1 ;Xn) = I(Y n−2

1 , Yn−1;Xn)
(∗)
= I(Y n−2

1 ;Xn) + I(Xn;Yn−1|Y n−2
1 )

(∗∗)
=
( n−2∑

i=1

I(Xn;Yi|Y i−1
1 )

)
+ I(Xn;Yn−1|Y n−2

1 ) =
n−1∑
i=1

I(Xn;Yi|Y i−1
1 ).

The identity (∗) is by the chain rule for mutual information, and the identity (**) is
by the induction hypothesis.

(b) For every 0 ≤ i ≤ n, define ai = I(Xn
i+1;Y

i
1 ), and for every 1 ≤ i ≤ n, define

bi = I(Xn
i+1;Y

i−1
1 ). It is easy to see that a0 = an = 0. We have:

n∑
i=1

I(Xn
i+1;Yi|Y i−1

1 )
(∗)
=

n∑
i=1

(
I(Xn

i+1;Y
i
1 )− I(Xn

i+1;Y
i−1
1 )

)
=
( n∑

i=1

ai

)
−
( n∑

i=1

bi

)
(∗∗)
=
( n−1∑

i=0

ai

)
−
( n∑

i=1

bi

)
=
( n∑

i=1

ai−1

)
−
( n∑

i=1

bi

)
=

n∑
i=1

(
ai−1 − bi

)
=

n∑
i=1

(
I(Xn

i ;Y i−1
1 )− I(Xn

i+1;Y
i−1
1 )

)
(∗∗∗)
=

n∑
i=1

I(Y i−1
1 ;Xi|Xn

i+1).
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The identities (∗) and (∗∗∗) are by the chain rule for mutual information. The identity

(∗∗) follows from the fact that a0 = an = 0, which implies that
n∑

i=1

ai =
n−1∑
i=0

ai.

Problem 6.

(a) The number of binary sequences of length n that have a given substring of length
m ≤ n is 2n−m: for each of the n−m positions outside the substring we have 2 choices.
Consequently the number of words in Aj that have C(i) as an initial substring (prefix)
is 2lj−li and similarly for the number of words that have C(i) as a suffix.

(b) The words removed in (∗) and (∗∗) are precisely those discussed in (a). As some of
those may have been removed in a prior step, and since the words in (∗) and (∗∗)
may overlap, the number of words removed is at most 2 · 2lj−li = 2lj−li+1.

(c) The number of words removed from Ai at the time we test Ai 6= ∅ is at most

i−1∑
m=1

2li−lm+1 = 2li2
i−1∑
m=1

2−lm < 2li

since
∑i−1

m=1 2−lm <
∑k

m=1 2−lm ≤ 1
2
. As the initial size of Ai was 2li we see that Ai is

not empty at the time of the test, and thus the algorithm will not fail.

(d) We know from (c) that algorithm will not fail. Since C(i) is chosen from Ai it is of
length li. Also, steps (∗) and (∗∗) ensure that C(i) is neither a prefix nor a suffix of
C(j) for j > i. On the other hand since l1 ≤ · · · ≤ lk, C(i) can not be a prefix or
suffix of C(j) for j < i either. So the returned code is fix-free.

(e) Choosing l(u) = dlog 1
p(u)
e+ 1 yields

log
1

p(u)
+ 1 ≤ li ≤ log

1

p(u)
+ 2.

The right hand side inequality ensures E[l(U)] ≤ H(U) + 2, whereas the left hand
side inequality ensures 2−l(u) ≤ p(u)/2 and thus

∑
u 2−l(u) ≤ 1/2 and consequently

the existence of a fix-free code C with these lengths.

Problem 7.

(a) We can write the following chain of inequalities:

Qn(x)
1
=

n∏
i=1

Q(xi)
2
=
∏
a∈X

Q(a)N(a|x) 3
=
∏
a∈X

Q(a)nPx(a)=
∏
a∈X

2nPx(a) logQ(a) (1)

=
∏
a∈X

2n(Px(a) logQ(a)−Px(a) logPx(a)+Px(a) logPx(a)) (2)

= 2n
∑

a∈X (−Px(a) log
Px(a)
Q(a)

+Px(a) logPx(a)) = 2n(−D(Px||Q)+H(Px)),

where 1 follows because the sequence is i.i.d., grouping symbols gives 2, and 3 is the
definition of type.
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(b) Upper bound: We know that

n∑
k=0

(
n

k

)
pk(1− p)n−k = 1.

Consider one term and set p = k/n. Then,

1 ≥
(
n

k

)(
k

n

)k (
1− k

n

)n−k

=

(
n

k

)
2n( k

n
log k

n
+n−k

n
log n−k

n ) =

(
n

k

)
2−nh2(

k
n
)

Lower bound: Define Sj =
(
n
j

)
pj(1− p)n−j. We can compute

Sj+1

Sj

=
n− j
j + 1

p

1− p
.

One can see that this ratio is a decreasing function in j. It equals 1, if j = np+p−1,
so

Sj+1

Sj
< 1 for j = bnp + pc and

Sj+1

Sj
≥ 1 for any smaller j. Hence, Sj takes its

maximum value at j = bnp+ pc, which equals k in our case. From this we have that

1 =
n∑

j=0

(
n

j

)
pj(1− p)n−j ≤ (n+ 1) max

j

(
n

j

)
pj(1− p)j

≤ (n+ 1)

(
n

k

)(
k

n

)k (
1− k

n

)n−k

= (n+ 1)

(
n

k

)
2−nh2(

k
n
). (3)

The last equality comes from the derivation we had when proving the upper bound.

(c) Since for every x ∈ T (P ), Qn(x) = 2−n(H(P )+D(P‖Q)) (by part (a)) and 1
n+1

2−nH(P ) ≤
|T (P )| ≤ 2−nH(P ) (by part (b)), we have

1

n+ 1
2−nD(P‖Q) ≤ Qn(T (P )) ≤ 2−nD(P‖Q)
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